
Homework 1 - Solutions†

†Comment and discussion, please email me at latief@umd.edu

Goldstein 2.2

The canonical momentum pθ is defined as

pθ =
∂L

∂θ̇
=
∂T

∂θ̇
− ∂U

∂θ̇
(1)

where T = T (ri, ṙi) and U = U(ri, ṙi) are kinetic and potential energy of the

system, which then define the Lagrangian L = T − U . Hence we can write

pθ =
∂

∂θ̇

(∑
i

1

2
miv

2
i

)
−
∑
i

(
∂U

∂ri
· ∂ri
∂θ̇

+
∂U

∂vi
· ∂vi
∂θ̇

)
(2)

If we rotate the system by angle δθ, then the change in position vector ri is

δri = (n× ri)δθ. Therefore

∂vi

∂θ̇
= n× ri,

∂ri

∂θ̇
= 0 (3)

and by remembering that ∂vi/∂θ̇ = ∂ri/∂θ, we will have

pθ =
∑
i

(
mivi ·

∂vi

∂θ̇

)
−
∑
i

∂U

∂vi
· ∂vi
∂θ̇

=
∑
i

(
mivi · (n× ri)

)
−
∑
i

(
∇vi

U · (n× ri)
)

=
∑
i

n · ri ×mivi −
∑
i

(
∇vi

U · (n× ri)
)

= Lθ −
∑
i

n · ri ×∇vi
U (4)

For electromagnetic potential U =
∑

i(qiφi −
qi
c
Ai · vi), we will get

pθ = Lθ +
∑
i

n · ri ×
qi
c
Ai (5)
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Goldstein 2.4

Suppose we have two points in the sphere (θ1, φ1) and (θ2, φ2). We have to find

the equation of curve which connects those two points, and prove that the curve

lies on the great circle. However, it is simpler to rotate the sphere (or, redefine the

coordinate system) such that those points lie on the equator of the sphere, hence

they have the coordinates (π/2, φ1) and (π/2, φ2). Intuitively we can say that it

is obvious that the curve connecting them lies on equator, and hence on the great

circle. But it is necessarily important to work out the details using the variational

principle.

The length of the curve is

S =

∫ √
R2dθ2 +R2dφ2

=

∫ φ2

φ1

R
√

1 + θ̇2dφ (6)

where the dot means differentiation with respect to φ, and R is radius of the sphere.

So we have to minimize the integral of the function
√

1 + θ̇2, but it also would work

if we minimize the integral of the function f = 1 + θ̇2 along the interval [φ1, φ2],

although the converse is not generally true. Therefore, using the Euler-Lagrange

equation,

d

dφ

(df
dθ̇

)
− ∂f

∂θ
= 0

2θ̈ − 0 = 0 (7)

such that we have θ̇ = constant ≡ k. It yields∫ π/2

π/2

dθ = k

∫ φ2

φ1

dφ

0 = k(φ2 − φ1) (8)

and since generally we take two distinct points (i.e., φ1 6= φ2), then k = 0, which

implies θ̇ = 0 in interval [φ1, φ2]. It concludes that the curve lies on the great

circle.
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Goldstein 2.12

The action J can be written as

J =

∫ t2

t1

L(qi, q̇i, q̈i, t)dt (9)

such that its variation can be calculated straightforwardly as

δJ =

∫ t2

t1

(∂L
∂qi

δqi +
∂L

∂q̇i
δq̇i +

∂L

∂q̈i
δq̈i

)
=

∫ t2

t1

(∂L
∂qi

δqi −
d

dt

(∂L
∂q̇i

)
δqi −

d

dt

(∂L
∂q̈i

)
δq̇i

)
dt

+
(∂L
∂q̇i

δqi

)∣∣∣t2
t1

+
(∂L
∂q̈i

δq̇i

)∣∣∣t2
t1

=

∫ t2

t1

(∂L
∂qi
− d

dt

(∂L
∂q̇i

)
+
d2

dt2

(∂L
∂q̈i

))
δqi dt+

(∂L
∂q̈i

δqi

)∣∣∣t2
t1

0 =

∫ t2

t1

(∂L
∂qi
− d

dt

(∂L
∂q̇i

)
+
d2

dt2

(∂L
∂q̈i

))
δqi dt (10)

where we have omitted some terms because the variation of qi and q̇i is zero in the

end points. Therefore, we have the equation of motion

d2

dt2

(∂L
∂q̈i

)
− d

dt

(∂L
∂q̇i

)
+
∂L

∂qi
= 0 (11)

For the Lagrangian L = −m
2
qq̈ − k

2
q2, we first calculate

∂L

∂q̈
= −m

2
q,

∂L

∂q̇
= 0,

∂L

∂q
= −m

2
q̈ − kq (12)

and by plugging those equations into the equation of motion, it yields

q̈ +
k

m
q = 0 (13)

and of course, this is the equation of motion for the simple harmonic oscillator, for

m 6= 0.
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Additional Problem

Problem 1

a)

Before collision, the particle’s velocity is ẋ. Since the wall’s velocity in the lab

frame is L̇, then the velocity of particle in the wall’s frame before collision is ẋ− L̇.

The collision is elastic, so the particle’s velocity after collision in the wall’s frame

is −ẋ+ L̇. In the lab’s frame, this velocity is −ẋ+ 2L̇. Therefore, due to collision

with moving wall, particle changes the velocity ẋ→ −ẋ+ 2L̇.

b)

The moving wall moves slowly, in the sense that its velocity L̇ is much less than

particle’s initial velocity, i.e. L̇� v0.

c)

Suppose the particle moves with velocity ẋ instantaneously after hitting the rest

wall. Then after colliding with the moving one, its velocity becomes −ẋ+2L̇. After

colliding with the rest wall for the second time, its velocity is ẋ− 2L̇. Therefore,

its acceleration in this cycle of process is

ẍ =
ẋ− 2L̇− ẋ

∆t
≈ − 2L̇

2L0/ẋ
(14)

where we have used the assumption that L̇ � v0, and hence L̇ � ẋ, and the

assumption that L ≈ L0 after a time t > 0. Here, L0 is the initial length of the

box. Therefore,

d(L2E)

dt
= 2LL̇E + L2Ė

= mẋ2LL̇+mẋẍL2

≈ mẋ2L0L̇−mẋ2L0L̇

= 0 (15)

which tells us that L2E is adiabatically invariant.

d)
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Analysis using quantum mechanics principle tells us that the energy of a par-

ticle in a one-dimensional box is

E =
n2~2

2mL2
, n = 0, 1, 2, . . . (16)

where L is length of the box. Therefore, if the wall is moving slowly, then the

change of lenght, ∆L, in a particular interval of time ∆t is much less than L0. If

we expand the energy expression above, then we will have

E =
n2~2

2mL2
0

(
1− 2

∆L

L0

+ . . .
)
≈ n2~2

2mL2
0

(17)

It explains why we get the result of adiabatically invariance of L2E.

Problem 2

a)

Using Lagrange equation, the equation of motion for the Lagrangian L(x, ẋ) =
1
2
mẋ2 − 1

2
mω2

0x
2 is

ẍ+ ω2
0x

2 = 0 (18)

b)

Using coordinate transformation x = sinh q, the equation of motion now takes

the form

q̈ + q̇2 tanh q + ω2
0 tanh q = 0 (19)

c)

Applying the same transformation of coordinate to Lagrangian L = 1
2
mẋ2 −

1
2
mω2

0x
2 will imply

L(q, q̇) =
1

2
m cosh2 q q̇2 − 1

2
mω2

0 sinh2 q (20)

d)

Using the Lagrange equation

d

dt

(∂L
∂q̇

)
− ∂L

∂q
= 0 (21)
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where

d

dt

(∂L
∂q̇

)
= m cosh2 q q̈ + 2m sinh q cosh q q̇2 (22)

∂L

∂q
= m sinh q cosh q q̇2 −mω2

0 sinh q cosh q (23)

will imply

q̈ + q̇2 tanh q + ω2
0 tanh q = 0 (24)

e)

The results of b) and d) are the same, which reflects the independency of

variational principle to the specific coordinate representation.

Problem 3

a)

It is easy to verify that the family x(t, ω) = l sinωt/sinωT satisfies the bound-

ary condition x(0, ω) = 0 and x(T, ω) = l.

b)

For ω = ω0, the family x(t, ω0) = l sinω0t/sinω0T satisfies the equation of

motion ẍ+ ω2
0x = 0, since technically x(t, ω0) ∼ sinω0t.

c)

We can compute the action as

S(ω) =

∫ T

0

L(x, ẋ)dt

=

∫ T

0

(1

2
mẋ2 − 1

2
mω2

0x
2
)
dt

=

∫ T

0

(
1

2
mω2l2

cos2(ωt)

sin2(ωT )
− 1

2
mω2

0l
2 sin2(ωt)

sin2(ωT )

)
dt

=
1

2

ml2

sin2(ωT )

(
(ω2 − ω2

0)
T

2
+ (ω2 + ω2

0)
sin (2ωT )

4ω

)
(25)

d)

6



Using tedious but straightforward algebra (actually I use Mathematica here)

we can prove that
dS(ω)

dω

∣∣∣
ω=ω0

= 0 (26)

which reflects the vanishing of first derivative of action with respect to ω, hence

the trajectory x(t, ω = ω0) will represent the actual trajectory.

Problem 4

a)

We can easily verify that x(0, c) = 0 and x(T, c) = l.

b)

Using the Lagrangian L = 1
2
mẋ2 − 1

2
mω2

0x
2, where

x(t, c) = l
t

T
+ cl

( t3
T 3
− t

T

)
(27)

we can compute the action as

S(c) =

∫ T

0

L(x, ẋ)dt

=
(2

5

ml2

T
− 4

105
mω2

0l
2T
)
c2 +

2

15
mω2

0l
2Tc+

1

2

ml2

T
− 1

6
mω2

0l
2T (28)

c)

Taking the differentiation of action obtained in part b) with respect to c, and

set this first differentiation to zero, we will get

c =
7

2

( ω2
0T

2

2ω2
0T

2 − 21

)
(29)

One also can prove that the second derivation of action with respect to c is positive

for ω0T <
√

21/2 ≈ 3.2, so our approximation is best if ω0T � 3, with the solution

takes the form

x(t) = l
t

T
+

7

2

( ω2
0T

2

2ω2
0T

2 − 21

)( t3
T 3
− t

T

)
l (30)

(All calculations in this section are performed in Mathematica)

d)

Here are graphs of each cases:
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where the red plot is our function x(t), and the blue one is the exact solution of

the system (which is obtained from Problem 3 ). From the plot we can see that the

function x(t) cannot give us a good approximation if ω0T → 3, where the reason

is, as stated in part c) before, the second differentiation of action S(c) tends to

zero when ω0T →
√

21/2, which makes our approximation ’not good enough’ to

represent the exact solution.
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