Lecture 18 , Oct. 12 (Mon.)
Outline for today (and Wed.)

- gauge transformation in EM: classical and quantum
- Warm-up for subtle effects from \bar{A} (magnetic vector potential) I \bar{A} not constant in region with $\bar{B}=0$ (where particle moves)]: bound-state $A B$ effect
- original AB effect
- Magnetic monople
- Common thread in above 3 configurations: interplay of nontrivial \bar{A} (gauge transformation etc./ - already present at classical level - with quantum..
- common theme of electrostatic, gravitational potential examples (previous lecture) with AB effect, monopole (with EM potential): no force (classically), but still non trivial effects for $\hbar \neq 0$

Most general, time-dependent EM

$$
\bar{E}=-\bar{\nabla} \phi-1 / c \frac{\partial \bar{A}}{\partial t} \quad \& \quad \bar{B}=\bar{\nabla} \times \bar{A}
$$

unaffected by gauge transformation:

$$
\phi \rightarrow \phi-\frac{1}{c} \frac{\partial}{\partial t} \Lambda(x, t) \quad \& \quad A \rightarrow A+\bar{\nabla} \cap(x, t)
$$

Classical implications of gauge transformation

- (charged) particle trajectory independent of gauge used $[\Lambda(x)$ chosen $]$, e.g.

$$
\bar{B}=B \hat{z} \text { from" }\left\{\begin{array}{r}
A_{x}=-B y / z ; A_{y}=\frac{B x}{2} \cdots(\tag{1}\\
A_{z}=0 \\
A_{x}=-B y ; A_{y}=0 ; A_{z}=0
\end{array}\right.
$$

(1) \& (2) related by $\bar{A} \rightarrow \bar{A}-\bar{\nabla}\left(\frac{B x y}{2}\right)$
[same for (1) \& (21)]

$$
n(x)^{\prime}
$$

-trajectory :helix (uniform circular motion in $x-y$ plane $f_{\bar{A}}$ uniform linear in z)

- $P_{x}\left(\right.$ similarly $\left.P_{y}\right)$ for 2 choices are different:

$$
d p_{x} / d t=-\partial H / \partial x\left\{\begin{array}{l}
\neq 0 \text { for } \tag{1}\\
=0 \text { for }
\end{array}\right.
$$

-trajectory given by $\pi \equiv m d \bar{x} / d t$

$$
\pi=p-e A / c \lambda
$$

gauge -invariant gauge.dependent
\qquad
\qquad
onto QM (expectation values behave classically $):\langle x\rangle \&\langle\pi\rangle$ gauge-invariant
$-|\alpha\rangle$ for $\bar{A} \longrightarrow|\tilde{\alpha}\rangle$ for $\tilde{A}=A+\bar{\nabla} A$ operators (via x)

- require:
(1). $\langle\alpha| x|\alpha\rangle=\langle\tilde{\alpha}| x|\tilde{\alpha}\rangle$
(21. $\langle\alpha| p-\frac{e A}{c}|\alpha\rangle=\langle\tilde{\alpha}| p-\frac{e \tilde{A}}{c}|\tilde{\alpha}\rangle$
(3). $\langle\alpha \mid \alpha\rangle=\langle\widetilde{\alpha} \mid \widetilde{\alpha}\rangle$

If $|\tilde{\alpha}\rangle \equiv G|\alpha\rangle$, then "sufficient" condition:
(1). $\langle\tilde{\alpha}| x|\tilde{\alpha}\rangle=\langle\alpha| G^{+} x G|\alpha\rangle \Rightarrow$
$G^{+} x G=x$
(2) $G^{+}(p-e \tilde{A} / c) G=$
(3) $G^{+} G=1$ (unitary) $p-e A / c$

- claim: $G=\exp [i e \Lambda(x) / \hbar c]$
[Proof: (1) \& (3) clear; for (2), use $[p, F(x)]=-i \hbar \frac{\partial F}{\partial x}$ to compute exp $\left.\left(\frac{-i e n}{\hbar c}\right) p \exp \left(\frac{+i e n}{\hbar c}\right)=\cdots=p+\frac{e}{c} \mathbb{} \lambda\right]$
- Onto $\tilde{\psi}\left(x^{\prime}, t\right)=\exp \left[\frac{i e n\left(x^{\prime}\right)}{\hbar c}\right] \psi\left(x^{\prime}, t\right)$
- check from SE for $|\alpha\rangle$ or $\psi\left(x^{\prime}, t\right)$; if $|\alpha\rangle$ or $|\psi\rangle$ satisfies $S E$ with A, then above $|\widetilde{\alpha}\rangle$ or $\tilde{\psi}$ satisfies $S E$ with $\bar{A}+\bar{\nabla} n$
- probabilities: density, $\rho=|\psi|^{2}$ gauge invariant flux $\bar{j}=p / m\left(\nabla \bar{s}-\frac{e A}{c}\right)$ is also invariant since \bar{S} (phase of ψ) $\rightarrow S+e n\left(x^{\prime}\right) / c$
-Summary: state kets, p gacege-dependent kinematical momentum, probability flux invariant

Bound-state $A B$ effect

$-B C: \psi=0$ at $\rho=\rho_{a}, \rho_{b}$ [independent
of $\bar{B}]$
\cdots naively, no effect of \bar{B} ? What about SE?

- Is \bar{A} non-vanishing where particle propagates? HW6.2

$$
\begin{aligned}
& \oint \bar{A} \cdot \overline{d l}=\int_{\text {surface enclosed by troop }}(\bar{\nabla} \times \overline{\bar{A}}) \cdot d \bar{a} \\
& \text { circle } \\
& \text { of radius } \rho=\int \frac{B}{B} \cdot d p_{a}^{2} \neq 0
\end{aligned}
$$

$\Rightarrow \bar{A} \neq 0$ inside shell where particle propagates)... circumferential
$\Rightarrow S E$, energy eigenvalues modified

$$
\bar{\nabla}^{\prime} \rightarrow\left(\bar{\nabla}^{\prime}-\frac{i e}{\hbar c} \bar{A}\right)
$$

... again, even though particle
never feels Lorentz force (classically) [like electrostatic \& gravitational examples from previous lecture]

Original AB effect

$$
\text { - Use PI: } L_{\text {classical }}=\frac{1}{2} m \dot{x}^{2}\left(\begin{array}{ll}
n 0 & \bar{B}
\end{array}\right)
$$

$$
\rightarrow L_{\text {classical }}+e / c \bar{A} \cdot d \bar{x} / d t
$$

(Goldstein; $E q 1.63 \mathrm{sec} \cdot 1.5$)
[equivalent to $H=\left(p-\frac{e}{c} A\right)^{2} / 2 m$]

- change in action for path segment:

$$
\begin{aligned}
S(n, n-1) & \longrightarrow S(n, n-1)+\frac{e}{c} \int_{t_{n-1}}^{t_{n}} d t\left(\frac{d \bar{x}}{d t}\right) \cdot \bar{A} \\
\text { without } \bar{B} & L^{t_{n}} / \int_{x_{n-1}}^{x_{n} \bar{A} \cdot d \bar{s}}
\end{aligned}
$$

\Rightarrow contribution from one path:

$$
\pi \exp \left[\frac{i S(n, n-1)}{\hbar}\right] \rightarrow\left\{\pi \exp \left[\frac{i S(n, n-1)}{\hbar}\right]\right\}
$$ due to \bar{A}

$$
x\left[\exp \left(\frac{i e}{\hbar c} \int_{x_{1}}^{x_{N}} \bar{A} \cdot d \bar{s}\right)\right.
$$

- Sum over paths: consider two "above" $\bar{B}(1$ and $\tilde{1})$, with

$$
=\text { every path above } \bar{B} \text { gives same }
$$ modulation factor... similarly below \bar{B}

$$
\begin{aligned}
& =\oint_{\text {surface encl }} \bar{A} \cdot d \bar{s}=\int_{\text {sc }} \bar{\nabla} \times \bar{A} \cdot d \bar{a} \\
& \text { closed (coop) surface enclosed } \\
& \begin{array}{l}
\text { formed by paths } \\
1 \text { and reverse } \widetilde{1}
\end{array}=\int \bar{B} \cdot d \bar{a}=0
\end{aligned}
$$

So, new transition amplitude

$$
\left.=\left\{\exp \left[\left(\frac{i e}{\hbar c}\right) \int_{x_{1}}^{x_{N}} \bar{A} \cdot d \bar{s}\right]\right\}_{\uparrow} \int_{\uparrow} \theta[x(t)] \exp \left[\frac{i s(N, 1)}{\hbar}\right]\right]
$$

\& gauge-dependent

+ above \longrightarrow below
- probability to find particle in region $B=$ (amplitude $)^{2}$
\Rightarrow interference between above \& bel ow paths depends on coslsin of phase (modulation factor) difference $=$

$$
\begin{array}{r}
\int_{x_{1}}^{x_{N}} N_{\bar{A} \cdot d \bar{s}(\text { above })}^{V} \int_{x_{1} \rightarrow x_{N}}^{x_{N} \rightarrow x_{1}}(\text { below) } \\
+ \\
\text { (reverse of path) }
\end{array}
$$

$=\oint \bar{A} \cdot d \bar{S}$ closed flop formed path by path above
Stokes theorem and reverse of below

$$
=\int(\bar{\nabla} \times \bar{A}) \cdot d \bar{a}=\int \bar{B} \cdot d \bar{a}=\phi_{B}
$$

independent (flux thru'
of gauge choice solenoid)
bin
\Rightarrow as \bar{B} changed, sinusoidal
behavior of particle detection, with
"

$$
\text { period" }=\frac{2 \pi \hbar c}{1 e l}
$$

