Department of Physics University of Maryland College Park, MD 20742-4111

Physics 603

HOMEWORK ASSIGNMENT #5

Spring 2012

Due date for problems on Tuesday, March 27 [deadline on March 29].

- 1. P&B problem 4.3. Note that the probability distribution in question is the binomial distribution.
- 2. P&B problem 4.5. Recall that $q = \ln \mathcal{Z}$, where \mathcal{Z} is the grand partition function.
- 3. P&B problem 4.6
- 4. P&B problem 5.1
- 5. Kardar problem 4.9
- 9. Langmuir isotherms: an ideal gas of particles is in contact with the surface of a catalyst.
 - (a) Show that the chemical potential of the gas particles is related to their temperature and pressure via $\mu = k_B T \left[\ln \left(P/T^{5/2} \right) + A_0 \right]$, where A_0 is a constant.
 - (b) If there are \mathcal{N} distinct adsorption sites on the surface, and each adsorbed particle gains an energy ϵ upon adsorption, calculate the grand partition function for the two-dimensional gas with a chemical potential μ .
 - (c) In equilibrium, the gas and surface particles are at the same temperature and chemical potential. Show that the fraction of occupied surface sites is then given by $f(T, P) = P/(P+P_0(T))$. Find $P_0(T)$.
 - (d) In the grand canonical ensemble, the particle number N is a random variable. Calculate its characteristic function $\langle \exp(-ikN) \rangle$ in terms of $\mathcal{Q}(\beta\mu)$, and hence show that

$$\langle N^m \rangle_c = -(k_B T)^{m-1} \left. \frac{\partial^m \mathcal{G}}{\partial \mu^m} \right|_T$$

where \mathcal{G} is the grand potential.

(e) Using the characteristic function, show that

$$\langle N^2 \rangle_c = k_B T \left. \frac{\partial \langle N \rangle}{\partial \mu} \right|_T.$$

(f) Show that fluctuations in the number of adsorbed particles satisfy

$$\frac{\left\langle N^2 \right\rangle_c}{\left\langle N \right\rangle_c^2} = \frac{1 - f}{\mathcal{N}f}.$$