PHYS420 (Spring 2002)

Riq Parra
Homework # 10
(due Monday, April 29™ , 2002)
Problems
1. Matter Waves. Show that the group velocity (vg.uy) of matter waves is related to

2
C

the phase velocity (Vpuase) by the following expression: v, =

v phase ko

Answer: The general relation between the group and phase velocities is given by
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Recalling that for matter waves v ., = ¢, fl + (%) , then all we have to do is

differentiate and simplify.
Differentiating with respect to k we find
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Substituting and simplifying

Show that a monochromatic plane wave wavefunction W(x,t) = Ae'™™" satisfies
: . n’ w W
the time-dependent Schrédinger equation, — 5 o +Ux)W = zhaa—
m

assuming that U(x) =0.



We differentiate the wavefunction to find all the terms
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And we simply plug into the Schrodinger equation with U(x) =0
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The equation is satisfied.
SMM, Chapter S, problem 1.

Answer: For the function to be a Schrodinger wavefunction, it must be singled-
valued, continuous and finite everywhere.

(a) No. It diverges as x — . (J(x) must be finite everywhere.

(b) Yes.

(c) Yes.

(d) No. (x) is not singled valued everywhere.

(e) No. Y(x) is not continuous everywhere.

SMM, Chapter 5, problem 2.

Answer: (a) Normalization requires that I |t//|2 dx =1.
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Using our function and making use of the trig identity 2cos” 8 =1+ cos26.
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(b) The probability is just given by
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SMM, Chapter 5, problem 5.

Answer: (a) Since we know that the particle has zero energy, then our time-
independent Schrodinger equation will look like this.
R0’y
2m 0x’
Since we know the wavefunction also, we are in a position to find the unknown
potential. Taking the appropriate derivatives ...
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And plugging in...

2 3 _x 2
- A4i4—6—)2€ e ¥ [+U(x) Axe ¥ |=0
2m L L

After some manipulation we find...
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(b) This is the equation of a parabola that is centered at [O,— Ve } concave up
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since " (x) = 4n - >0, and crosses the x-axis at x = —\/E L and \/E L.
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SMM, Chapter 5, problem 9.
Answer: If we treat the nuclear potential as an infinite square well of length L =

e’
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107 nm, then the energies are given by E = The change in energy of a
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state (n=2) to the ground state (n=1) is then given by

proton (m, = 1.673x107 kg =938.3

) in a transition from the first excited
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AE=E,-E =" _=3 g = 6.14 MeV
8m,L* 8107 mm) 938.3x10°€V
The wavelength is just
= e = 1239.7eV thm =2.02x10" nm [gamma rays]

AE  6.14x10°eV
SMM, Chapter 5, problem 16.

Answer: In general, the probability of finding the particle within the interval [a,b]

b
is given by P = j |(//(x)|2dx. The normalized wave function of a particle in an

2 . (n
infinitely deep potential is given by: , (x) = 7 s1n(n7j. In this case, we can

work out the value of this integral for all wave functions for an arbitrary interval

[a,b].
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(a) To get the probability of the ground state electron being within .100 nm of the
left hand wall of a .300 nm box (1/3 of the way) we let n = 1, L = 0.300 nm, a =
0.000 nm and b = 0.100 nm. More simply, you can leave the L as a variable and
find the probability from 0 to L/3 (for n = 1). Of course, the answers are the
same.
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P, =————sinf|—— |=0.196 for (n = 1).
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(b) For n = 100, we get

p, =i 1 sin(z(loo)nj = 0.332 for (n=100).
31 3 2(100)7 3

(c) Yes. As n gets bigger we approach the classical value of 1/3.




