
PHYS420 (Spring 2002) 
Riq Parra              

Homework # 9 
(due Monday, April 22nd , 2002) 

 
 
Problems 
 
 
1.  (10 points) Wavelengths. What is the approximate wavelength of 

(a) a car moving at 60 miles per hour? 
(b) a cell moving at 1mm per hour? 
(c) an electron with an energy of 10 eV? 
(d) a photon with an energy of 10 eV? 
(e) a neutron with an energy of 0.1 eV? 

 
Answer: (a) Assuming a car mass somewhere between 1500 – 3000 lbs. In MKS 
units this would correspond to a typical mass of about 1000 kilograms (about 1 
metric t on). If the car is moving at 60 miles per hour, in MKS units, this is 
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The momentum (non-relativistic) is thus:  
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According to de Broglie, the wavelength is thus: 
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Of course, your numbers may vary somewhat from this if you choose a different 
mass for the car. 

 
(b) Cells vary greatly in size and shape, but to a physicist a typical cell could be 
well represented by a sphere of water with a radius of a few µm’s (let’s say 2.5 
µm). We can find the mass of the cell by multiplying the volume of the cell time its 
density ( 3/1 cmgmwater =ρ ). Putting all the numbers together in consistent units: 
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The de Broglie wavelength is thus: 
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(c) Since the kinetic energy of the electron (10 eV) is much less than its rest 
energy (0.511 MeV), we can use non-relativistic momentum ( mEp 2= ).  
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For this case the de Broglie wavelength is given by 
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=  3.88 Å. 
 

(d) For a photon we can just use our energy frequency relation, 
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(e) Using similar arguments as in (c), 
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2.  Show that the de Broglie wavelength of an electron accelerated from rest through 

a small potential difference V is given by 
V

226.1=λ , where λ is in nanometers 

and V is in volts. 
 

Answer: The kinetic energy that an electron, starting from rest, receives from a 
potential difference of V, is simply eVKE = . Therefore the received momentum is 
just meVmKEp 22 == . The de Broglie wavelength is given by 
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3. SMM, Chapter 4, problem 22. 
 

Answer: According to Heisenberg’s Uncertainty Principle: 2h≥∆∆ px . For this 
case, smkgxsmkgvmp /105.1)/30*001.0)(05.0( 3 ⋅==∆=∆ −  
Therefore, the minimum uncertainty in the position is 
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4. SMM, Chapter 4, problem 27. 
 

Answer: This is an interesting example of what life would be like if quantum 
mechanical effects were large enough to be seen in macroscopic systems.  
(a) The minimum uncertainty in Fuzzy’s momentum is 
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(b) Fuzzy might move by (0.25 m/s) * (5 s) = 1.25 m. With the original position 
uncertainty of 1 m, we can think of x∆ growing to 1 m + 1.25 m = 2.25 meters. 

 
5. SMM, Chapter 4, problem 28. To keep this calculation as a general estimate, 

assume h≈∆∆ px  and that the momentum is roughly of the same order of 
magnitude as the uncertainty in the momentum (i.e. pp ∆≈ ). 

 
Answer:  If you recall, this problem was fully worked out during lecture. 

 (a) Letting rx ≈∆ , we find that 
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(b) Estimating the kinetic energy: ( )
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Estimating the potential energy: 
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(c) To minimize E, we solve 0
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Solving for rmin,  
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Which is exactly the Bohr radius! Therefore, it is not a surprise that when we plug 
this minimum radius into the total energy equation we get Etotal = –13.6 eV. 



 
6.  The width of spectral lines. Although an excited atom can radiate at any time, 

the average time after excitation at which a group of atoms radiates is called the 
lifetime, τ. (a) If τ = 10 nsec, use the uncertainty principle to compute the line 
width produced by this finite lifetime. (b) If the wavelength of the spectral line 
involved in this process is 500 nm, find the fractional broadening ff /∆ . 

 
Answer: This problem is an example from the book (Example 4.12, p. 170).  

 (a) We use 
2
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average time available to measure the excited state. Thus, 
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Note that E∆  is the uncertainty in energy of the excited state. It is also the 
uncertainty in the energy of the photon emitted by an atom in this state. 
(b) First, we find the center frequency of this line as follows: 
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Hence, 
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This narrow natural line width can be seen with a sensitive interferometer. 
Usually, however, temperature and pressure effects overshadow the natural line 
width and broaden the line through mechanisms associated with the Doppler 
effect and collisions. 


