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Due date for problems on Tuesday, May 8 [deadline on May 10, last class]. 
 
 

1. a) Let ZN() denote the partition function of the 2D Ising model of N sites on a square lattice at 
thermal energy kBT = J/ (defining the dimensionless variable K= J/ kBT).  One can show (but you do 
not have to!!) that in the limit N    

   N-1 ln ZN() = N-1 ln ZN() – sinh (2*)      where    * =  – ½  ln tanh or tanh K = exp[-2*] 

or    sinh(2) sinh(2*)  =1 

This result is messier to derive than it first appeared.  Just consider the following and then do the 
following intermediate step: 

In 1D you should convince yourself that (while do not need to turn in anything, you should understand 
fully that this expression is true): 
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(We will use this idea again to derive the transfer matrix.) A similar result can be derived in 2D with a 
spiral path. 

 

This is the only thing for part a) that you need to submit: 

Show by explicitly considering the possible values of ij that:      exp[Kij] = (1 + u ij]) cosh K, 

                                                                                                                where u = tanh K. 

b) Note that 2*  is a decreasing function of Thus, the high-temperature properties of the system 
are explicitly related to its low-temperature properties. 

From the Peierls argument (mentioned but not explained in class, available in the Huang posting for 
those interested), one knows that the system exhibits spontaneous magnetization.  Assuming that the 
critical temperature Tc is unique, one can conclude that  c

*  = Kc
 .   Show from the boxed equation 

that this implies c = ½ ln(1 + 2), which gives the value of kBTc/J quoted in class. 

This result by Kramers and Wannier [Phys. Rev.  60 (1941) 252] was the argument to get Tc of the 2D 
Ising model before the Onsager solution.

 

 

2. Here is the promised Landau theory problem:  Analogous to Eq. 12.9.1, let (with ã  > 0) 

            (m; T, B) = – m B + ã (T – T0) m
2+ (1/4) f4 m

4  + (1/6) f6 m
6 

(Note that to make correspondence with the expressions in class, you should replace ã by ½ a.  Since 
some of you may have already done the problem, I restrained myself from simply sticking in the ½.) 

a)  For a first-order phase transition consider  (m; T, 0) with f6 > 0 and f4 = – |f4|.  (Note B=0 here.) 

For the following, write down the equations needed to find the quantities that are sought.  You may 
solve the equations using a math package like Mathematica. 



i) Find the critical temperature Tc and the non-zero value of |m| at Tc.  (Same pair of equations.) 

ii) What is the height of the barrier between this non-zero value of |m| and m = 0 (at Tc). 

iii) What is the temperature Th > Tc at which the non-zero solution for m is no longer metastable?  
(This would be the maximum temperature to which the ordered phase could be superheated.) 

 

b) For a continuous phase transition consider  (m; T, B) with f4 > 0 and f6 = 0. 

i) At T = Tc = T0, find the exponent  where m ~ B1/for small B. 

ii) For the susceptibility lim B0  (dm/dB), find the exponents  and  just above and below T0, 
respectively.  Show that  = .  Also show that the critical amplitude ratio is 2. 

 

3. Do the binary alloy qualifier problem on the next pages.  



I-3 Statistical Physics (40 points)

Consider a binary alloy where each site of a lattice is occupied by an atom of type A or B.
(A realistic alloy might mix roughly half copper and half zinc to make β−brass.) Let the
numbers of the two kinds of atoms be NA and NB, with NA +NB = N . The concentrations
are nA = NA/N and nB = NB/N , and the difference is x = nA − nB. The interaction
energies between the neighboring atoms of the types AA, BB, and AB are εAA, εBB, and
εAB, correspondingly.

(a) [4 points] For a cubic lattice in three dimensions, how many nearest neighbors does
each atom have? In the rest of the problem, denote the number of neighbors as c for
generality.

(b) [6 points] Consider the system at a high enough temperature such that the atoms are
randomly distributed among the sites. Calculate the average interaction energy U per
site under these conditions. First, express U in terms of nA and nB, and then obtain
U(x).

In the rest of the problem, consider the case 2εAB > εAA + εBB and also assume that
εAA = εBB = ε0 for simplicity. In this case, sketch a plot of the function U(x) for
−1 ≤ x ≤ 1. Indicate locations of the extrema of U(x).

(c) [6 points] Under the same conditions (where the atoms are randomly distributed
among the sites), calculate the configurational entropy S per site. Assume that
NA, NB � 1, so the Stirling approximation ln(N !) ≈ N lnN − N can be used. First,
express S in terms of nA and nB, and then obtain S(x).

Sketch a plot of the function S(x). What are the values of S at x = ±1? For which
value of x is the entropy S maximal?

(d) [6 points] Using the results of Parts (b) and (c), obtain the free energy per site
F (x, T ) = U(x) − TS(x), where T is the temperature. Notice that F (x) = F (−x)
(because of the assumption εAA = εBB), which simplifies consideration.

Sketch F (x) at a high temperature and at a low temperature. Show that, at a high
temperature, F (x) has one global minimum as a function of x. Show that, at a low
temperature, F (x) has one local maximum surrounded by two minima, excluding the
boundaries at x = ±1.

(e) [6 points] A system tends to minimize its free energy F , subject to externally imposed
constraints. A binary alloy with a given x may stay in the uniform state, where
the atoms are randomly distributed among the sites, which is called the mixed state.
However, it may also become unstable with respect to spontaneous segregation into
two phases with different values of x, if such a segregation decreases the free energy F .
This state is called unmixed.

Using F (x) derived in Part (d), show that the uniform mixed state is stable at high
temperatures, but becomes unstable below a certain temperature T∗. Determine T∗

and the value of x where this instability occurs.
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Hint: The system remains stable as long as d2F/dx2 > 0 for all x. Determine at what
T and x this condition becomes violated.

(f) [6 points] For T < T∗, the free energy F (x) has two minima at x1 and x2. Obtain an
equation for x1(T ) and x2(T ). This is a transcendental equation, so you don’t need to
solve it explicitly for x.

Consider in turn what happens to the binary alloy with a given value x if x < x1(T ),
if x1(T ) < x < x2(T ), and if x2(T ) < x. Would the state of the binary alloy be mixed
or unmixed in these cases? For the unmixed state, what are the values of x in the two
phases?

What are the limiting values of x1(T ) and x2(T ) in the limit T → 0? Describe the
ground state of a binary alloy at T = 0. Does this state minimize the interaction
energy U , given that ε0 < εAB?

(g) [6 points] For a given x, show that the binary alloy is in the mixed state for T > Tc(x)
and in the unmixed state for T < Tc(x). Calculate Tc(x) and sketch it. Indicate the
areas corresponding to the mixed and unmixed states on this sketch. Show that T∗ is
the maximal value of Tc.

Hint: To obtain Tc(x) use the results of Part (f). Tc(x) is obtained from the same
equation as x1(T ) and x2(T ).
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