Here, we use the generating function of canonical transformation (CT) in order to derive the action-angle variables for the case of a time-independent 1D Hamiltonian (based on GPS section 10.6). The general idea behind applying CT (in particular, the action-angle variables) to solve problems is to go to new coordinate (Q) which is cyclic:

$$
\begin{align*}
\tilde{H}(Q, P) & \equiv H[q(Q, P), p(Q, P)] \tag{1}\\
& =\tilde{H}(\text { only } P) \tag{2}
\end{align*}
$$

where P is the new momentum and q, p are old variables. Thus, we get (as usual)

$$
\begin{align*}
\dot{P} & =-\frac{\partial \tilde{H}}{\partial Q} \tag{3}\\
& =0 \tag{4}
\end{align*}
$$

so that P is constant, thus a function of energy E (which is also constant, given the timeindependence of H). In turn,

$$
\begin{align*}
\dot{Q} & =\frac{\partial \tilde{H}}{\partial P} \tag{5}\\
& =c(E) \tag{6}
\end{align*}
$$

where c is a (constant) function of E, i.e.,

$$
\begin{equation*}
Q=c(E) t+\text { constant } \tag{7}
\end{equation*}
$$

Let us cast the above CT in terms of a generating function, $F_{2}(q, P)$, with (as usual)

$$
\begin{equation*}
p=\frac{\partial F_{2}(q, P)}{\partial q} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{\partial F_{2}(q, P)}{\partial P} \tag{9}
\end{equation*}
$$

Plugging the 1st of above relations into $H(q, p)=E$ gives

$$
\begin{equation*}
H\left(q, \frac{\partial F_{2}[q, P(E)]}{\partial q}\right)=E \tag{10}
\end{equation*}
$$

i.e., Eq. (10) for F_{2} is "like" the Hamilton-Jacobi (H-J) equation for Hamilton's (explicitly time-independent) characteristic function $W(q, \alpha)$, where E was denoted by α in this context (for the 1D case), i.e.,

$$
\begin{equation*}
H\left(q, \frac{\partial W(q, \alpha)}{\partial q}\right)=\alpha \tag{11}
\end{equation*}
$$

except that α in argument of W is replaced by a general function $P(\alpha)$ in going from Eq. (11) for W to Eq. (10) for F_{2}.

The simplest choice for P is in fact E (or α) itself, in which case above F_{2} is identical to $W(q, \alpha)$; in this case, we get $c(E)=1$ in Eqs.(6) and (7) so that

$$
\begin{align*}
Q & =t+\text { constant } \tag{12}\\
& \neq \text { constant } \tag{13}
\end{align*}
$$

i.e., $W(q, \alpha)$ generates a canonical transformation to a coordinate which is simply time (while new momentum is energy). On the other hand, recall that the main idea of the H-J method was to go to a constant new coordinate. However, note that in order to achieve that goal, we have to use Hamilton's principal (i.e., 'full" if you will) function as the (time-dependent) generating function of the CT [cf. characteristic function part only, i.e., $W(q, \alpha)$, used above]:

$$
\begin{equation*}
S(q, \alpha, t)=W(q, \alpha)-\alpha t \tag{14}
\end{equation*}
$$

so that indeed the transformed Hamiltonian vanishes:

$$
\begin{align*}
K(Q, P, t) & =H(q, p)+\frac{\partial S}{\partial t} \tag{15}\\
& =\alpha-\alpha \tag{16}
\end{align*}
$$

giving $\dot{Q}=0$, i.e., $Q=$ constant.
Again, going back to Eq. (10) for F_{2}, we have the freedom (in general) to assign $P(E)$ to be a function of E instead of simply E. Now, suppose we have a bounded, periodic system with time period T (or angular frequency $\omega=2 \pi / T$). In this case, is it possible to choose $P(E)$ such that the corresponding new coordinate is the "angle", i.e., latter goes through 2π as the particle completes one cycle, i.e., over the period T ? The answer is "Yes" (as we show next), the corresponding momentum and coordinate being denoted by $I(E)$ (called action) and θ.

We have change in new coordinate (in general to begin with, but still using the "final" notation of I, θ) over one cycle being given by

$$
\begin{align*}
\Delta \theta & =\oint \frac{\partial \theta}{\partial q} d q \tag{17}\\
& =\oint \frac{\partial}{\partial q} \frac{\partial W(q, I)}{\partial I} d q, \text { using Eq. (9), with } Q \rightarrow \theta, P \rightarrow I \text { and } F_{2} \rightarrow W \tag{18}
\end{align*}
$$

where we have used the notation W (i.e., that of Hamilton's characteristic function) for the generating function F_{2}, since (as mentioned above) it satisfies H-J-like equation. We can take the derivative with respect to I (which is a constant) outside the integral

$$
\begin{equation*}
\Delta \theta=\frac{d}{d I} \oint \frac{\partial W(q, I)}{\partial q} d q \tag{19}
\end{equation*}
$$

Here, one "worry/issue" in carrying out the differentiation with respect to I in Eq. (19), thus in going to simply Eq. (18) from it, is that endpoints of the motion also change with I
[in addition to the integrand, i.e., $\partial W(q, I) / \partial q]$. However, as we argued in the other/earlier way to derive the expression for $I(E)$, such effects are (in short/roughly speaking) higher order in the (infinitesimal) differentials, thus dropping-out when we take the limit to go to derivative. Finally, using Eq. (8), with $P \rightarrow I$ and $F_{2} \rightarrow W$, we get

$$
\begin{equation*}
\Delta \theta=\frac{d}{d I} \oint p d q \tag{20}
\end{equation*}
$$

So, requiring in our specific case

$$
\begin{equation*}
\Delta \theta=2 \pi \tag{21}
\end{equation*}
$$

implies

$$
\begin{equation*}
I(E)=\frac{1}{2 \pi} \oint p d q \tag{22}
\end{equation*}
$$

i.e., same formula as we derived earlier (without using generating function).

