Problems

1. Show, for the infinite well, that the average position $\langle x\rangle$ is independent of the quantum state. Hint: Use the integral formula: $\int_{0}^{2 n \pi} u \cos u d u=0 \quad$ (for integer n)
2. Carefully sketch the wave function and the probability density for the $\mathrm{n}=4$ state of a particle in a finite potential well.
3. SMM, Chapter 5, problem 26. Hint: Check Example 5.13 if you are stuck.
4. Calculate $\langle x\rangle,\left\langle x^{2}\right\rangle$, and Δx for a quantum oscillator in its ground state.

Hint 1: Is the integral, over all x, of an odd function zero?
Hint 2: Use the integral formula $\int_{0}^{\infty} u^{2} e^{-a u^{2}} d u=\frac{1}{4 a} \sqrt{\frac{\pi}{a}} \quad a>0$

5. SMM, Chapter 6, problem 1.

6. Sketch careful, qualitatively accurate plots for the stated wave functions in each of the potentials shown. Important: Check that your wave function has the correct symmetry, number of nodes, relative wavelengths, maximum values of amplitudes and relative rate of decrease outside the well.
(a) The ground state, $1^{\text {st }}$ and $2^{\text {nd }}$ excited wave functions of the quantum oscillator. Realize that this corresponds to the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ bound state.

(b) The $5^{\text {th }}$ bound state of the finite square well with a two level floor.

(c) The $5^{\text {th }}$ bound state of the finite square well with a ramped floor.

