Problems

1. SMM, Chapter 2, Problem 2.
2. SMM, Chapter 2, Problem 3.

3. SMM, Chapter 2, Problem 4.

4. Calculate the energy of a photon whose frequency is (a) $5 \times 10^{14} \mathrm{~Hz}$, (b) 10 GHz , (c) 30 MHz . Express your answers in electron volts. Also determine the corresponding wavelengths for each case and what part of the EM spectrum this is. (This is essentially SMM problem $2.7 \& 2.8$ combined).

5. SMM, Chapter 2, Problem 11.

6. Extra Credit problem 1. Using Planck's spectral distribution formula, $u(\lambda, T)$, and recalling that $e_{\text {total }}=\frac{c}{4} \int_{0}^{\infty} u(\lambda, T) d \lambda$, derive Stefan's law, $e_{\text {total }}=\sigma T^{4}$, for the total power per unit area radiated at all wavelengths. Work out the numerical value for the constant σ. Useful hint: $\int_{0}^{\infty} \frac{x^{3}}{\left(e^{x}-1\right)} d x=\frac{\pi^{4}}{15}$.
7. Extra Credit problem 2. Using Planck's spectral distribution formula, $u(\lambda, T)$, (a) Derive Wein's displacement law, $\lambda_{\max } T=$ const. Assume that the transcendental equation, $x=5\left(1-e^{-x}\right)$, has a non-trivial solution given by x_{0}.
This comment will be clear are you work through the problem.
(b) Using a dimensionless value for the non-trivial solution of $x_{0}=4.96511423$, work out the value and units of the constant.

Planck's formula: $u(\lambda, T)=\frac{8 \pi h c}{\lambda^{5}\left(e^{h c / \lambda k_{b} T}-1\right)}, \quad u(f, T)=\frac{8 \pi h f^{3}}{c^{3}} \frac{1}{\left(e^{h f / k_{b} T}-1\right)}$

