Lecture 14 Part II oct.2,2020
Outline more in HW 6.3,6.4

- Examples of applying WKB approximation: SHO (again); bouncing ball (again)
- Another example of even/odd parity..
- start Feynman's path integral approach to QM (propagator...): $\begin{gathered}\text { sec. } 2.6 \text { of } \\ \text { sakurai }\end{gathered}$ sakurai

WKB quantization condition:

$$
\int_{x_{1}}^{x_{2}} d x \sqrt{2 m[E-v(x)]}=(n+1 / 2) \pi \hbar
$$

SH: $V=\frac{1}{2} m \omega^{2} x^{2}$

- turning points: $\pm \sqrt{2 E /\left(m \omega^{2}\right)}$

$$
\begin{array}{r}
2 \int_{0}^{\sqrt{2 E /\left(m \omega^{2}\right)}} d x \sqrt{2 m E} \sqrt{1-\frac{m \omega^{2} x^{2}}{2 E}}=(n+1 / 2) \pi \hbar \\
\neq \frac{\pi E \text { use } \sin \theta=\frac{\sqrt{m}}{\sqrt{2 E}} \omega x}{\omega} \Rightarrow \frac{E=(n+1 / 2) \hbar \omega}{\text { as before }}
\end{array}
$$

Bouncing ball

- Exact solution: just choose odd $u_{E}(x)$ from linear potential \Rightarrow

$$
\text { from linear potential } \quad \frac{E_{n}}{\left(\hbar^{2} m^{2} g^{2}\right)^{1 / 3}}=-\frac{1}{2^{1 / 3}}(\underbrace{\text { zeroes of } A i}_{<0})
$$

$A_{i}(z<0,|z|$ large) $\propto \cos [\underbrace{\frac{2}{3}(-z)^{3 / 2}-\pi / 4}]$
\Rightarrow zeroes of A_{i}
... so that

$$
E_{n} \approx \frac{\left(\hbar^{2} m g^{2}\right)^{1 / 3}}{2}[3(n+3 / 4) \pi]^{2 / 3}(n=0,1 \cdots)
$$

Use WKB approximation :V $=\left\{\begin{array}{c}m g x_{x} \text { for } \\ x>0\end{array}\right.$

$$
\begin{aligned}
& \text { but "good" approximation }
\end{aligned}
$$

$\infty \cos \left[\begin{array}{c}\left.+\int_{0}^{x_{2}} d x \sqrt{\frac{2 m}{\hbar^{2}}(E-m g x]}-\pi / 4\right]=0 \\ {\left[\left.\frac{1}{\hbar} \frac{\sqrt{2 m}}{m g} \frac{(-1)}{3 / 2}(E-m g x)\right|_{0} ^{3 / 2} E / m g\right.} \\ \\ \frac{1}{m} \pi / 4\end{array}\right]$

$$
\begin{aligned}
& 2 / 3 \frac{\sqrt{2 m}}{\hbar} \frac{E^{3 / 2}}{m g}=(n+3 / 4)^{2 / 3} \pi \\
& \left.E=\frac{\left(m g^{2} \hbar^{2}\right.}{2}\right)^{1 / 3}[3(n+3 / 4) \pi]^{2 / 3} \text {-as before } \\
& x \text { bl es }
\end{aligned}
$$

Another example of "re-using"solutions
$v(x)=\left\{\begin{array}{ll}1 / 2 k x^{2} \text { for } x>0 \\ \infty \text { for } x<0 & \uparrow^{v(x)} \\ \text { just choose }\end{array}\right.$,

- $E_{\text {(got sound state }}^{\text {of }}=\left(\frac{1}{x}+1 / 2\right) \hbar$
and $u_{1}(x)$ or $\left.\left\langle x^{\prime} \mid 1\right\rangle\right\}$ of SHO

Path Integral approach by Feynman for QM (propagator...)
Motivation: useful to have another viewpoint (egg., for QFT, especially gauge theories, in later courses; analyzing A haronov-Bohm effect here), even if no new "results"

- central player: propagator: $K\left(x^{\prime}, t ; x^{\prime \prime}, t_{0}\right)$

$$
\psi\left(x_{1}^{\prime}, t\right)=\int d^{3} x^{\prime \prime}\left\langle x^{\prime}\right| v\left(t, t_{0}\right)\left(x^{\prime \prime}\right) \psi\left(x^{\prime \prime}, t_{0}\right)
$$

$$
\equiv K\left(x_{1}^{\prime} t ; x^{\prime \prime}, t_{0}\right) \sqrt{(K \text { Kernel of }}
$$

- K depends on $H(V)$, not on $\psi\left(x_{1}, t_{0}\right)$ operator)
-K is "all "you need to know to go from $\psi\left(x^{\prime \prime}, t_{0}\right)$ to $\psi\left(x^{\prime}, t\right)$
- K is matrix element of U in $\left|x^{\prime}\right\rangle$ basis: (as expected)
1ψ is $|\alpha\rangle$ in $\left|x^{\prime}\right\rangle$ basis \& $|\alpha\rangle \lambda_{d}^{\text {is }}$ evolved by $\cup \ldots \Rightarrow \psi$ evolution due to U matrix element...
transition amplitude: $\left\langle b^{\prime}\right| \cup\left(t, t_{0}\right)\left|a^{\prime}\right\rangle$ initial $\begin{aligned} & \text { state }\end{aligned}$ lingeneral) \downarrow for state probability (to be in $\mid b^{\prime}$) at t (A,B could be different operators) "go"
$\Rightarrow K$ is amplifede for particle to from $\left(x^{\prime \prime}, t_{0}\right)$ to $\left(x^{\prime}, t\right)$
On to wavefunction (in x^{r}) interpretation of k
(1).

$$
\begin{aligned}
\lim _{t \rightarrow t_{0}} K & =\left\langle x^{\prime} \mid x^{\prime \prime}\right\rangle\left[U\left(t_{0}, t_{0}\right)=\Omega\right] \\
& =\delta^{3}\left(x^{\prime}-x^{\prime \prime}\right)
\end{aligned}
$$

wavefunction of particle exactly at $x^{\prime \prime}$ at t_{0}
(2) $K\left(f o r t>t_{0}\right)=\underbrace{\left\langle x^{\prime}\right|}_{\text {basis }} \underbrace{\left.v\left(t, t_{0}\right) \mid x^{\prime \prime}\right)}_{\text {bet localized }}$ (in general, delocalized) of at x "at to, particle at t which was initially (localized) at $x^{\prime \prime}$ but now evolved it to t
\Rightarrow above ${ }^{\text {expression for }} \psi$ follows: $\psi\left(x^{\prime \prime} t_{0}\right)$
lin terms of k) $\neq \delta^{3}\left(x^{\prime}-x^{\prime \prime}\right)$
So, "split" ψ at to into various $x "$;
apply K to each "S-function"piece; then (sum) over x "
... to get $\psi\left(x^{\prime}, t\right)$
$\Rightarrow K\left(x^{\prime}, t ; x^{\prime \prime}, t_{0}\right)$-ba ed on wavefunction picture-
satisfies S^{\prime} s time -dependent wave equation ia x^{\prime}, t
for $\quad t>t_{0}\left[\frac{\hbar^{2}}{2 m} \nabla^{\prime 2}+v\left(x^{\prime}\right)-i \hbar \frac{\partial}{\partial t}\right] k=0$ for $\overline{t>} t_{0}$
$t<t_{0}: \lambda^{k}=0$ for ld like $t<t_{0}$ (no propagation "backward" in time)

$$
\left[\left[\frac{-\hbar^{2}}{2 m} \nabla^{r^{2}}+v(x)-i \hbar \frac{\partial}{\partial t}\right] \begin{array}{l}
K=-i \hbar \delta^{3}\left(x^{\prime}-x^{\prime \prime}\right) \\
\left.\begin{array}{l}
\text { for } \\
\text { all } t
\end{array}\right) \times \delta\left(t-t_{0}\right)
\end{array}\right]
$$

ie., K is Green's function for Schroedinger's time-dependent wave equation: particular solution (with δ-function "source") from which we can get general solution check: equation valid for all t reduces to earlier one for $t>t_{0}$ [since $\delta\left(t-t_{0}\right)$ on RHS = 0]

$$
\begin{aligned}
& \int_{1}^{t_{0}+\epsilon(>0)} d t \ldots \text { all terms: RHS }=\frac{-i \hbar \delta^{3}\left(x^{\prime}-x^{\prime \prime}\right)}{\int d t} \\
& \begin{aligned}
& t_{0}-\epsilon \\
& \text { LbS }= {\left[-\frac{\hbar^{2}}{2 m} \nabla^{\prime 2}+v\left(x^{\prime}\right)\right] \underbrace{2 \varepsilon}_{0 \text { as } \in \rightarrow 0} K\left(\begin{array}{c}
\text { assuming } \\
K \\
\text { continuous } \\
\text { at } t_{0}
\end{array}\right) } \\
&-i \hbar\left[K\left(x^{\prime}, t_{0}+\epsilon ; x^{\prime \prime}, t_{0}\right)\right.
\end{aligned} \\
& \delta^{3}\left(x^{\prime}-x^{\prime \prime}\right) \Leftarrow-K\left(x^{\prime}, t_{0}-\epsilon ; x^{\prime \prime}, t_{0}\right) \\
& \begin{array}{l}
\text { as } \in \rightarrow 0 \\
\text { atchesRHS }] \ldots
\end{array} \ldots\left(x^{\prime}, t_{0}-\epsilon ; x^{\prime \prime}, t_{0}\right) \\
& =0 \text {, thus } \\
& \text { also for' } t<t_{0} \\
& \text { (as desired) }
\end{aligned}
$$

