Here, we derive the Poisson brackets (PB's) of angular momentum components, i.e., $\left\{L_{i}, L_{l}\right\}$ using short-hand/compact notation (instead of doing it component-by-component, i.e., $\left\{L_{1}, L_{2}\right\}=L_{3}$, that was indicated in lecture and is in DT's Eq. 4.67). The outline of this procedure was given in lecture.

We begin with the definition

$$
\begin{equation*}
\mathbf{L}=\mathbf{r} \times \mathbf{p} \tag{1}
\end{equation*}
$$

which gives for the components

$$
\begin{equation*}
L_{i}=\epsilon_{i j k} x_{j} p_{k} \tag{2}
\end{equation*}
$$

where ϵ is the totally antisymmetric Levi-Civita symbol, i.e., $\epsilon_{123}=1=\epsilon_{231}=-\epsilon_{132}$, while $\epsilon_{112}=0$ etc. Here and henceforth, repeated indiced are summed. Similarly,

$$
\begin{equation*}
L_{l}=\epsilon_{l m n} x_{m} p_{n} \tag{3}
\end{equation*}
$$

We will also make repeated use of the following relation

$$
\begin{equation*}
\epsilon_{i j k} \epsilon_{i l m}=\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l} \tag{4}
\end{equation*}
$$

We have from the definition of PB:

$$
\begin{align*}
\left\{L_{i}, L_{l}\right\} & =\frac{\partial L_{i}}{\partial x_{r}} \frac{\partial L_{l}}{\partial p_{r}}-\frac{\partial L_{i}}{\partial p_{r}} \frac{\partial L_{l}}{\partial x_{r}} \\
& =\left(\epsilon_{i r k} p_{k}\right)\left(\epsilon_{l m r} x_{m}\right)-\left(\epsilon_{i j r} x_{j}\right)\left(\epsilon_{l r n} p_{n}\right) \tag{5}
\end{align*}
$$

where 1st factor of 1 st term comes from setting $j=r$ in L_{i} and "dropping" the x in it (due to that derivative), while 2 nd factor in 1st term originates from setting $n=r$ in L_{l} and omitting the p from it. Similarly, for the 2 factors in the 2 nd term.

Using the above indicated properties of ϵ, one then easily proceeed as follows:

$$
\begin{align*}
\left\{L_{i}, L_{l}\right\} & =\epsilon_{r k i} \epsilon_{r l m} p_{k} x_{m}-\epsilon_{r i j} \epsilon_{r n l} x_{j} p_{n} \\
& =\left(\delta_{k l} \delta_{i m}-\delta_{k m} \delta_{i l}\right) p_{k} x_{m}-\left(\delta_{i n} \delta_{j l}-\delta_{i l} \delta_{j n}\right) x_{j} p_{n} \tag{6}\\
& =p_{l} x_{i}-p_{m} x_{m} \delta_{i l}-x_{l} p_{i}+x_{n} p_{n} \delta_{i l} \\
& =x_{i} p_{l}-x_{l} p_{i} \\
& =\left(\delta_{i j} \delta_{l k}-\delta_{i k} \delta_{l j}\right) x_{j} p_{k} \\
& =\epsilon_{m i l} \epsilon_{m j k} x_{j} p_{k} \tag{7}\\
& =\epsilon_{i l m}\left(\epsilon_{m j k} x_{j} p_{k}\right) \\
& =\epsilon_{i l m} L_{m} \tag{8}
\end{align*}
$$

In particular, Eq. (4) is used in getting to Eq. (6) from line before and its "inverse" in obtaining Eq. (7), while in the last line we re-use Eq. (2).

