Lecture [29] Nov. 6 (Fri.): part[] Outline for Coulomb potential (one-electron atom) Solving radial part of wavefunction, thus energy values - properties of energy levels - Onto spin-orbit interaction: motivation for addition of angular momenta as next topic (sec. 3.8) Summary of radial equation solving: $\langle z' | E R m \rangle = R_{ER}(r) Y_{R}^{m}(\Theta, \phi)$ l III², Lz eigenstate requiring "sensible" solution determines energy levels

 $R_{EL}(r) = U_{EL}(r)/r$ makes it '1d" Schroedinger wave equation, with $V_{eff}(r) = V(r) + \frac{l(l+1)h^2}{2mr^2} \int momentum barrier$ [1]. Short-distance $(\mathbf{r} \rightarrow \mathbf{0})$ behaviour: for $r^2 V(r) \rightarrow 0$ as $r \rightarrow 0/e.g., 3d$ isotropic SHO; 1-electron atom) zangular momentum barrier (+ sensible solution) dictates $\mathcal{U}_{E\ell}(r) \propto r^{\ell+2} (for r \rightarrow 0)$ (2) Long-distance: for $V(r) \rightarrow 0$, thus $V_{eff} \rightarrow 0$ as $r \rightarrow 00$, bound states for $E < 0 \dots useful : \rho = \kappa r, \kappa = -\frac{2mE}{4^2}$ $\Rightarrow U_{ER}(P) \propto e^{-P}$... (applies to Coulomb, but not to 3d SHO ...) Combining 2 asymptotics, $U_{ER}(\rho) = \rho^{R+1} \times \omega(\rho) \times \tilde{e}^{-\rho}$ $depends \quad long \dots$

Coulomb potential (also classical) -One-electron atom with charge of $nucleus = - ze(e<0) \Rightarrow V = - \frac{ze^2}{1-2}$ -goal (general): solve for radial function, getting energy eigenvalues - Satisfies both V(r) conditions: as r& $r^2 V \rightarrow 0$ as $r \rightarrow 0$ so that $\rightarrow \infty$ $U_{ER}(\rho) = \rho^{R+1} w(\rho) e^{-\rho}$ -Use $P_0 = \sqrt{\frac{2m}{-E}} \frac{\frac{2e^2}{-E}}{\frac{1}{2m}} \frac{\frac{2mc^2}{-E}}{\frac{2mc^2}{-E}}$ $\left[\alpha = \frac{e^2}{(\pi c)} \approx \frac{1}{137} \text{ fine structure constant} \right]$ - General equation for $\omega(p)$ becomes $\rho \frac{d^2 \omega}{d\rho^2} + 2(l+1-\rho)\frac{d\omega}{d\rho} + \left[\rho - 2(l+1)\right]\omega = 0$

-Goal (specifically): for given l, what PolorE) will give "reasonable" solution?

-Solve by series ansatz: see sec. 4.2.1 of (3rd edition of) Griffiths where $\omega \rightarrow v$ in Eq. 4.61 -Summary (like 32 isotropic SHO): (1). Plug series into DE: set net coefficient of P^n in DE = 0... (2) recursion relations for coefficients in W (3). Require normalizability of $\omega(\rho) \rightarrow$ series must terminate ... => condition on Po... and W(D) is polynomial $\frac{\text{Result}: \rho_o = 2n (n = 0, 1, 2...}{(l = 0, 1...(n-1))} \text{ principal quantum number}$ *i.e.*, $E = -\frac{1}{2} \frac{mc^2 + 2c^2}{n^2} = -\frac{13.6eV}{n^2} \frac{z^2}{n^2}$

 $-\omega(\rho)$ (polynomial, defined by recursion formula, up to normalization) are (associated) Lauguerre

$$= \sum_{n=l}^{2l+1} \binom{2p}{2p}, \text{ where } (mathematically)$$

$$= \sum_{n=l}^{2l+1} \binom{2p}{n-l}, \text{ where } (mathematically)$$

$$= \sum_{n=l=l}^{n} \binom{p}{2p} \binom{2p}{2p}, \text{ where } (mathematically)$$

$$= \sum_{n=l=l}^{n} \binom{p}{2p} \binom{2p}{2p} \binom{p}{2p} \binom{p}{2p}$$

where Bohr radius a_{\circ} is natural length scale = $\hbar/(mcx) \approx 0.53 \text{ Å}$:

$$P = \kappa r, with \kappa = \int \frac{-2mE}{\hbar^2} (general)$$

$$Plug E = -\frac{1}{2}mc^2 \frac{2^2 \alpha^2}{n^2} to get$$

$$\frac{1}{\kappa} = \frac{\pi}{mc\kappa} \frac{n}{\epsilon} = \frac{\alpha_0 n}{\epsilon}$$

$$- Equivalently (ala Sakurai),$$

$$radial equation for w(p) written$$
as (known) Kummer's equation,
whose so lution is (already) known
in series form: require
normalizability ... same Po
(Problem 3.22 of Sakurai: 2
methods directly connected:
(associated) Lauguerre polynomials (aefined
using generating function) solve Kummer's
equation ...

Properties of energies/radial functions for given n [l=0,1...(n-1)] (1). Wavefunctions at origin: only l = 0 is non-vanishing angular (agrees with general case: momentum) barrier (2). Number of nodes: (n-1) for l = 0vs. none for l=n-1 (highest l) (3) level of degeneracy (E depends only on n, not on l, m number of l values $n - i + \ell = \sum_{\substack{n=1 \\ l \leq l}} \frac{n - i}{2} = \frac{2}{2} \sum_{\substack{n=1 \\ l \leq l}} \frac{1}{n} = \frac{2}{2} \sum_{\substack{n=1 \\ l \leq l}} \frac{1}{n} = \frac{2}{2} \sum_{\substack{n=1 \\ l \leq l}} \frac{1}{n} = \frac{1}{2} \sum_{\substack{n=1 \\ l \geq l}} \frac{1}{n} = \frac$ (4) Compare to (old/Bohr model of hydrogen atom : same energy levels [Balmer formula (empirical)] ... from quantization of angular momentum = tr

[1-to.1 correspondence between
angular momentum and energy
⇒ Bohr model ground state (n=1)
has non-zero angular momentum (l=1)
vs. Schroedinger/Heisenberg Meory:
n=1 has l=0 (zero angular momentum)
and for higher n , $l = 0, 1 \dots (n-1) \dots$
(range of l giving same E)
degeneracy in l'broken "by
spin-orbit interaction: so far only
energy/angular momentum from (only)
spatial/orbital motion included
-Enter spin of electron (for now!):
contributes to energy (Hamiltonian)
if there is magnetic field (B)
- B acting on electron in one-electron atom ?!

... Yes! Go to rest frame of electron, nucleus orbiting electron \Rightarrow current. \Rightarrow B acting on electron \propto L of proton/ electron \Rightarrow contribution to $H \propto \overline{B.5}$ OC [.5] (fine structure : E depends on l; chapter 5 in Phys 623) ⇒ motivates "adding" angulor momenta