## Problems

1. (10 points) Wavelengths. What is the approximate wavelength of
(a) a car moving at 60 miles per hour?
(b) a cell moving at 1 mm per hour?
(c) an electron with an energy of 10 eV ?
(d) a photon with an energy of 10 eV ?
(e) a neutron with an energy of 0.1 eV ?
2. Show that the de Broglie wavelength of an electron accelerated from rest through a small potential difference $V$ is given by $\lambda=\frac{1.226}{\sqrt{V}}$, where $\lambda$ is in nanometers and $V$ is in volts.

## 3. SMM, Chapter 4, problem 22.

4. SMM, Chapter 4, problem 27.
5. SMM, Chapter 4, problem 28. To keep this calculation as a general estimate, assume $\Delta x \Delta p \approx \hbar$ and that the momentum is roughly of the same order of magnitude as the uncertainty in the momentum (i.e. $p \approx \Delta p$ ).
6. The width of spectral lines. Although an excited atom can radiate at any time, the average time after excitation at which a group of atoms radiates is called the lifetime, $\tau$. (a) If $\tau=10 \mathrm{nsec}$, use the uncertainty principle to compute the line width produced by this finite lifetime. (b) If the wavelength of the spectral line involved in this process is 500 nm , find the fractional broadening $\Delta f / f$.
