Here we will show (following section 49 of chapter 7 from Landau, Lifshitz) that action variable (for 1D system with period T), i.e.,

$$
\begin{equation*}
I(E ; \lambda)=\frac{1}{2 \pi} \int_{0}^{T}(\text { denoted by } \oint) p(q ; E, \lambda) d q \tag{1}
\end{equation*}
$$

where $p(q ; E, \lambda)$ is obtained by solving

$$
\begin{equation*}
H(q, p ; \lambda)=E \tag{2}
\end{equation*}
$$

is adiabatically invariant, i.e.,

$$
\begin{equation*}
\frac{d I(E ; \lambda)}{d t}=0 \text { at } O(\dot{\lambda} \text { or } \epsilon) \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
\epsilon & \equiv \frac{\bar{\lambda} T}{\bar{\lambda}} \\
& \ll 1 \text { (i.e., slowly varying) } \lambda \tag{4}
\end{align*}
$$

with "dot" standing for time-derivative (as usual) and "bar" denoting average over one period (T). Similarly, $\dot{\lambda}$ itself is assumed to be slowly varying, i.e., $\overline{\ddot{\lambda}} T / \overline{\dot{\lambda}} \ll 1$ [for simplicity, we can take this factor to be $O(\epsilon)$ also $)$].

The above behavior of I (to be proven below) is to be compared to

$$
\begin{equation*}
\dot{E} \propto \dot{\lambda}(\text { or } \epsilon) \tag{5}
\end{equation*}
$$

i.e., if the Hamiltonian (via its parameter λ) is time-dependent, then the energy of the system is not constant, that too at leading order in the rate of change of that parameter (cf. I above being constant at this order). However, given that $\epsilon \ll 1$, the relative change in E over T is small. [Of course, q and p change by $O(1)$ over a time of order T, even if λ is constant.]

From Eq. (2), we have (along the actual path)

$$
\begin{equation*}
\frac{d E}{d t}=\frac{\partial H}{\partial \lambda} \dot{\lambda} \tag{6}
\end{equation*}
$$

where the 1 st factor, i.e., $\partial H / \partial \lambda$ is rapidly evolving over T (since it contains the q and p), while 2 nd factor $(\dot{\lambda})$ is slowly varying. So, in taking average over T, we can (approximately) pull $\dot{\lambda}$ outside, i.e., neglecting (ϵ^{2}) effects, we have

$$
\begin{equation*}
\frac{\overline{d E}}{d t} \approx \frac{\overline{\partial H}}{\partial \lambda} \dot{\lambda} \tag{7}
\end{equation*}
$$

where " $\dot{\lambda}$ " can be thought of as average over T, but since its instantaneous value differs from the average at higher order in ϵ, we will keep using it without a "bar". Note that within our approximations, i.e., keep only $O(\epsilon)$ effects, λ is taken to be constant while averaging $\partial H / \partial \lambda$ above, i.e., $\partial H / \partial \lambda$ is varying (only) due to q and p (this is the change with time that is being averaged).

Explicitly, we get

$$
\begin{equation*}
\overline{\frac{\partial H}{\partial \lambda}}=\frac{1}{T} \oint \frac{\partial H}{\partial \lambda} d t \tag{8}
\end{equation*}
$$

We can use $\dot{q}=\partial H / \partial p$ or

$$
\begin{equation*}
d t=\frac{d q}{\frac{\partial H}{\partial p}} \tag{9}
\end{equation*}
$$

thus

$$
\begin{align*}
T & =\oint d t \\
& =\oint \frac{d q}{\frac{\partial H}{\partial p}} \tag{10}
\end{align*}
$$

in Eq. (8) so that Eq. (7) then gives

$$
\begin{equation*}
\frac{\overline{d E}}{d t} \approx \dot{\lambda} \frac{\oint \frac{\partial H}{\partial \lambda} \frac{d q}{\partial H}}{\oint \frac{d q}{\frac{\partial H}{\partial H}}} \tag{11}
\end{equation*}
$$

Again, integral is over actual path for given, constant λ so that $H=E$ (constant), i.e.,

$$
\begin{align*}
\frac{d H}{d \lambda} & =\frac{\partial H}{\partial \lambda}+\frac{\partial H}{\partial p} \frac{\partial p}{\partial \lambda} \\
& =0 \tag{12}
\end{align*}
$$

where 2 nd term in 1st line above follows from $p(q ; E, \lambda)$ as found using Eq. (2): just to be clear, note that q is instead taken to be independent variable (so there is no " $\partial H / \partial q$ " in above).

Plugging $\partial H / \partial \lambda$ from Eq. (12) into Eq. (11) - and massaging a bit - gives

$$
\begin{equation*}
\frac{\overline{d E}}{d t} \approx-\frac{d \lambda}{d t} \frac{\oint d q \frac{\partial p}{\partial \lambda}}{\oint d q \frac{\partial p}{\partial E(\text { or } H)}} \tag{13}
\end{equation*}
$$

which can be re-written as

$$
\begin{equation*}
\oint d q\left(\frac{\partial p}{\partial E} \frac{d E}{d t}+\frac{\partial p}{\partial \lambda} \frac{d \lambda}{d t}\right) \approx 0 \tag{14}
\end{equation*}
$$

(where $\dot{\lambda}$ and $\overline{d E / d t}$ can be taken inside integral within our approximations) or

$$
\begin{equation*}
\frac{d}{d t} \oint[p(q ; E, \lambda) d q] \approx 0 \tag{15}
\end{equation*}
$$

i.e., action variable of Eq. (1) is a constant (again, at leading order in ϵ).

