Here, we solve for the complete motion of simple harmonic oscillator using the HamiltonJacobi (H-J) method (based on GPS section 10.2). The Hamiltonian is

$$
\begin{equation*}
H(a, p)=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2} \tag{1}
\end{equation*}
$$

where the force constant has been expressed in terms of the angular frequency (as usual):

$$
\begin{equation*}
\omega=\sqrt{\frac{k}{m}} \tag{2}
\end{equation*}
$$

Since H is time-indepednent, we can use Hamilton's characteristic function, $W(q, \alpha)$, which satisfies the $\mathrm{H}-\mathrm{J}$ equation:

$$
\begin{equation*}
H\left(q, \frac{\partial W}{\partial q}\right)=\alpha \tag{3}
\end{equation*}
$$

i.e., in this case, we have

$$
\begin{equation*}
\frac{1}{2 m}\left[\left(\frac{\partial W}{\partial q}\right)^{2}+m^{2} \omega^{2} q^{2}\right]=\alpha \tag{4}
\end{equation*}
$$

whose formal solution is

$$
\begin{equation*}
W(q, \alpha)=\sqrt{2 m \alpha} \int^{q} d q^{\prime} \sqrt{1-\frac{m \omega^{2} q^{\prime 2}}{2 \alpha}} \tag{5}
\end{equation*}
$$

with Hamilton's principal function being given by

$$
\begin{equation*}
S(q, \alpha, t)=W(q, \alpha)-\alpha t \tag{6}
\end{equation*}
$$

The "old" momentum is then given by

$$
\begin{align*}
p & =\frac{\partial S}{\partial q}=\frac{\partial W}{\partial q} \tag{7}\\
& =\sqrt{2 m \alpha} \sqrt{1-\frac{m \omega^{2} q^{2}}{2 \alpha}} \tag{8}
\end{align*}
$$

Evaluating the above at initial time $(t=0)$, when $q=q_{0}$ and $p=p_{0}$, we get

$$
\begin{equation*}
p_{0}=\sqrt{2 m \alpha} \sqrt{1-\frac{m \omega^{2} q_{0}^{2}}{2 \alpha}} \tag{9}
\end{equation*}
$$

or the new (constant along the path) momentum in terms of initial conditions:

$$
\begin{equation*}
\alpha\left(q_{0}, p_{0}\right)=\frac{p_{0}^{2}}{2 m}+\frac{1}{2} m \omega^{2} q_{0}^{2} \tag{10}
\end{equation*}
$$

i.e., as expected it is simply the (constant) energy, E.

Moving onto the new (constant along the path) coordinate, we use

$$
\begin{align*}
\frac{\beta}{\omega} & =\frac{\partial S}{\partial \alpha} \tag{11}\\
& =-t+\frac{\partial W}{\partial \alpha} \tag{12}
\end{align*}
$$

The second term in above can be evaluated as follows [i.e., derivative hits α outside and inside integral in Eq. (5)]:

$$
\begin{align*}
\frac{\partial W}{\partial \alpha} & =\sqrt{2 m} \int^{q} d q^{\prime}\left(\frac{\sqrt{1-\frac{m \omega^{2} q^{\prime 2}}{2 \alpha}}}{2 \sqrt{\alpha}}+\sqrt{\alpha} \frac{\frac{m \omega^{2} q^{\prime 2}}{2 \alpha^{2}}}{2 \sqrt{1-\frac{m \omega^{2} q^{\prime 2}}{2 \alpha}}}\right) \tag{13}\\
& =\frac{\sqrt{2 m}}{2 \sqrt{\alpha}} \int^{q} d q^{\prime} \frac{1}{\sqrt{1-\frac{m \omega^{2} q^{\prime 2}}{2 \alpha}}} \tag{14}\\
& =\frac{\sqrt{2 m}}{2 \sqrt{\alpha}}\left[\frac{\arcsin \left(q \sqrt{\frac{m \omega^{2}}{2 \alpha}}\right)}{\sqrt{\frac{m \omega^{2}}{2 \alpha}}}\right] \tag{15}
\end{align*}
$$

(where constant of integration chosen to be 0 , without loss of generality, since it can be absorbed into constant β anyway) so that

$$
\begin{equation*}
\frac{\beta}{\omega}=-t+\frac{1}{\omega} \arcsin \left(q \sqrt{\frac{m \omega^{2}}{2 \alpha}}\right) \tag{16}
\end{equation*}
$$

Setting further $t=0$ in above, we get

$$
\begin{equation*}
\beta=\arcsin \left(q_{0} \sqrt{\frac{m \omega^{2}}{2 \alpha}}\right) \tag{17}
\end{equation*}
$$

Plugging α from Eq. (10) into above, we find (after some algebra) the new (constant) coordinate in terms of initial conditions:

$$
\begin{equation*}
\tan \beta\left(q_{0}, p_{0}\right)=\frac{m \omega q_{0}}{p_{0}} \tag{18}
\end{equation*}
$$

Inverting Eq. (16) (for general time), we have solved the problem, i.e.,

$$
\begin{equation*}
q(t)=\sqrt{\frac{2 \alpha}{m \omega^{2}}} \sin (\omega t+\beta) \tag{19}
\end{equation*}
$$

with $p(t)$ given by plugging above $q(t)$ into Eq. (8):

$$
\begin{equation*}
p(t)=\sqrt{2 m \alpha} \cos (\omega t+\beta) \tag{20}
\end{equation*}
$$

where α, β are given in terms of initial conditions as in Eqs. (10) and (17).

Thus, we see that Hamilton's principal function:

$$
\begin{equation*}
S(q, \alpha, t)=W(q, \alpha)-\alpha t \tag{21}
\end{equation*}
$$

is the generator a canonical transformation which (for the case of simple harmonic oscillator) takes us to a new coordinate which is simply the phase constant and with energy as the new (also constant) momentum.

Even though it is not really needed, in general, (for example, away from the path) we have the (full) canonical transformation given by

$$
\begin{equation*}
P(q, p) \text { (which is } \alpha \text { along path })=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2} \tag{22}
\end{equation*}
$$

which simply follows from Eq. (8) by $\alpha \rightarrow P$ (note that the new momentum is a function only of old variables, i.e., not explicitly involving time) and plugging above P as α into Eq.(16), we get (after some algebra) the new coordinate (again, with $\beta / \omega \rightarrow Q$)

$$
\begin{equation*}
Q(q, p)\left(\text { which is } \frac{\beta}{\omega} \text { along path }\right)=-t+\arctan \frac{m \omega q}{p} \tag{23}
\end{equation*}
$$

i.e., with explicit time-dependence.

