Problems

- 1. SMM, Chapter 2, Problem 2.
- 2. SMM, Chapter 2, Problem 3.

3. SMM, Chapter 2, Problem 4.

4. Calculate the energy of a photon whose frequency is (a) 5x10¹⁴ Hz, (b) 10 GHz, (c) 30 MHz. Express your answers in electron volts. Also determine the corresponding wavelengths for each case and what part of the EM spectrum this is. (This is essentially SMM problem 2.7 & 2.8 combined).

5. SMM, Chapter 2, Problem 11.

- 6. *Extra Credit problem 1.* Using Planck's spectral distribution formula, $u(\lambda, T)$, and recalling that $e_{total} = \frac{c}{4} \int_{0}^{\infty} u(\lambda, T) d\lambda$, derive Stefan's law, $e_{total} = \sigma T^{4}$, for the total power per unit area radiated at all wavelengths. Work out the numerical value for the constant σ . Useful hint: $\int_{0}^{\infty} \frac{x^{3}}{(e^{x} 1)} dx = \frac{\pi^{4}}{15}$.
- 7. Extra Credit problem 2. Using Planck's spectral distribution formula, u(λ, T),
 (a) Derive Wein's displacement law, λ_{max}T = const. Assume that the transcendental equation, x = 5(1 e^{-x}), has a non-trivial solution given by x₀. This comment will be clear are you work through the problem.
 (b) Using a dimensionless value for the non-trivial solution of x₀ = 4.96511423, work out the value and units of the constant.

Planck's formula:
$$u(\lambda,T) = \frac{8\pi hc}{\lambda^5 (e^{hc/\lambda k_b T} - 1)}, \quad u(f,T) = \frac{8\pi hf^3}{c^3} \frac{1}{(e^{hf/k_b T} - 1)}$$