Here is the derivation of Lorentz force using the Hamiltonian formalism (following DT's example 2 in section 4.1.3). Start with the Lagrangian that we used before, i.e., in terms of scalar (ϕ) and vector (A) potentials

$$
\begin{equation*}
L=\frac{1}{2} m|\dot{\mathbf{r}}|^{2}-e(\phi-\dot{\mathbf{r}} . \mathbf{A}) \tag{1}
\end{equation*}
$$

so that momentum conjugate to the position is given by

$$
\begin{equation*}
\mathbf{p}=\frac{\partial L}{\partial \dot{\mathbf{r}}}=m \dot{\mathbf{r}}+e \mathbf{A} \tag{2}
\end{equation*}
$$

inverting which gives

$$
\begin{equation*}
\dot{\mathbf{r}}=\frac{1}{m}(\mathbf{p}-e \mathbf{A}) \tag{3}
\end{equation*}
$$

Note that conjugate momentum is not entirely the mechanical momentum, which would be just $m \dot{\mathbf{r}}$. So, Hamiltonian is obtained as

$$
\begin{align*}
H() & =\mathbf{p} \cdot \dot{\mathbf{r}}-L \\
& =\frac{1}{m} \mathbf{p} \cdot(\mathbf{p}-e \mathbf{A})-\left[\frac{1}{2 m}(\mathbf{p}-e \mathbf{A})^{2}-e \phi+\frac{e}{m}(\mathbf{p}-e \mathbf{A}) \cdot \mathbf{A}\right] \\
& =\frac{1}{2 m}(\mathbf{p}-e \mathbf{A})^{2}+e \phi \tag{4}
\end{align*}
$$

(Note that both the potentials could have explicit time-dependence; in addition, they depend on position of the charged particle, which itself is changing with time.) This gives Hamilton's equations:

$$
\begin{equation*}
\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{1}{m}(\mathbf{p}-e \mathbf{A}) \tag{5}
\end{equation*}
$$

and (in component form)

$$
\begin{equation*}
\dot{p_{x}}=-\frac{\partial H}{\partial x}=-e \frac{\partial \phi}{\partial x}+\frac{e}{m}\left(p_{i}-e A_{i}\right) \frac{\partial A_{i}}{\partial x} \tag{6}
\end{equation*}
$$

where in the last term i is summed over x, y and z. Using Eq. (5) in last term of Eq. (6), we get

$$
\begin{equation*}
\dot{p_{x}}=-e \frac{\partial \phi}{\partial x}+e v_{i} \frac{\partial A_{i}}{\partial x} \tag{7}
\end{equation*}
$$

where v_{i} 's are components of the velocity of the particle, i.e., $\dot{\mathbf{r}}$. We can take another time derivative of LHS of Eq. (5) to give the force:

$$
\begin{equation*}
\mathbf{F}=m \ddot{\mathbf{r}}=\dot{\mathbf{p}}-e \frac{d \mathbf{A}}{d t} \tag{8}
\end{equation*}
$$

Now, in component form

$$
\begin{align*}
\frac{d A_{x}(\mathbf{r}, t)}{d t} & =\frac{\partial A_{x}}{\partial t}+\frac{\partial A_{x}}{\partial x} \frac{d x}{d t}+\frac{\partial A_{x}}{\partial y} \frac{d y}{d t}+\frac{\partial A_{x}}{\partial z} \frac{d z}{d t} \\
& =\frac{\partial A_{x}}{\partial t}+\frac{\partial A_{x}}{\partial x} v_{x}+\frac{\partial A_{x}}{\partial y} v_{y}+\frac{\partial A_{x}}{\partial z} v_{z} \tag{9}
\end{align*}
$$

Plugging Eqs. (7) and (9) into x-component of RHS of Eq. (8), and collecting/cancelling terms, gives

$$
\begin{align*}
F_{x} & =-e\left(\frac{\partial \phi}{\partial x}+\frac{\partial A_{x}}{\partial t}\right)++e\left[v_{y}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)+v_{z}\left(\frac{\partial A_{z}}{\partial x}-\frac{\partial A_{x}}{\partial z}\right)\right] \\
& =e E_{x}+e\left[v_{y}(\nabla \times \mathbf{A})_{z}-v_{z}(\nabla \times \mathbf{A})_{y}\right] \tag{10}\\
& =e E_{x}+e\left(v_{y} B_{z}-v_{z} B_{y}\right) \tag{11}\\
& =e E_{x}+e(\mathbf{v} \times \mathbf{B})_{x} \tag{12}
\end{align*}
$$

where we used $\mathbf{E}=-\nabla \phi$ in getting to the 1st term in Eq. (10) and $\mathbf{B}=\nabla \times \mathbf{A}$ in last 2 terms in Eq. (11), ending up with the usual formula for the (x-component of the) Lorentz force acting on a charged particle moving in electric and magnetic fields.

