Here, we solve simple harmonic oscillator (SHO) using canonical transformation (CT), based on GPS section 9.3. The Lagrangian is

$$
\begin{equation*}
L(q, \dot{q})=\frac{1}{2} m \dot{q}^{2}-\frac{k}{2} q^{2} \tag{1}
\end{equation*}
$$

giving (as per usual procedure) the Hamiltonian:

$$
\begin{align*}
H(q, p) & =\frac{p^{2}}{2 m}+\frac{k}{2} q^{2} \\
& =\frac{1}{2 m}\left(p^{2}+m^{2} \omega^{2} q^{2}\right) \tag{2}
\end{align*}
$$

where we write 2 nd line in terms of $\omega \equiv \sqrt{k / m}$, anticipating (from usual method for solving) that this will be the frequency of oscillation of q. The above form of H, i.e., a sum of two squares, suggests that the following form of CT [where f is a (as yet) unknown function of P]to new coordinate Q and momentum P :

$$
\begin{align*}
q(Q, P) & =\frac{f(P)}{m \omega} \sin Q \\
p(Q, P) & =f(P) \cos Q \tag{3}
\end{align*}
$$

would simplify H, thus equations of motion (EOM). Such a change of variables is (roughly) analogous to going from Cartesian coordinates to polar. Indeed, we can easily find the transformed H, i.e., expressed in terms of the new variables $(Q$ and $P)$:

$$
\begin{equation*}
\tilde{H}(Q, P)=\frac{f^{2}(P)}{2 m} \tag{4}
\end{equation*}
$$

i.e., Q is cyclic so that P is constant of motion.

Of course, we still need to determine $f(P)$ such that the above is indeed a CT: we can be assured of this feature using Poisson brackets, i.e., we require:

$$
\begin{equation*}
\{q(Q, P), p(Q, P)\}=\frac{\partial q}{\partial Q} \frac{\partial p}{\partial P}-\frac{\partial q}{\partial P} \frac{\partial p}{\partial Q}=1 \tag{5}
\end{equation*}
$$

Plugging in Eqs. (3) into above, we straightforwardly (well, after some algebra!) find

$$
\begin{equation*}
f(P) \frac{d f(P)}{d P}=m \omega \tag{6}
\end{equation*}
$$

which is solved by

$$
\begin{equation*}
\frac{f^{2}(P)}{2}=m \omega P+c \tag{7}
\end{equation*}
$$

where c is an arbitrary constant. Hence, we have

$$
\begin{equation*}
\tilde{H}(Q, P)=\omega P+c \tag{8}
\end{equation*}
$$

Since a constant term in the Hamiltonian is irrelevant (i.e., does not affect the EOM), we can simply drop it. Equating above to the "original" H in Eq. (2), we get

$$
\begin{equation*}
P(q, p)=\frac{1}{2 m \omega}\left(p^{2}+m^{2} \omega^{2} q^{2}\right) \tag{9}
\end{equation*}
$$

Also, Eqs. (3) gives

$$
\begin{equation*}
Q(q, p)=\arctan \left(m \omega \frac{q}{p}\right) \tag{10}
\end{equation*}
$$

As already mentioned, 2nd of Hamilton's equations [using Eq. (8)] gives

$$
\begin{align*}
\dot{P} & =-\frac{\partial \tilde{H}}{\partial Q} \\
& =0 \tag{11}
\end{align*}
$$

i.e., P is a constant, which is related to the value of H (another constant, given that H is time-independent), i.e., energy (E) :

$$
\begin{equation*}
P=\frac{E}{\omega} \tag{12}
\end{equation*}
$$

Whereas, 1st Hamilton's equation:

$$
\begin{align*}
\dot{Q} & =\frac{\partial \tilde{H}}{\partial P} \\
& =\omega \tag{13}
\end{align*}
$$

simply (cf. solving $2 n d$ order differential equation for q, albeit a well-known one!) gives

$$
\begin{equation*}
Q=\omega t+\alpha \tag{14}
\end{equation*}
$$

where α is a constant. Plugging in Eqs.(12) and (14) into Eq. (3) finally gives us the wellknown solutions:

$$
\begin{align*}
q & =\sqrt{\frac{2 E}{m \omega^{2}}} \sin (\omega t+\alpha) \\
p & =\sqrt{2 m E} \cos (\omega t+\alpha) \tag{15}
\end{align*}
$$

i.e., oscillations with frequency ω and amplitude for q given by $\sqrt{2 E /\left(m \omega^{2}\right)}$.

