Problems

1. Matter Waves. Show that the group velocity ($v_{\text {group }}$) of matter waves is related to the phase velocity ($v_{\text {phase }}$) by the following expression: $v_{\text {group }}=\frac{c^{2}}{\left.v_{\text {phase }}\right|_{k_{0}}}$.

Answer: The general relation between the group and phase velocities is given by

$$
v_{\text {group }}=\left.v_{\text {phase }}\right|_{k_{0}}+\left.k \frac{d v_{\text {phase }}}{d k}\right|_{k_{0}}
$$

Recalling that for matter waves $v_{\text {phase }}=c \sqrt{1+\left(\frac{m c}{\hbar k}\right)^{2}}$, then all we have to do is differentiate and simplify.
Differentiating with respect to k we find

$$
\frac{d v_{\text {phase }}}{d k}=-\frac{c}{k} \frac{\left(\frac{m c}{\hbar k}\right)^{2}}{\sqrt{1+\left(\frac{m c}{\hbar k}\right)^{2}}}
$$

Substituting and simplifying

$$
\begin{gathered}
v_{\text {group }}=c \sqrt{1+\left(\frac{m c}{\hbar k_{0}}\right)^{2}-k_{0} \frac{c}{k_{0}} \frac{\left(\frac{m c}{\hbar k_{0}}\right)^{2}}{\sqrt{1+\left(\frac{m c}{\hbar k_{0}}\right)^{2}}}} \\
v_{\text {group }}=\frac{c^{2}}{c \sqrt{1+\left(\frac{m c}{\hbar k_{0}}\right)^{2}}}=\frac{c^{2}}{\left.v_{\text {phase }}\right|_{k_{0}}} .
\end{gathered}
$$

2. Show that a monochromatic plane wave wavefunction $\Psi(x, t)=A e^{i(k x-w t)}$ satisfies the time-dependent Schrödinger equation, $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+U(x) \Psi=i \hbar \frac{\partial \Psi}{\partial t}$, assuming that $U(x)=0$.

We differentiate the wavefunction to find all the terms

$$
\frac{\partial \psi}{\partial x}=i k A e^{i(k x-w t)}, \frac{\partial^{2} \psi}{\partial x^{2}}=-k^{2} A e^{i(k x-w t)}, \frac{\partial \psi}{\partial t}=-i w A e^{i(k x-w t)}
$$

And we simply plug into the Schrödinger equation with $U(x)=0$

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m}\left(-k^{2} A e^{i(k x-w t)}\right)=i \hbar\left(-i w A e^{i(k x-w t)}\right) \\
\frac{\hbar^{2} k^{2}}{2 m}=\hbar w \\
E=E
\end{gathered}
$$

The equation is satisfied.

3. SMM, Chapter 5, problem 1.

Answer: For the function to be a Schrödinger wavefunction, it must be singledvalued, continuous and finite everywhere.
(a) No. It diverges as $x \rightarrow \infty . \psi(x)$ must be finite everywhere.
(b) Yes.
(c) Yes.
(d) No. $\psi(x)$ is not singled valued everywhere.
(e) No. $\psi(x)$ is not continuous everywhere.

4. SMM, Chapter 5, problem 2.

Answer: (a) Normalization requires that $\int_{-\infty}^{\infty}|\psi|^{2} d x=1$.
Using our function and making use of the trig identity $2 \cos ^{2} \theta=1+\cos 2 \theta$.

$$
\begin{gathered}
\int_{-L / 4}^{L / 4} A^{2} \cos ^{2}\left(\frac{2 \pi x}{L}\right) d x=1 \\
\frac{A^{2}}{2} \int_{-L / 4}^{L / 4}\left[1+\cos \left(\frac{4 \pi x}{L}\right)\right] d x=1 \\
\left|x+\frac{L}{4 \pi} \sin \left(\frac{4 \pi x}{L}\right)\right|_{-L / 4}^{L / 4}=\frac{2}{A^{2}} \\
\frac{L}{2}=\frac{2}{A^{2}} \quad \rightarrow \quad A=\frac{2}{\sqrt{L}}
\end{gathered}
$$

(b) The probability is just given by

$$
\begin{aligned}
& P_{[0, L / 8]}=\int_{0}^{L / 8}|\psi|^{2} d x=\frac{A^{2}}{2}\left|x+\frac{L}{4 \pi} \sin \left(\frac{4 \pi x}{L}\right)\right|_{0}^{L / 8}=\frac{2}{L}\left[\frac{L}{8}+\frac{L}{4 \pi} \sin \left(\frac{\pi}{2}\right)\right] \\
& P_{[0, L / 8]}=\frac{1}{4}+\frac{1}{2 \pi}=0.409
\end{aligned}
$$

5. SMM, Chapter 5, problem 5.

Answer: (a) Since we know that the particle has zero energy, then our timeindependent Schrödinger equation will look like this.

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+U(x) \Psi=0
$$

Since we know the wavefunction also, we are in a position to find the unknown potential. Taking the appropriate derivatives...

$$
\begin{aligned}
\frac{\partial \psi}{\partial x} & =A\left(1-\frac{2 x^{2}}{L^{2}}\right) e^{-\frac{x^{2}}{L^{2}}} \\
\frac{\partial^{2} \psi}{\partial x^{2}} & =A\left(\frac{4 x^{3}}{L^{4}}-\frac{6 x}{L^{2}}\right) e^{-\frac{x^{2}}{L^{2}}}
\end{aligned}
$$

And plugging in...

$$
-\frac{\hbar^{2}}{2 m}\left[A\left(\frac{4 x^{3}}{L^{4}}-\frac{6 x}{L^{2}}\right) e^{-\frac{x^{2}}{L^{2}}}\right]+U(x)\left[A x e^{-\frac{x^{2}}{L^{2}}}\right]=0
$$

After some manipulation we find...

$$
U(x)=\frac{\hbar^{2}}{2 m L^{2}}\left[\frac{4 x^{2}}{L^{2}}-6\right]
$$

(b) This is the equation of a parabola that is centered at $\left[0,-\frac{3 \hbar^{2}}{m L^{2}}\right]$, concave up since $\psi^{\prime \prime}(x)=\frac{4 \hbar^{2}}{m L^{4}}>0$, and crosses the x-axis at $x=-\sqrt{\frac{3}{2}} L$ and $\sqrt{\frac{3}{2}} L$.

6. SMM, Chapter 5, problem 9.

Answer: If we treat the nuclear potential as an infinite square well of length $L=$ $10^{-5} \mathrm{~nm}$, then the energies are given by $E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}$. The change in energy of a proton ($m_{p}=1.673 \times 10^{-27} \mathrm{~kg}=938.3 \frac{\mathrm{MeV}}{c^{2}}$) in a transition from the first excited state $(n=2)$ to the ground state $(n=1)$ is then given by

$$
\Delta E=E_{2}-E_{1}=\frac{3 h^{2}}{8 m_{p} L^{2}}=\frac{3}{8} \frac{(1239.7 \mathrm{eV} \cdot \mathrm{~nm} / \mathrm{c})^{2}}{\left(10^{-5} \mathrm{~nm}\right)^{2} 938.3 \times 10^{6} \mathrm{eV} / \mathrm{c}^{2}}=\mathbf{6 . 1 4 ~ M e V}
$$

The wavelength is just

$$
\lambda=\frac{h c}{\Delta E}=\frac{1239.7 \mathrm{eV} \cdot \mathrm{~nm}}{6.14 \times 10^{6} \mathrm{eV}}=2.02 \times 10^{-4} \mathrm{~nm} \text { [gamma rays] }
$$

7. SMM, Chapter 5, problem 16.

Answer: In general, the probability of finding the particle within the interval [a,b] is given by $P=\int_{a}^{b}|\psi(x)|^{2} d x$. The normalized wave function of a particle in an infinitely deep potential is given by: $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$. In this case, we can work out the value of this integral for all wave functions for an arbitrary interval [a,b].

$$
\begin{gathered}
P=\int_{a}^{b}|\psi(x)|^{2} d x=\frac{2}{L} \int_{a}^{b} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x \\
P=\frac{2}{L} \int_{a}^{b} \frac{1}{2}\left[1-\cos \left(\frac{2 n \pi x}{L}\right)\right] d x \\
P=\frac{2}{L}\left|\frac{x}{2}-\frac{L}{4 n \pi} \sin \left(\frac{2 n \pi x}{L}\right)\right|_{a}^{b}
\end{gathered}
$$

And thus...

$$
P_{[a, b]}=\frac{b-a}{L}+\frac{1}{2 n \pi}\left[\sin \left(\frac{2 n \pi a}{L}\right)-\sin \left(\frac{2 n \pi b}{L}\right)\right]
$$

(a) To get the probability of the ground state electron being within . 100 nm of the left hand wall of a . 300 nm box ($1 / 3$ of the way) we let $n=1, L=0.300 \mathrm{~nm}, a=$ 0.000 nm and $b=0.100 \mathrm{~nm}$. More simply, you can leave the L as a variable and find the probability from 0 to $L / 3$ (for $n=1$). Of course, the answers are the same.

$$
P_{\left[0, \frac{L}{3}\right]}=\frac{1}{3}-\frac{1}{2 n \pi} \sin \left(\frac{2 n \pi}{3}\right)=\mathbf{0 . 1 9 6} \text { for }(n=1) \text {. }
$$

(b) For $n=100$, we get

$$
P_{\left[0, \frac{L}{3}\right]}=\frac{1}{3}-\frac{1}{2(100) \pi} \sin \left(\frac{2(100) \pi}{3}\right)=\mathbf{0 . 3 3 2} \text { for }(n=100) .
$$

(c) Yes. As n gets bigger we approach the classical value of $1 / 3$.

