
PHYS420 (Spring 2002) 
Riq Parra              

Homework # 5 Solutions 
 
 
Problems 
 
1. SMM, Chapter 2, Problem 2. 
 

Assume that your skin can be considered a blackbody (which is probably not a 
very good assumption). One can then use Wien’s displacement law, 

KmxKTm ⋅= −3
max 10898.2)()(λ , to find the wavelength of the peak emission. 

Letting T = 35 Celsius = 308 K,  
==⋅= −− mxKKmx 63

max 1041.930810898.2λ 9409 nm 
which is in the far infrared (heat). 

 
2. SMM, Chapter 2, Problem 3. 
 

According to classical mechanics, for a simple harmonic oscillator having 
amplitude A and spring constant k…  
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(b) If the energy is quantized, it will be given by nhfEn = . We find the value of 
the quantum number n simply by, 
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n n 5.4x1033. 

(c) At these frequencies, the energy carried away by one quantum change will be, 
=⋅== − )56.0)(1063.6( 34 HzsJxhfE 3.7x10-34 J. 

 
3. SMM, Chapter 2, Problem 4. 
 

(a) Stefan’s law tells us that the power per unit area emitted at all frequencies by a 
blackbody is proportional to the fourth power of its absolute temperature. Thus, 

=== −−− 44284 )3000)(1067.5( KKWmxTetotal σ 4.59x106 W/m2. 
(b) If a light bulb is rated for P = 75 W, then… 
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4. Calculate the energy of a photon whose frequency is (a) 5x1014 Hz, (b) 10 GHz, 

(c) 30 MHz. Express your answers in electron volts. Also determine the 



corresponding wavelengths for each case and what part of the EM spectrum this 
is. (This is essentially SMM problem 2.7 & 2.8 combined). 

 

In all cases we use nhfEn =  and 
f
c=λ … 

(a) E = (6.63x10-34 J.s)(5x1014 Hz) = 3.315x10-19 J = 2.07 eV 
λ = (3x108 m/s)/(5x1014 Hz) = 6x10-7 m = 600 nm, visible (yellow) 

 
(b) E = (6.63x10-34 J.s)(10x109 Hz) = 6.63x10-24 J = 4.14 x 10-5 eV 

λ = (3x108 m/s)/(10x109 Hz) = 0.03 m, microwave 
 

(c) E = (6.63x10-34 J.s)(30x106 Hz) = 1.989x10-26 J = 1.24 x 10-7 eV 
λ = (3x108 m/s)/(30x106 Hz) = 10 m, radio 

 
5. SMM, Chapter 2, Problem 11. 
 

In general, hf
t
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t
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6. Extra Credit problem 1. Using Planck’s spectral distribution formula, u(λ,T), and 

recalling that ∫
∞

=
0
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λλ dTucetotal , derive Stefan’s law, 4Tetotal σ= , for the total 

power per unit area radiated at all wavelengths. Work out the numerical value for 

the constant σ. Useful hint: 
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This problem is worked out in complete detail on page 70 of SMM. The derivation 
goes something like this. 
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where we make use of the change of variable Tk

hcx
bλ≡ . Note: In making the 

change of variables, don’t forget to substitute dx
Tkx

hcd
b

2−=λ , and the limits of 

integration. There’s a little bit of algebra in doing this.  
 
Finally, using the value for the integral… 
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Substituting for kb, c, and h, we have 
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7. Extra Credit problem 2. Using Planck’s spectral distribution formula, u(λ,T), 

(a) Derive Wein’s displacement law, .max constT =λ  Assume that the 
transcendental equation, )1(5 xex −−= , has a non-trivial solution given by x0. 
This comment will be clear as you work through the problem.  
(b) Using a dimensionless value for the non-trivial solution of x0 = 4.96511423, 
work out the value and units of the constant. 

 
In principle, the procedure is simple. To find the peak wavelength of the spectral 
distribution formula, we take the derivative with respect to wavelength, set it to 
zero and solve for the wavelength. And so… 
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Setting the derivative to zero, 
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Solving for λmax… (Note: All the λ’s in the equations are λmax but for brevity, I’m 
just calling them λ.) 
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Letting Tk

hcx
bλ≡  we have 
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If we want to solve for λmax we must solve for x. This is a transcendental equation 
in x that will not have an analytical solution but a numerical one. For the time 
being, let’s assume that this numerical solution is x0. And so,  
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Assuming that x0 = 4.96511423 (which is dimensionless), we can solve for the 
constant. 
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