Lecture 29 , Nov 6 (Fri.): part(IT)
Outline for Coulomb potential (one-electron atom)

- solving radial part of wavefunction, thus energy values
- properties of energy levels
- onto spin-orbit interaction: motivation for addition of angular momenta as next topic (sec .3.8)

Summary of radial equation solving $\left\langle x^{\prime} \mid E \ell m\right\rangle=\underbrace{Y_{l}^{m}(\theta, \phi)}_{\left|\overline{R_{E l}}\right|^{2}, L_{z} \text { eigenstate }}$ requiring "sensible" solution determines energy levels
$R_{E l}(r)=U_{E l}(r) / r$ makes it "Id Schroedinger wave equation, with $V_{\text {eff }}(r)=V(r)+\frac{l(l+1) \hbar^{2}}{2 m r^{2}} \int_{\substack{\text { mirier }}}^{\text {momentum }}$ barm
(11. Short-distance $(r \rightarrow 0)$ behaviour: for $r^{2} V(r) \rightarrow 0$ as $r \rightarrow 0 / e \cdot g, 3 d$ isotropic SHO; 1-electron atom) \Rightarrow angular momentum barrier (+ sensible solution) dictates $u_{E l}(r) \propto r^{\ell+1}($ for $r \rightarrow 0)$
(2) Long-distance: for $v(r) \rightarrow 0$, thus $V_{\text {eff }} \rightarrow 0$ as $r \rightarrow \infty$, bound states for $E<0 \ldots$ useful: $\rho=k r, z=\frac{-2 m E}{\hbar^{2}}$ $\Rightarrow u_{E l}(\rho) \propto e^{-\rho} \ldots$ (applies to Coulomb, but not to $3 d$ SHow...) Combining 2 asymptotics, $u_{E l}(p)=\underbrace{p^{l+1}}_{\text {short... }} \times \underbrace{\omega(\rho)}_{\begin{array}{c}\text { depends } V\end{array}} \times \underbrace{e^{-\rho}}_{\operatorname{long} \ldots}$

Coulomb potential (also classical) - One-electron atom with charge of nucleus $=-z e(e<0) \Rightarrow V=-\frac{z e^{2}}{r}$

- goal (general): solve for radial function, getting energy eigenvalues
- Satisfies both $V(r)$ conditions: as r \& $r^{2} V \rightarrow 0$ as $r \rightarrow 0$ so that

$$
\begin{aligned}
& u_{E l}(\rho)=\rho^{l+1} \omega(\rho) e^{-\rho} \\
& \text { - Use } \rho_{0}=|\sqrt{2 m /-E}|\left(\frac{z e^{2}}{\hbar} \left\lvert\,=\sqrt{\frac{2 m c^{2}}{-E}} z \alpha\right.\right. \\
& {\left[\alpha=e^{2} /(\hbar c) \approx \frac{1}{137} \text { fine structure constant }\right]}
\end{aligned}
$$

- General equation for ω (ρ) becomes

$$
\rho \frac{d^{2} \omega}{d \rho^{2}}+2(l+1-\rho) \frac{d \omega}{d \rho}+\left[\rho_{0}-2(l+1)\right] \omega=0
$$

- Goal (specifically): For given ℓ, what Po(orE)will give "reasonable" solution?
- Solve by series ansatz: see sec. 4.2.1 of ($3^{\text {rd }}$ edition of) Griffith where $\omega \rightarrow v$ in Eq. 4.61
- Summary (like $3 d$ isotropic SHO):
(1). Plug series into $D E$: set net coefficient of ρ^{n} in $D E=0 \ldots$
(2). recursion relations for coefficients in ω (3). Require normalizability of $\omega(0) \ldots \Rightarrow$ series must terminate $\ldots \Rightarrow$ condition on $\rho_{0} \ldots$ and $\omega(\rho)$ is polynomial Result : $\rho_{0}=2 n(n=0,1,2 \ldots$
$(l=0,1 \ldots(n-1)) \quad$ principal quantum number)
i.e., $E=-\frac{1}{2} \frac{m c^{2} z^{2} \alpha^{2}}{n^{2}}=-13.6 \mathrm{eV} \frac{z^{2}}{n^{2}}$
- $\omega(\rho)$ (polynomial, defined by recursion formula, up to normalization) are (associated) Lauguerre
$=L \begin{aligned} & 2 l+1 \\ & n-l \text { physics }\end{aligned}(2 p)$ where (mathematically) notation"

$$
\begin{aligned}
& L_{q}^{p}(x) \equiv(-1)^{p}\left(\frac{d}{d x}\right)^{p} L_{p+q}(x) ; \\
& L_{q}(x) \equiv e^{x} / q!\left(\frac{d}{d x}\right)^{q}\left(e^{-x} x^{q}\right)
\end{aligned}
$$

so that (including normalization)

$$
\begin{aligned}
& \psi_{n l m}(\bar{x}) \equiv\langle\bar{x} \mid n l m\rangle=R_{n l}(r) Y_{l}^{m}(\theta, \phi), \\
& R_{n l}(r)=\left(\frac{2 z}{n a_{0}}\right)^{3} \frac{(n-l-1)!}{2 n(n+l)!} \frac{e^{-z r /\left(n a_{0}\right)}}{e^{-\rho}} \\
& \times\left(\frac{L^{l+1}}{n-l-1}\left(\frac{2 z r}{n a_{0}}\right) \times\left(\frac{2 z r}{n a_{0}}\right)^{l} \frac{\rho^{l+1}}{\rho}\right. \text { (short }
\end{aligned}
$$

where Bohr radius a_{0} is natural length scale $=\hbar /(m c \alpha) \simeq 0.53 \AA$
$\rho=k r$, with $k=\sqrt{-\frac{2 m E}{\hbar^{2}}}$ (general)
Plug $E=-\frac{1}{2} m c^{2} z^{2} \alpha^{2} / n^{2}$ to get

$$
\frac{1}{x}=\frac{\hbar}{m<\alpha} \frac{n}{z} \equiv a_{0} n / z
$$

- Equivalently (ala Sakurai radial equation for $\omega(\rho)$ written as (known) Kummer's equation, whose solution is (already) known in series form: require normalizability... same P_{0} [Problem 3.22 of Sakurai: 2 methods directly connected: (associated) Lauguerre polynomials (defined using generating function) solve Kummer's equation...]

Properties of energies/radial functions for given $n[l=0,1 \ldots(n-1)]$
(1). Wavefunctions at origin only $l=0$ is non-vanishingangular (agrees with general case: momentum $\begin{gathered}\text { marvier } \\ \text { (}\end{gathered}$
(2). Number of nodes: $(n-1)$ for $\ell=0$ us. none for $l=n-1$ (highest l)
(3) level of degeneracy (E depends only on n, not on ℓ, m of number ℓ values

$$
\begin{aligned}
& =\sum_{l=0}^{n-1} \sum_{m=-l}^{+l} 1=\sum_{l=0}^{n-1} \underbrace{(2 l+1)}_{(\text {usual }}=(2) \sum_{l=(1)}^{n-1} l e\left(\begin{array}{l}
e_{0}^{n o}=0 \\
\text { here }
\end{array}\right] \\
& {\left[\operatorname{use}(1+2+\ldots n)=\frac{n(n+1)]}{2}\right]=2\left[\frac{(n-1) n}{2}\right]+n=n^{2}}
\end{aligned}
$$

(4) Compare to (old) Bohr model of hydrogen atom: same energy levels [Balmer formula (empirical)]... from quantization of angular momentum $=\hbar n$
[1-to.1 correspondence between angular momentum and energy
\Rightarrow Bohr model ground state ($n=1$) has non-zero angular mom entum $(l=1)$
vs. Schroedinger/Heisenberg the ory
$n=1$ has $l=0$ (zero angular momentum) and for higher $n, l=0,1 \ldots(n-1) \ldots$
(range of l giving same E)
... degeneracy in \& "broken"by spin-orbit interaction: so far only energylangular momentum from (only) spatial/orbital motion included (magnetic moment)

- Enter spin (of electron (for now!): contributes to energy (Hamiltonian) if there is magnetic field (\bar{B})
- \bar{B} acting on electron in one-electron atom?!
... Yes! Go to rest frame of electron, nucleus orbiting electron \Rightarrow current... $\Rightarrow \bar{B}$ acting on electron $\propto \bar{L}$ of Protoctrin
\Rightarrow contribution to $H \propto \bar{B} \cdot \bar{S}$ $O \subset \bar{S}$ (fine structure: E depends on l; chapter 5 in Phys 623)
\Rightarrow motivates "adding" angular momenta

