Lecture 28 , Nov. 4 (wed.) \& part (I) of lecture 29 , Nov. 6 (Fri.)
outline for today (\& Fri.)

- finish general features of radial solutions
- onto specific examples:
- $3 d$ free particle
(also ∞ spherical well)
$\left.\begin{array}{l}\text { (general/anisotropic } \\ \text { in HW } 6.3\end{array}\right) \begin{aligned} & \text { from } \\ & \text { spherical } \\ & \text { coordinates } \\ & \text { angular }\end{aligned}$
$\begin{aligned} & \text { momentum } \\ & \text { viewpoint } \\ & \text { (vs. Cartesian } \\ & \text { earlier) }\end{aligned}$
- One-electron atom (Coulomb potential)

General features of $U_{E e}(r)$

$$
-r \rightarrow 0 \text { studied earlier: } u_{E l} \propto r^{\ell+2}
$$

Other asymptotics: $r \rightarrow \infty$
Assume $V(r) \rightarrow 0$ as $r \rightarrow \infty$
$\Rightarrow V_{\mathrm{eff}}(r) \rightarrow 0$ also, since $l(l+l) \hbar^{2} /\left(2 m r^{2}\right) \rightarrow 0$ as $r \rightarrow \infty$
\Rightarrow need $E<0$ for bound states $(E \geqslant 0$ will "escape" potential)

$$
\Rightarrow \frac{d^{2} u_{E}}{d r^{2}} r_{n 0} K^{2} u_{E}, K^{2}=\frac{-2 m E}{\hbar^{2}}>0
$$

(as $r \rightarrow \infty$)

$$
\begin{aligned}
& (\text { as } r \rightarrow \infty) \\
& \text { i.e., } u_{E} \propto e^{-k r}+e^{+k r}
\end{aligned}
$$

cant normalize: volume element also $\rightarrow \infty$, so drop - Use $\rho \equiv k r$ (dimensionless) combining $r \rightarrow 0$ and $r \rightarrow \infty$ limits $u_{E l}(\rho)=\rho^{l+1} \times \omega(\rho) \times e^{-\rho}$ (short-distance) "behaved" (listang-
so that $\omega(0)$ satisfies

$$
\frac{d^{2} \omega}{d \rho^{2}}+2\left(\frac{l+1}{\rho}-1\right) \frac{d \omega}{d \rho}+\left[\frac{V}{E}-\frac{2(l+1)}{\rho}\right] \omega
$$

solution for ω depends on $v(r=P / k)$, e.g. Coulomb potential Warm-up with free $3 d$ particle and ∞ spherical well
(done earlier using Car tesian) Since $V=0$, just use original radial equation [can we use for all r $u=A r^{l+1}+B r^{-l}$, since $\underline{V}=0$? No: due to " E "term in $D E$ " " $A-B^{\prime \prime}$ " solution still valid only for $r \rightarrow 0$]

$$
\begin{aligned}
& \frac{d^{2} R}{d \rho^{2}}+\frac{2}{\rho} \frac{d R}{d P}+\left[1-\frac{e(l+1)}{\rho^{2}}\right] R=0 \\
& {\left[P=k r, E \equiv \hbar^{2} k^{2} /(2 m)\right]}
\end{aligned}
$$

- Solutions are spherical Bessel:

$$
\left.\begin{array}{rl}
j_{l}(\rho) & =(-\rho)^{l}\left[\frac{1}{\rho} \frac{d}{d \rho}\right]^{\ell}(\sin \rho / \rho) \\
& \rightarrow \rho^{l} \text { as } \rho \rightarrow 0 \quad(" \text { sensible " }
\end{array}\right)
$$

\Rightarrow keep only $j_{e}\left(\propto r^{l}\right)$: matches earlier general discussion: $J_{l} \sim A \ldots$ of $u_{,} n_{l} \sim B \ldots$

$$
\left.j_{0}(\rho)=\sin p / p ; j_{1}(\rho)=\frac{\sin p}{p}-\frac{\cos p}{\rho}\right]
$$

On to ∞ spherical well :

$$
V(r)= \begin{cases}0 & \text { for } r<a \\ \infty & \text { for } r>a\end{cases}
$$

\Rightarrow wavefunction $\left[\infty j_{e}(\rho)\right]=0$ at $r=a$
ie, for given $l, \dot{j}_{l}(k a)=0$
$\Rightarrow k a=$ zeroes of \dot{j}_{l}
$[\mathrm{e} . g ., \underbrace{l=0} \Rightarrow k a=\pi, 2 \pi, 3 \pi]$

$$
J_{0}(p)=\frac{\sin p}{p}\left(\begin{array}{l}
k a=0 \text { " } a b \operatorname{sen} t^{\prime \prime} " \\
\text { since } j_{0}(0) \rightarrow(1)
\end{array}\right.
$$

$$
\Rightarrow E_{l=0}=\frac{\hbar^{2}}{2 m a^{2}}\left[\pi^{2},(2 \pi)^{2},(3 \pi)^{2}\right]
$$

(Numerically for $\ell>0$)
In general, different l 's
not degenerate (unless
different order spherical Bessel functions - coincidentallyhave same zero), cF. 30 isotropic SHO or one-electron atom below

Isotropic sho in $3 d$

$$
H=|\bar{P}|^{2} /(2 m)+\frac{1}{2} m \omega^{2} r^{2}
$$

spectrum already obtained in HW 6.3 using cartesian, in fact for anisotropic case:

$$
H=H_{x}+H_{y}+H_{z}
$$

(sum of independent SHO in each dimension, that too different ω in general... but here same ω :

$$
H_{i}(i=x, y, z)=a_{i}^{+} a_{i}+1 / 2 \ldots
$$

... eigenstate labeled by $\left(n_{x}, n_{y}, n_{z}\right\rangle$ with energy eigenvalues:

$$
\frac{E}{\hbar \omega}=\underbrace{n_{x}+1 / 2}_{\text {sHO-x }}+\underbrace{n_{y}+1 / 2}_{\cdots y}+\underbrace{n_{z}+1 / 2}_{\cdots z}
$$

$$
=(N+3 / 2) \hbar \omega, N=n_{x}+n_{y}+n_{z}
$$

Degeneracy
(1). $N=0: n_{x}=n_{y}=n_{z}$ only 1 state $=0$
(2). $N=1$
(3) states (one $n=1$,
others 0')
(3). $N=2$: one $n=2$, other ${ }^{2} n^{\prime \prime s} 0 \Rightarrow 3$ states or $1 n=0$, other $2=1 \Rightarrow 3$ states: $\begin{gathered}\text { total } \\ =6\end{gathered}$
-"Chec k"using spherical coordinates (angular momentum eigenstates)

- dimensionless variables
$E=\frac{1}{2} \hbar \omega \lambda$ and $r=\sqrt{\frac{\hbar}{m \omega}} \rho$
["similar" to 1 d SHO: why not use $\rho=k r$ of general strategy?! No because $v \nrightarrow 0$ \qquad for $r \rightarrow \infty$

$$
\Rightarrow \begin{array}{r}
\text { radial } \\
\text { equation }
\end{array} \frac{d^{2} u}{d \rho^{2}}-\frac{\ell(l+1)}{\rho^{2}} u+\left(\lambda-\rho^{2}\right) u
$$

Factor out short \& long distance

$$
u(\rho)=\underbrace{f(\rho)}_{\text {well -behaved }} \times \underbrace{\rho^{l+1}}_{\text {short }} \underbrace{e^{-p^{2} / 2}}_{10 \text { ing... }}
$$

$$
(\text { as } r \rightarrow 0 \text { or } \infty) \text { distance (like } 1 \mathrm{~d})
$$

like general case
[why not

$$
\left(r^{2} V \rightarrow 0\right. \text { as }
$$

$$
e^{-\rho} ?
$$

$\Rightarrow D E$ (differential equation) for $f(\rho)$ (fixed l)

$$
\rho \frac{d^{2} f}{d \rho^{2}}+2\left[(l+1)-\rho^{2}\right] \frac{d f}{d \rho}+(\lambda-(2 l+3)] \rho f
$$

Goal: For given l, what values of λ are "needed" to get "reasonable" solution for u ?

- Try series solution for $f=\sum_{n=0}^{\infty} a_{n} p^{n}$
- (You know the drill!) Plug into DE;
set coefficient of each power of $\rho=0$
(0). ρ^{0} gives $2(l+1) a_{1}=0$ $\left\{\begin{array}{r}\text { only middle term : } 2\left[(l+1)-R^{2}\right]\left(a_{1}+\right. \\ \left.2 a_{2} R+\cdots\right)\end{array}\right\}$

$$
\begin{aligned}
& l \geqslant 0 \Rightarrow(l+1) \geq 2 \frac{(\neq 0)}{(\text { from } 3 \text { ter }} \text { so that } \\
& a_{1}=0
\end{aligned}
$$

(from $1^{\text {st }}$, middle terms)
(1). a_{2} (ire aced to $a_{0} \int_{1}^{\text {by }} \rho^{(1)}$ coefficient $=0$

$$
\rho^{1} 2 a_{2}+2(l+1) \rho^{1}\left(2 a_{2}\right)+[\lambda-(2 l+3)]
$$

(set a by normalization)

$$
=0 \times \rho^{2} a_{0}
$$

\cdots in general, coefficient of $\rho^{n+1}=0$ ($n=0$ above)

$$
\begin{aligned}
\text { (n }= & \underbrace{(n+2)(n+1) a_{n+2}}_{\text {from } 1 \text { st } D E \text { term }} \underbrace{+2(l+1)(n+2) a_{n+2}}_{\text {from } 2^{n d}} \begin{array}{r}
-2 n a_{n}
\end{array} \\
& \left.+[\lambda-(2 \ell+3)] a_{n}\right\} \text { from } 3^{\text {rd }} \ldots
\end{aligned}
$$

\Rightarrow recursion relation

$$
\begin{aligned}
& a_{n+2}=a_{n} \frac{(2 n+2 l+3-\lambda)}{(n+2)(n+2 l+3)} \\
& a_{1}=0 \Rightarrow a_{3}, 5, \ldots=0\left(a_{0 d d}=0\right)
\end{aligned}
$$

so, only even powers of ρ in $f(p)$

- More importantly, $\frac{a_{n+2}}{a_{n}} \rightarrow \frac{2}{n}=\frac{1}{q}$
[q is integer (even/odd), since n even]

$$
\begin{aligned}
& a_{n+2}=\frac{2}{n} \overbrace{\left(\frac{2}{n-2} a_{n-2}\right)}^{a_{n}}=\frac{2}{n} \overbrace{n-2}^{1 / q} \frac{2}{n-4} \cdots \frac{1}{q^{2-2}} \\
& \Rightarrow a_{(1 / q-1)}^{(q!} \text { as } q \rightarrow \infty
\end{aligned}
$$

so that $f(p) \propto \sum_{q}\left(p^{2}\right)^{q} \times 1 / q$!
$\sim \exp \left(+p^{2}\right) \rightarrow_{\text {for }} \infty$
So, require series to end $p \rightarrow \infty$ for normalizable solution
\Rightarrow for given λ, l, "must" have $n=2 q$ such that $\left(\frac{a_{n+2}}{a_{n}} \propto\right)=(2 n+2 l+3-\lambda)=0$ $\left(a_{n+2} \&\right.$ subsequent a^{\prime} 's vanish ie, f is polynomial)
\Rightarrow flipping, λ must be $(2 n+2 l+3)$ for some (even) n
$=2 q$ $=2 q$
energy eigenvalues, $E_{q l}=\hbar \omega$

$$
=(N+3 / 2) \hbar \omega
$$

where $N=(2 q+l)$, since $l=0,1,2 \ldots$ $\&(2 q)=0,2,4 \ldots \Rightarrow N=0,1,2 \ldots$ (N is principal quantum number: nodes in radial function
\cdots agrees with Cartesian way: check degeneracies also agree
(1). $N=0: q=0=l$ (1) state)
(2). $N=1: q=0, l=1$ (3) states)
(3) $N=2: q=0, l=2$ (5 states) or $q=2, l=0(1$ state): total $=6)$
(different l^{\prime} 's give same E, un like ∞ well, like one-electron atom)

- Also, for oddleven N,
only odd/even values of ℓ

$$
(\operatorname{since} N=\underbrace{2 q}+l)
$$

(sign flip/not
\Rightarrow parity of wavefunction λ
for $\bar{r} \rightarrow-\bar{r})$ is odd/even as per l odd/even, thus N... here

- Energy eigenstate labeled $\mid q l \mathrm{~m}$) or $|N \underbrace{l m}\rangle$ vs. $\left|n_{x} n_{y} n_{z}\right\rangle$ in cartesian angular part
- More in HW8.4(3d: "relating" $\left(n_{x, y}, z\right)$ to $\left.(l, m)\right) \& H W 8.1(2 d)$
- use 3 d isotropic SHO as approximation to potential well of finite depth (u(r) becomes large "gradually, cf. ∞ well), e.g. nuclear shell model: protons\&neutrons motion in "collective" potential due to all nucleons

