Theoretical Dynamics November 12, 2010

Homework 9

Instructor: Dr. Thomas Cohen Submitted by: Vivek Sazrena

Goldstein 4.22

The colatitude!, ¢, is defined in the following figure taken from Wikipedia (http://en.wikipedia.
org/wiki/File:Spherical_Coordinates_(Colatitude, _Longitude).svg).
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Figure 1: Definition of a point by colatitude, ¢, longitude, 6, and radius, p.

Suppose the projectile is launched horizontally?, along the e, direction, at point P. The angular
velocity of earth’s rotation is w = wz, and the projectile’s initial velocity is v = vpé,. The Coriolis
acceleration is

1)
2)
3)
4)

Acor = —2(w xwv)
= —2wupz X €,

= —2wupsin(90° + p)éy

~~ I~ —~

= —2wug cos ey

Since the acceleration is perpendicular to the initial velocity and points toward the right of the initial
trajectory (in the northern hemisphere), the angular deviation is to the right in the northern hemi-
sphere. In time At, the displacement due to the Coriolis acceleration (in the direction perpendicular
to the initial velocity) is

1
ASper = 5(2wv0 cos ) (At)? (5)
while the projectile covers a horizontal distance of

Ashor = UQAt (6)

In the Goldstein problem, § and ¢ are interchanged.
20n the surface of a sphere, a “horizontal’ direction is one which has no radial component, i.e. it is of the form
ci1ég + CQéq;.



So the angular deviation in time t is

A
d = ﬁij = wcos At (7)
So the rate of angular deviation is
W CoS (8)

which in Goldstein’s notation for the colatitude, is w cos 8, as required. This resulti s first order in w
because we have dropped the second order term w X (w X 7) in computing the deflection.

Goldstein 4.24

Let (r,0) denote the polar coordinates of the bug at time ¢, where r is measured from the center of
the wheel. The bug slips when the frictional force just equals the radial force acting on it. The radial
force acting on the bug is

F. = m(i — r6%) = —mr6? (the bug crawls at constant speed) 9)
The tangential force on the bug is
Fy = m(rf + 2/-0) = 2mi0 (the wheel rotates at constant angular speed) (10)
The static friction force has a maximum value given by
f=uN (1)

where p is the coeflicient of static friction. If the bug crawls on the side of the spoke, the normal force
which enters this expression is equal to the tangential force Fy for the bug not to fall off the spoke. In
this case, slipping takes place when

w(2mi-f) = mré? (12)

or equivalently

_ 2 2%(0.30) x (0.5¢m/s)
b 3.0rad/s

But if the bug crawls on the top of the spoke, there are two normal reactions involved: the one that
balances the gravitational force due to the bug’s mass, and the other which equals the tangential force.
In this case, the frictional force is modified to

N 1

so that the condition for slipping becomes

mrf? = pmy/ g2 + 47262 (15)

r

=0.1cm (13)

whcih gives

r

1/ g% + 47202 0.31/(980 cm/s2)2 + 4(0.5cm/5)2(3.0rad/ )2
= - = ~ 32.66 cm (16)
62 (3.0rad/s)?

This result is intuitively obvious: if the bug crawls along the top of the spoke instead of the side, it
can go much farther out before it starts to slip.



Goldstein 4.25
The net force on the ball due to the rotation of the carousel is
F =m(i — r6®)e, + m(r0 + 270)éy (17)

As the ball is to remain stationary in the radial direction, 7 = # = 0, so the force acting on the ball
6s after the carousel starts to move is

F = —mré?e, +mriey (18)
= —(3.0kg)(7.0m)(0.02 x 27 rad/s* x 6s)*&, + (3.0 kg)(7.0m)(0.02 x 27rad/s*)éy
= —11.938 Né, +2.638 Néy (19)

This is the force that the girl must provide to keep the ball moving in the circular path. Thus,
Fg, = —11.938 Ne, + 2.638 Ney (20)

So, the girl must exert a force equal to 12.225 N directed at an angle a given by

2.
o =tan™! 11693388 = tan~1(0.2209) = 12.46° (21)

The direction of the force that the girl must provide is shown in the figure below. It should be directed

Fgims Fo

Figure 2: Figure for problem 4.25

at an angle of 12.46° measured clockwise from the line joining the ball to the center, or equivalently
at an angle of 167.54° measured counterclockwise from the radius vector of the ball.



Problem 1

Part (a)

—sinf® cosf O
—cosf —sinf O
0

1

cos@ sinf 0 0
= —sm9 cosG 0 -1

I
|
=
=3
§

The solution to this equation is

R.(0) = e M-

(26)

Red
where the multiplicative constant is fixed by the requirement that R ,(0) = I, the 3 x 3 identity

matrix.
Part (b)
cosf sinf O
Rpd .
tr(R.(0)) = tr| —sinf cosf 0
0 0 1
= 2cosf+1
SO
1 < 1
cosf = itr( R.(0)) — B
Problem 2
Part (a)

=]

Z

cos @

0

—sinf 0 cos@

0
1

sin 0

0

|

R.(¢)

.6
cos ¢ s1n¢> 0
= (sm(b cos ¢ 0)(
1

—sind 0

9-4

R ,(0)

cosf

—cosfsing cos¢p —sinfsing

cosfcos¢p sing sin@cosd>)

(30)

(31)



So,

N o cosfcos¢ sin¢g sinfcoso 0 -1 0
RﬁﬁzR?; = —cosfsing cos¢p —sinfsing | x| 1 0 0 | x
—sinf 0 cost 0 0 O
B .
cosfcos¢p —cosfsing —sinf
sin ¢ cos ¢ 0 (33)
sinfcos¢p —sinfsing cosé
‘Rr
0 —cosf  —sinfsing
= cos 6 0 —sinf cos ¢ (34)
sinfsin¢ sin#cos ¢ 0
Now,
0 —cosf O
cos Gﬁz = cos 6 0 0 (35)
0 0 0
0 0 0
sin € cos qbﬁx = 0 0 —sinf cos ¢ (36)
0 sinfcos¢ 0
0 0 sinfsin¢
sinfsingM, = 0 0 0 (37)
—sinfsing 0 0
So, from Eqs. (34-37),
(ﬁﬁﬁz R Z = oS Gﬁz + sin  cos gbﬁx — sin @ sin qﬁﬁy (38)

- A M (39)
where 7 = (sin § cos ¢, — sin 0 sin ¢, cos §)T" and W = (M, My, M).

Not(:g; The minus sign appearing in equation (38) is simply due to the sign convention adopted
for R ,(¢) in equation (31). If we instead took

cos¢p —sing 0
Ap)=| sing cos¢p O (40)
0 0 1

which corresponds to a clockwise rotation about the z-axis through an angle ¢ in the x — y plane, then
we would get

?nﬁzﬁf = cos HWZ + sin 6 cos d)ﬁx + sin 6 sin qﬁﬁy =7n- ﬁ (41)
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with 72 = (sin @ cos ¢, sin @ sin ¢, cos §)”. Therefore,

as required to be proved.

Part (b)
As ?n is an orthogonal matrix, ?nﬁg = 1. Therefore,
— TN o (S (oM o
R;l(exp(—CI) z)) R; = Rj ZT R3
k=0
X H\k
= Y OO RSLED. L (RLED
h=0 L k times
00 Nk oo k
= Z ( I;I')) n - W} (using Eqn. (42))
k=0 o
0o 1 A &
k=0
= exp(—(bﬁ-ﬁ)
Therefore,
‘R = R <exp (—@ﬁﬁ) ?Z
Part (c)

From the result of problem 1,

cos¢ sing 0
exp(—@ﬁz) =| —sin¢g cos¢ O
0 0 1

and from equation (32) in part (a) of this problem,

N cosfcos¢p sing  sinfcos ¢
Rjy=| —cosfsing cos¢ —sinfsing
—sinf 0 cos 6

(42)

(49)

(50)



Substituting into equation (48) we get

N cosfcos¢ sing sinfcos ¢ cos® sin® 0
R = —cosfsing cos¢p —sinfsing | x| —sin® cos® 0 | x
—sind 0 cosf 0 0 1
—
R exp (—CDWZ)
cosfcos¢p —cosfsing —sinf
sin ¢ cos ¢ 0 (51)
sinfcos¢ —sinfsing cosf
~~
B
n
That is,
cos? ) (0052 6 cos ¢ + sin? 9) + cos¢>sin2 @ — sin? 6 sin[2¢] sin [%]2 + cos 0 sin ¢ sin O(— cos 6 cos ¢(—1 + cos ¢) + sin ¢ sin ¢p)
(ﬁ} - —sin? 6 sin[2¢)] sin {%} 2 cos 0 sin ¢ cos? ¢ cosd + (cos2 0 cos o + sin? 8) sin? @ sin O(cos §(—1 4 cos ¢) sin ¢ + cos ¢ sin ¢p)
— sin O(cos 0 cos ¢(—1 + cos ¢) + sin ¢ sin ¢) sin O(cos 0(—1 + cos ¢) sin ¢ — cos ¢ sin ¢) cos? 6 +cos¢sin29
Problem 3
Part (a)

<
Using the explicit form of R derived above, via Mathematica®, we find that

sin 6 cos ¢ sin 6 cos ¢
R -| —sinfsing | =| —sinfsing (52)
cos f cos cos 6 cos

<
So, 7 is an eigenvector* of R with eigenvalue +1.

Part (b)
Using Mathematica, we find that

tr(?) =1+4+2cos® (53)
so that

cosd = %tr(ﬁ) — % (54)

3Please refer to the file, problem3.nb, containing calculations for this part.
1A similar statement holds for the alternate form of 7 mentioned on page 5, corresponding to the alternate sign
convention for ¢.



Problem 4

Red
Using the results of the previous parts, R corresponds to a rotation about an angle ® such that

1 < 1
cos®=—tr(R)— = (55)
2 2
and the axis of rotation is the eigenvector of R which has an eigenvalue +1.
Using Mathematica®, we find
_1 3v3 3
PN 8 8 1
_ 3v3
R - - & &
3 _¥3 1
4 i 2

So, tr(R) = —1/4. The eigenvalues are
A=

1

8

1 .
Ny = g(—5—N39) (58)
o= 1

The matrix of eigenvectors is

O Wi

(60)

—_
— o
—_

The normalized eigenvector corresponding to the eigenvalue +1 corresponds to the axis of rotation, 7,

and is given by
2/V13
0 (61)
3/v/13

The angle of rotation is given by the solution to

>
Il

cos® = —g (62)

which is about 129°.

®Please refer to the file, problem4.nb.



in[146:= Clear ["Global® *"1;
inf1471:= Mz = {{0, -1,01}, {1,0,0 }, {0,0,0 }};

inf148= RzZ[X_]

in[1491:= Ry[X_]1
in1s0= Rn = Rz[¢].Ry [6];

in[151:= Rn // MatrixForm  // FullSimplify

Out[151])//MatrixForm=
Cos[6] Cos[¢] Sin[¢] Cos[¢] Sin[e]
-Cos[@] Sin[¢] Cos[¢p] -Sin[e] Sin[¢]
-Sin[e] 0 Cos [9]

np152):= R = Rn.MatrixExp [-& * Mz].Transpose [Rn];
in[153:= R // MatrixForm  // FullSimplify
Out[153]//MatrixForm=
Cos [¢]? (Cos[e]2 Cos[&] +Sin[e]%) + Cos [3] Sin[¢]?
-Sin[e]?sSin[2¢] Si n[?f - Cos[0] Sin[a]

-Sin[e] (Cos[e] Cos[¢] (-1+Cos[d]) +Sin[¢] Sin[a])
n[1s41= N = {{Sin [6] Cos[¢]}, {-Sin [6] Sin [¢]}, {Cos[6]}}
ouisa)= {{Cos[¢] Sin[e]}, {-Sin[e] Sin[¢]}, {Cos[e]}}

in1ss):= R.n 7/ MatrixForm 7/ Simplify

Out[155]//MatrixForm=
Cos[¢] Sin[e]
-Sin[e] Sin[¢] J
Cos [9]

In[156]:= % == N
out[156]= True
in1s7):= Tr [R] // FullSimplify

out157)= 1 + 2 Cos [&]

{{Cos[x], Sin [x],0}, {-Sin [x], Cos [x],01}, {0,0,1 }};

{{Cos[x],0,Sin [x]}, {0,1,0 3}, {-Sin [x],0,Cos [X]}};

. 2 o . 512 .
-Sin[e1?2sin[2¢] Sln[z—] +Cos[6] Si

Cos [¢]? Cos [&] + (Cos[©]2 Cos [&] +Sin[6]°
Sin[e] (Cos[6] (-1+Cos[®]) Sin[¢] - Cos [«



in[123:= Clear ["Global’ *"1;

np24= RX[X_1 = {{1,0,0 3}, {0, Cos [x],Sin [x]1}, {0, -Sin [x], Cos [X]1}};

np2s)= Rz[x_] = {{Cos[x], Sin [x],0}, {-Sin [x], Cos [x],01}, {0,0,1 }};

nf126):= Rx[@] // MatrixForm

Out[126]//MatrixForm=
1 0 0

0 Cos[©] Sin[e]
0 -Sin[e] Cos[e]

n1271= Rz[¢] // MatrixForm

Out[127]//MatrixForm=
Cos[¢] Sin[¢] O
-Sinf¢] Cos[¢] O ]
0 0 1

infi28}= R=Rz[n/3]1.Rx [n/3].Rz [/ 3];

in[129]:= R // MatrixForm

a5

8

Out[129]//MatrixForm=
1
8

32{3
- _
3
4

o |,

o
N |- b’%' &~w

inf1301:= Tr [R]

[N

out[130]= - —
4

in[136]:= sol = Solve [2 % Cos[¢] +1 == Tr [R], ¢]
Sol ve::ifun :
Inverse functions are being used by Solve, so some solutions may not be
found; use Reduce for conplete solution information. >
out[136]= {{(b - -ArcCos {- E} } {¢ - ArcCos [_ E] }}
8 8
inf4s)= N[sol [[2]1[[1110[2]1,3 1180/

out[145= 129.

in[133):= Eigenvalues [R]

1

out[133]= {g (—5+i\/37),

-

RN

8
in[134= Eigenvectors [R] // ColumnForm

out[134]= {—g -

N

|
w
-
n
w
©

—_
[N
-



2 | problem4.nb

in[135):= Transpose [Eigenvectors [R]] // MatrixForm

Out[135]//MatrixForm=

N w
w|N

|
o

// FullSimplify



