Here is the derivation of Lorentz force using the Hamiltonian formalism (following DT’s
example 2 in section 4.1.3). Start with the Lagrangian that we used before, i.e., in terms of
scalar (¢) and vector (A) potentials
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so that momentum conjugate to the position is given by
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inverting which gives
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Note that conjugate momentum is not entirely the mechanical momentum, which would be
just mr. So, Hamiltonian is obtained as
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(Note that both the potentials could have explicit time-dependence; in addition, they depend
on position of the charged particle, which itself is changing with time.) This gives Hamilton’s
equations:

. oH 1
= T om (p—cA) (5)
and (in component form)
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where in the last term 4 is summed over x, y and z. Using Eq. (5) in last term of Eq. (6),
we get
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where v;’s are components of the velocity of the particle, i.e., r. We can take another time
derivative of LHS of Eq. (5) to give the force:
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Now, in component form
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Plugging Egs. (7) and (9) into z-component of RHS of Eq. (8), and collecting/cancelling
terms, gives
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where we used E = —V¢ in getting to the 1st term in Eq. (10) and B = V X A in last 2
terms in Eq. (11), ending up with the usual formula for the (z-component of the) Lorentz
force acting on a charged particle moving in electric and magnetic fields.



