
Theoretical Dynamics September 16, 2010

Homework 2

Instructor: Dr. Thomas Cohen Submitted by: Vivek Saxena

1 Goldstein 1.22

Taking the point of support as the origin and the axes as shown, the coordinates are

(x1, y1) = (l1 sin θ1,−l1 cos θ1) (1)

(x2, y2) = (l1 sin θ1 − l2 sin θ2,−l1 cos θ1 − l2 cos θ2) (2)

The Lagrangian is
L = T − V (3)

where

T =
1

2
m1(ẋ

2
1 + ẏ21) +

1

2
m2(ẋ

2
2 + ẏ22)

=
1

2
m1l

2
1θ̇

2
1 +

1

2
m2(l

2
1θ̇

2
1 + l22θ̇

2
2 − 2l1l2θ̇1θ̇2 cos(θ1 + θ2)) (4)

and

V = −m1gl1 cos θ1 −m2g(l1 cos θ1 + l2 cos θ2) (5)

So,

L =
1

2
(m1 +m2)l

2
1θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2−m2l1l2θ̇1θ̇2 cos(θ1 +θ2) +m1gl1 cos θ1 +m2g(l1 cos θ1 + l2 cos θ2) (6)
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The derivatives are

∂L

∂θ̇1
= (m1 +m2)l

2
1θ̇1 −m2l1l2θ̇2 cos(θ1 + θ2),

∂L

∂θ̇2
= m2l

2
2θ̇2 −m2l1l2θ̇1 cos(θ1 + θ2) (7)

∂L

∂θ1
= m2l1l2θ̇1θ̇2 sin(θ1+θ2)−m1gl1 sin θ1−m2gl1 sin θ1,

∂L

∂θ2
= m2l1l2θ̇1θ̇2 sin(θ1+θ2)−m2gl2 sin θ2

(8)
d

dt

(
∂L

∂θ̇1

)
= (m1 +m2)l

2
1θ̈1 −m2l1l2θ̈2 cos(θ1 + θ2) +m2l1l2θ̇2(θ̇1 + θ̇2) sin(θ1 + θ2) (9)

d

dt

(
∂L

∂θ̇2

)
= m2l

2
2θ̈2 −m2l1l2θ̈1 cos(θ1 + θ2) +m2l1l2θ̇1(θ̇1 + θ̇2) sin(θ1 + θ2) (10)

The Euler-Lagrange equations are

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= 0

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= 0

that is,

(m1 +m2)l
2
1θ̈1 −m2l1l2θ̈2 cos(θ1 + θ2) +m2l1l2θ̇

2
2 sin(θ1 + θ2) + (m1 +m2)gl1 sin θ1 = 0 (11)

m2l
2
1θ̈2 −m2l1l2θ̈1 cos(θ1 + θ2) +m2l1l2θ̇

2
1 sin(θ1 + θ2) +m2gl2 sin θ2 = 0 (12)

2 Goldstein 2.20

Kinetic Energy T =
1

2
Mẋ21 +

1

2
m(ẋ22 + ẏ22) (13)

Potential Energy V = mgy2 (14)
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Constraint:
G(x1, x2, y2) = y2 − (x2 − x1) tanα = 0 (15)

Lagrangian:

L = T − V =
1

2
Mẋ21 +

1

2
m(ẋ22 + ẏ22)−mgy2 (16)

Constrained Lagrangian:

Lc = T − V − λG =
1

2
Mẋ21 +

1

2
m(ẋ22 + ẏ22)−mgy2 − λ[y2 − (x2 − x1) tanα] (17)

The Euler-Lagrange equation,

d

dt

(
∂L

∂ẋ1

)
− ∂L

∂x1
= 0 (18)

d

dt

(
∂L

∂ẋ2

)
− ∂L

∂x2
= 0 (19)

d

dt

(
∂L

∂ẏ2

)
− ∂L

∂y2
= 0 (20)

give

Mẍ1 + λ tanα = 0 (21)

mẍ2 − λ tanα = 0 (22)

mÿ2 +mg + λ = 0 (23)

Adding (21) and (22) we get
Mẍ1 +mẍ2 = 0 (24)

which upon one integration wrt time, yields the expected result that the linear momentum of the
(block + wedge) system in the X-direction is constant. Multiplying (23) throughout by tanα,
using (15) to write ÿ2 = (ẍ2 − ẍ1) tanα and substituing λ tanα = −Mẍ1 from (21) we get

m(ẍ2 − ẍ1) tanα+mg + λ = 0

=⇒ −(M +m)ẍ1 tan2 α+mg tanα−Mẍ1 = 0

So,

ẍ1 =
m

M

g tanα(
1 + m

M

)
tan2 α+ 1

(25)

ẍ2 = − g tanα(
1 + m

M

)
tan2 α+ 1

(26)

ÿ2 = −
(

1 +
m

M

) g tan2 α(
1 + m

M

)
tan2 α+ 1

(27)

λ = − mg(
1 + m

M

)
tan2 α+ 1

(28)

The signs are consistent: as the particle descends the slope of the wedge, it moves to the left in
the ‘lab’ frame, as the wedge moves to the right, conserving linear momentum in the horizontal
direction. Also, as m/M → 0, we recover the solution for a particle moving down a stationary wedge:
ẍ1 = 0, ẍ2 = −g sinα cosα, ÿ2 = −g sin2 α (so that the acceleration of the particle along the incline is√
ẍ22 + ÿ22 = g sinα).
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Work done by the constraint forces

The three ‘constraint forces’ are

Fx1 = λ
∂G

∂x1
= λ tanα = − mg tanα(

1 + m
M

)
tan2 α+ 1

(29)

Fx2 = λ
∂G

∂x2
= −λ tanα =

mg tanα(
1 + m

M

)
tan2 α+ 1

(30)

Fy2 = λ
∂G

∂y2
= λ = − mg(

1 + m
M

)
tan2 α+ 1

(31)

The accelerations found above are constant, so the velocity varies linearly with time. Assuming that
at t = 0, the wedge and particle both have zero velocity, the work done by the constraint force on the
wedge is

W1 =

∫
Fx1dx1

=
1

2
Fx1 ẍ1t

2

=
1

2

(
− mg tanα(

1 + m
M

)
tan2 α+ 1

)(
m

M

g tanα(
1 + m

M

)
tan2 α+ 1

)
t2 (32)

= −1

2

m2

M g2 tan2 α[(
1 + m

M

)
tan2 α+ 1

]2 t2 (33)

Similarly, the work done by the constraint force on the particle is

W2 =

∫
Fx2dx2 +

∫
Fy2dy2

=
1

2
Fx2 ẍ2t

2 +
1

2
Fy2 ÿ2t

2

=
1

2

(
mg tanα(

1 + m
M

)
tan2 α+ 1

)(
− g tanα(

1 + m
M

)
tan2 α+ 1

)
t2

+
1

2

(
− mg(

1 + m
M

)
tan2 α+ 1

)(
−
(

1 +
m

M

) g tan2 α(
1 + m

M

)
tan2 α+ 1

)
t2

= −1

2

mg2 tan2 α[(
1 + m

M

)
tan2 α+ 1

]2 t2 +
1

2

m
(
1 + m

M

)
g2 tan2 α[(

1 + m
M

)
tan2 α+ 1

]2 t2
=

1

2

m2

M g2 tan2 α[(
1 + m

M

)
tan2 α+ 1

]2 t2 (34)

We note that W1+W2 = 0, confirming the fact that the total work done on the system by the constraint
forces in time t is zero. This is consistent with the fact that the constraint forces are internal to the
system, and the constraint G = 0 is independent of time.
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3 Goldstein 13.4

The given Lagrangian density is

L =
h2

8π2m
∇ψ · ∇ψ∗ + V ψ∗ψ +

h

4πi
(ψ∗ψ̇ − ψψ̇∗) (35)

The Euler-Lagrange equation for ψ is

∂µ

(
∂L

∂(∂µψ)

)
− ∂L
∂ψ

= 0 (36)

that is,

d

dt

(
∂L
∂ψ̇

)
+∇ ·

(
∂L

∂(∇ψ)

)
− ∂L
∂ψ

= 0 (37)

The derivatives are

Π =
∂L
∂ψ̇

=
h

4πi
ψ∗

d

dt

(
∂L
∂ψ̇

)
=

h

4πi
ψ̇∗

∂L
∂(∇ψ)

=
h2

8π2m
∇ψ∗

∇ ·
(

∂L
∂(∇ψ)

)
=

h2

8π2m
∇2ψ∗

∂L
∂ψ

= V ψ∗ − h

4πi
ψ̇∗

Substituting into (37), we get

h

4πi
ψ̇∗ +

h2

8π2m
∇2ψ∗ − V ψ∗ +

h

4πi
ψ̇∗ = 0 (38)

or

ih

2π

dψ

dt
= − h2

8π2m
∇2ψ + V ψ (39)

which is Schrodinger’s equation. The momentum canonically conjugate to ψ is

Π =
∂L
∂ψ̇

=
h

4πi
ψ∗ (40)

So, the Hamiltonian density is

H = Πψ̇ + Π∗ψ̇∗ − L (41)

=
h

4πi
ψ∗ψ̇ − h

4πi
ψ̇∗ψ − h2

8π2m
∇ψ · ∇ψ∗ − V ψ∗ψ − h

4πi
ψ∗ψ̇ +

h

4πi
ψψ̇∗

= − h2

8π2m
∇ψ · ∇ψ∗ − V ψ∗ψ (42)
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4 Problem 1

The equations of motion are

ẍ+ ω2x = 0 (43)

ÿ + αω2y = 0 (44)

Part a

The energy is

E =
1

2
m(ẋ2 + ẏ2) +

1

2
mω2(x2 + αy2) (45)

So,

dE

dt
= m(ẋẍ+ ẏÿ) +mω2(xẋ+ αyẏ)

= m(ẋ(−ω2x) + ẏ(−αω2y)) +mω2(xẋ+ αyẏ) (using (43) and (44))

= 0 (46)

Hence the energy is conserved.

Part b

d∆

dt
= m(ẋẍ− ẏÿ) +mω2(xẋ− αyẏ)

= m(ẋ(−ω2x)− ẏ(−αω2y)) +mω2(xẋ− αyẏ) (using (43) and (44))

= 0 (47)

Hence ∆ is conserved.

Part c

It can be shown that for a holonomic mechanical system, the kinetic energy is always a bilinear form
of the generalized coordinates, making terms of the form ∂L/∂q̇ necessarily linear in the generalized
velocities, whenever the potential is independent of the (generalized) velocity. In particular, for the
given Lagrangian,

∂L

∂ẋ
= mẋ (48)

∂L

∂ẏ
= mẏ (49)

SinceQ1(x, y; ε) andQ2(x, y; ε) are point transformations, they are independent of velocities. Therefore
the quantity

Γ =
∂L

∂ẋ

∂Q1

∂ε

∣∣∣∣
ε=0

+
∂L

∂ẏ

∂Q2

∂ε

∣∣∣∣
ε=0

(50)

= mẋ
∂Q1

∂ε

∣∣∣∣
ε=0

+mẏ
∂Q2

∂ε

∣∣∣∣
ε=0

(51)

necessarily linear in the velocities, ẋ and ẏ.
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Part d

As justified above, any invariant quantity resulting from the symmetry of the Lagrangian under a
point transformation is necessarily linear in the velocities. Since ∆ is a quadratic form in the veloc-
ities, we cannot find a point transformation which leaves the Lagrangian invariant and corresponds
to a Noetherian conserved current that is equal to ∆. This proves that while every invariance of
a Lagrangian under a continuous point transformation yields an associated conserved quantity, the
converse is not necessarily true.

For holonomic mechanical systems, the stronger statement is: For every invariance of a Lagrangian
under a continuous point transformation, there is an associated conserved quantity linear in the gen-
eralized momenta, and vice versa.

Part e

For α = 1, the system becomes an isotropic harmonic oscillator in 2D with the Lagrangian,

L =
1

2
m(ẋ2 + ẏ2)− 1

2
mω2(x2 + y2) (52)

Due to rotational symmetry, the angular momentum

Jz = m(xẏ − ẋy) (53)

is an invariant, which is of the form Γ. As Jz is linear in the velocities, it cannot be written as a linear
combination of E and ∆ (which have no linear terms in ẋ and ẏ at all).

5 Problem 2

Part a

The action is

S =

∫
dtL =

∫
dt dxL (54)

The Lagragian density is not explicitly dependent on the field, but only on its derivatives. So, the
variation in the action is

δS = δ

∫
dt dxL (55)

=

∫
dt dx δL (56)

=

∫
dt dx

(
∂L

∂(∂tφ)
δ(∂tφ) +

∂L
∂(∂xφ)

δ(∂xφ)

)
(57)

=

∫
dt dx

(
∂L

∂(∂µφ)
δ(∂µφ)

)
for µ = 0, 1 (58)

=

∫
dt dx

[
∂µ

(
∂L

∂(∂µφ)
δφ

)
− ∂µ

(
∂L

∂(∂µφ)

)
δφ

]
(59)

= −
∫
dt dx ∂µ

(
∂L

∂(∂µφ)

)
δφ (60)
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since the first term in (60) can be converted to a surface integral over the boundary of the (1 +
1)-spacetime region, where δφ = 0 over the boundary. So, Hamilton’s principle δS = 0 yields the
Euler-Lagrange equation

∂µ

(
∂L

∂(∂µφ)

)
= 0 (61)

or

∂

∂t

(
∂L

∂(∂tφ)

)
+

∂

∂x

(
∂L

∂(∂xφ)

)
= 0 (62)

=⇒ (∂2t − c2∂2x)φ(x, t) = 0 (63)

Part b

From the inverse Lorentz transformations,

t = γ

(
t′ +

β

c
x′
)

(64)

x = γ
(
x′ + βct′

)
(65)

we have

∂φ

∂t′
=

∂t

∂t′
∂φ

∂t
+
∂x

∂t′
∂φ

∂x

= γ
∂φ

∂t
+ γβc

∂φ

∂x
(66)

∂φ

∂x′
=

∂t

∂x′
∂φ

∂t
+
∂x

∂x′
∂φ

∂x

=
γβ

c

∂φ

∂t
+ γ

∂φ

∂x
(67)

So, the Lagrangian density in the transformed frame is

L′ =
1

2

[(
∂φ

∂t′

)2

− c2
(
∂φ

∂x′

)2
]

(68)

=
1

2

[(
γ2
(
∂φ

∂t

)2

+ γ2β2c2
(
∂φ

∂x

)2

+ 2γ2βc
∂φ

∂t

∂φ

∂x

)

−c2
(
γ2β2

c2

(
∂φ

∂t

)2

+ γ2
(
∂φ

∂x

)2

+
2γ2β

c

∂φ

∂t

∂φ

∂x

)]

=
1

2

[
γ2(1− β2)

(
∂φ

∂t

)2

− γ2c2(1− β2)
(
∂φ

∂x

)2
]

=
1

2

[(
∂φ

∂t

)2

− c2
(
∂φ

∂x

)2
] (

as γ = 1√
1−β2

)
(69)

= L (70)

Hence the Lagrangian density is invariant under the Lorentz transformation.
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Part c

dx dt =

∣∣∣∣ ∂x
∂x′

∂x
∂t′

∂t
∂x′

∂t
∂t′

∣∣∣∣ dx′ dt′ (71)

=

∣∣∣∣ γ γβc
γβ
c γ

∣∣∣∣ dx′ dt′
= γ2(1− β2)dx′ dt′

= dx′ dt′ (72)

So the volume element in (1 + 1)-spacetime is Lorentz invariant. Since the Lagrangian density is also
Lorentz invariant, therefore the action S =

∫
dt dxL is also a Lorentz invariant quantity.

Part d

The Euler-Lagrange equation is obtained by extremizing the action, i.e. via δS = 0. As L, the (1+1)-
spacetime volume element as well as the Lagrangian density L are all Lorentz invariant quantities,

δS = δ

∫
dt dxL = 0←→ δS′ = δ

∫
dt′ dx′ L′ = 0 = δS (73)

Repeating the steps carried out in part (a) with all quantities replaced by their primed counterparts,
we arrive at the Euler Lagrange equation,

∂

∂t′

(
∂L′

∂(∂t′φ)

)
+

∂

∂x′

(
∂L′

∂(∂xφ)

)
= 0 (74)

in the transformed frame. This proves that the Euler-Lagrange equations are form invariant, i.e. co-
variant.

In particular, using (67) and (68) we have

∂2φ

∂t′2
= γ2∂2t φ+ 2γ2βc∂2xtφ+ γ2β2c2∂2x (75)

∂2φ

∂x′2
=

γ2β2

c2
∂2t φ+

2γ2β

c
∂2xtφ+ γ2β2c∂2x (76)

so that

∂2φ

∂t′2
− c2 ∂

2φ

∂x′2
= γ2(1− β2)∂2t φ− γ2(1− β2)∂2x (77)

=
∂2φ

∂t2
− c2∂

2φ

∂x2
(78)

So, we conclude that the Euler-Lagrange equation is also invariant.
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6 Problem 3

The modified action is

S′ =

∫ t2

t1

dtL′ (79)

=

∫ t2

t1

dt

(
1

2
mẋ2 − q

[(
φ′ − dΛ

dt

)
+ (A +∇Λ) · ẋ

])
(80)

=

∫ t2

t1

dt

(
L+ q

dΛ

dt
− q∇Λ · ẋ

)
(81)

= S + q

∫ t2

t1

dt
dΛ

dt
− q

∫ t2

t1

dt∇Λ · ẋ (82)

= S + q

∫ t2

t1

dt
dΛ

dt
− q

∫ t2

t1

dx · ∇Λ (83)

= S + q

∫ t2

t=t1

dΛ− q
∫ t2

t=t1

dΛ (84)

= S (85)

So, under a time dependent gauge transformation, the action is left invariant, independent of the path.
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