
PHYS420 (Spring 2002) 
Riq Parra              

Homework # 10 
(due Monday, April 29th , 2002) 

 
 
Problems 
 
1.  Matter Waves. Show that the group velocity (vgroup) of matter waves is related to 

the phase velocity (vphase) by the following expression: 
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Answer: The general relation between the group and phase velocities is given by 
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Recalling that for matter waves 
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, then all we have to do is 

differentiate and simplify. 
Differentiating with respect to k we find 
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Substituting and simplifying 
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2.  Show that a monochromatic plane wave wavefunction )(),( wtkxiAetx −=Ψ  satisfies 

the time-dependent Schrödinger equation, 
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We differentiate the wavefunction to find all the terms 
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And we simply plug into the Schrödinger equation with 0)( =xU  
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The equation is satisfied.  

 
3. SMM, Chapter 5, problem 1. 
 

Answer: For the function to be a Schrödinger wavefunction, it must be singled-
valued, continuous and finite everywhere.  
(a) No. It diverges as ∞→x . )(xψ  must be finite everywhere. 
(b) Yes. 
(c) Yes.  
(d) No. )(xψ  is not singled valued everywhere. 
(e) No. )(xψ  is not continuous everywhere. 

 
4. SMM, Chapter 5, problem 2. 

 

Answer: (a) Normalization requires that 12 =∫
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Using our function and making use of the trig identity θθ 2cos1cos2 2 += . 
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(b) The probability is just given by 
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5. SMM, Chapter 5, problem 5. 
 

Answer: (a) Since we know that the particle has zero energy, then our time-
independent Schrödinger equation will look like this. 
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Since we know the wavefunction also, we are in a position to find the unknown 
potential. Taking the appropriate derivatives… 
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And plugging in… 
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After some manipulation we find… 
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(b) This is the equation of a parabola that is centered at 
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6. SMM, Chapter 5, problem 9. 
 

Answer: If we treat the nuclear potential as an infinite square well of length L = 

10-5 nm, then the energies are given by 2
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state (n=2) to the ground state (n=1) is then given by 



( )
( ) =

⋅
==−=∆

−
2

625

2

2

2

12
103.93810

7.1239

8
3

8
3

c
eVxnm

c
nmeV

Lm
hEEE
p

6.14 MeV 

The wavelength is just 

=⋅=
∆

=
eVx
nmeV

E
hc

61014.6
7.1239λ 2.02x10-4 nm [gamma rays] 

 
7. SMM, Chapter 5, problem 16. 
 

Answer: In general, the probability of finding the particle within the interval [a,b] 

is given by ∫=
b

a

dxxP 2)(ψ . The normalized wave function of a particle in an 

infinitely deep potential is given by: 
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work out the value of this integral for all wave functions for an arbitrary interval 
[a,b]. 
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(a) To get the probability of the ground state electron being within .100 nm of the 
left hand wall of a .300 nm box (1/3 of the way) we let n = 1, L = 0.300 nm, a = 
0.000 nm and b = 0.100 nm. More simply, you can leave the L as a variable and 
find the probability from 0 to L/3 (for n = 1). Of course, the answers are the 
same. 
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(b) For n = 100, we get 
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(c) Yes. As n gets bigger we approach the classical value of 1/3. 


