PHYS420 (Spring 2002)

Riq Parra

Homework # 2 Solutions
Problems
1. Generalize the Galilean transformation of coordinates to motion in three

dimensions by showing that 7¥'=7 —vt & t'=¢.

In the derivation of the Galilean transformations that was done in class, we
assumed that the motion of the moving frame was just in the positive x direction
(i.e. v =v X ). In this problem, we are going to generalize this to any direction

(ie. V=vI+v y+v.Z)

Assuming that at time t = t’ = ( the two frames are together, then at some
arbitrary time t later, the distance between the two frames will be v,t in the x
direction (just like the class derivation), v,t in the y direction and v:t in the z
direction. In vector notation, we write this as

d=vix+tviy+tviz=vx+v y+v.i)i=vi.

For each direction, the connection between the coordinates in the moving frame
(x’,y’, z’, t’) and the coordinates in the stationary frame (x, v, z, t) are just

x'=x-v t
y=y-v,t
zZ'=z-v.t
t'=t

Therefore, in vector notation,

Flex'x+yp+z'z
Fl=(x-v,)x+(y-v, Oy +(z-v.1)Z
Fl=(X+yp+z2) = (v, +v, +v )t

Fr=r-vt

2. In a laboratory frame of reference, an observer notes that Newton’s 2™ law is
valid. (a) Show that it’s also valid for an observer moving at constant speed
relative to the laboratory frame (we did this in class) & (b) Show that it is not
valid in a reference frame moving past with constant acceleration. This problem is
simply SMM Chapter 1, Problems 1 & 2 combined.



In order to show that Newton’s 2" law (F=ma) is valid in a moving frame, we
must look at how accelerations transform.

(a) For a frame moving at constant speed v (in the positive x direction) relative to
a stationary frame, the Galilean coordinate transformations is just

x'=x-vt
Taking a time derivative (d/dt’) and recalling that dt’=dt and that v is a constant,
we find how the velocity transforms. This is simply the Galilean velocity addition
law.

, _dx' dx a’t _dx  dt
u V)= ——V—=—"—V—=u-v
ar a Tl di | di
To find the acceleratlon we take another time derivative (d/dt’, with dt’=dt).
., du'  d du du
a:—:—u—v):—:—:a
dat' dt' dt' dt

And so we find that the accelerations are identical. Therefore so are the forces,

F'=ma'=ma=F
(b) For a frame moving at constant acceleration ay (in the positive x direction)
relative to a stationary frame we cannot use the standard Galilean transformation
rules that we derived in class anymore. Assuming that at time t =t = 0 the two
frames are together, then at some arbitrary time t later, the distance between the
two frames will be 75 a0t2 in the x direction. In this case, the new coordinate
transformation is

1

r_ 2
X =x——at

Taking time derivatives tofnd the velocily (and remembering that dt’ = dlt),

,_ ax’' dt
u =———( t)——,—a0 =u—ayt
dt’' dt’
Taking time derivatives to f nd the acceleratzon,
. du' u dt
a __:_ —a)=—-a,— o =a-a,
dt’ dt dt

We see that the two accelemttons are not identical. So in this case, Newton'’s 2"
law will not have the same value in the two different frames...
F'=ma' =m(a—-a,)=ma-ma, =F —ma,!

What happens to Maxwell’s equations under a Galilean transformation? In a
stationary reference frame (K) in free space, the scalar field @(x, y,z,¢) satisfies

62¢+62¢+62¢ 1 6¢
ox® 9y 0z’ ot
wave equation is not invariant under Galilean transformations.

. Show that the form of the

the scalar wave equation,

This question is really asking whether or not f 0" ¢ 9° ¢ _ = o’¢ .

ox'> oy’ 62'2 6 2

under Galilean transformations. In general, we make use of the Chazn rule to see
how the derivatives transform. For the time being and to be as general as

is true



possible, let’s not assume a specific form for the coordinate transformation rules.
We’ll assume that the coordinates in the moving frame are (x',y',z',t") and that

they depend only on (x,y,z,t). Similarly, the coordinates in the stationary frame
are (x,y,z,t) and they depend only on (x',y',z',t"). The derivate operators can

therefore be expanded the following way...

0 _ w9 &' 9 9 oo
o Oxox  oxdy  dxdz  axor
0 _'d 99 o9 oo
% dyor dydy oyar oyor
0 _ox'd &' 39 ad
0. 0z0¢ 0z0y 0z0z ozor
0 _0x'0 00 0220 09
o oY ooy oror oror

1t looks painful, but it’s straightforward. Now we can assume a set of
transformation rules. In our example, we’ll use the Galilean transformation rules.
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We can now compute the coefficients in the derivative expansion. This is the part
that depends on your choice of transformation rules.

Ox =1 | al_ ’ 0z =0 | a_l:O
Ox Ox Ox Ox
ai:() s al_ , ai:() s a_t:O
dy dy dy dy
ai:() , al_() , ai:] , a_t:()
0z 0z 0z 0z
ai_ , al:o , ai:o , a_tzl
ot ot ot ot

So putting everything together, we see that the derivatives transform the following
way:

0o _20 0o _20 0 _0 0 _0 0

Ox Ox'

dy ay

0z 9z ot

Turning now to the scalar wave equation in the non moving coordinate frame,



0’9 09,09 _ 1 0%
x> oy* 9z° ¢’ o’

Splitting the derivatives to be clear
o/l o) ol ) ala)
Ox \ Ox Oy dy 62 0z > 0\ ot
Substituting the new derivatives
Ti ey
ox\0x') adyl\oy az az') c*or\ar o
Distributing through and exchanging the order of the derivatives,
i(%j + 99 +i(%j - L(i% _vi%j
ox'\ox ) ay'\ay ) o0z'\oz) c*\or or  ox' ot
Substituting again the new derivatives,

)2y
a'lax' ) ay'\ay' ) az'\ez') c2|ar\ar ax') ox'\ar  ax

After distributing through and simplifying we get...
2 2 2 2 2 2
6¢+6¢+6¢_L6 ¢ _2v 0 6¢+v_26¢

2
c” dx'

o' ' 9> ot o ox o

You can see that this is not the original scalar wave equation form; we got two
extra terms on the right side! Therefore, it is NOT invariant under Galilean
transformations.

SMM, Chapter 1, Problem 3. A 2000-kg car moving with a speed of 20 m/s
collides with and sticks to a 1500-kg car at rest at a stop sign. Show that because
momentum is conserved in the rest frame, momentum is also conserved in a
reference frame moving with a speed of 10 m/s in the direction of the moving car.

Let m; = 2000 kg, vi = +20 m/s, my;= 1500 kg & v, = 0 m/s. According to
conservation of momentum in the stationary frame,
myv, +myv, =(m, +m,)v, ,
Solving for vina and plugging the numbers,
_my, tmyv,

V final = =+11.429...m/s

(m,+m,)
Now, let’s look at the same situation from a reference frame moving with a speed
of v=+10 m/s. In this new frame,

vi'=v;—v=20-10=10m/s



Vv =v,—v=0-10=-10m/s

Viinal' = Vinar—V = 11.429... — 10 = +1.429... m/s
And so, we find that momentum in this new frame is conserved,

mvy +myv, = (m, +m, )v'ﬁnal

(2000)(10) + (1500)(~10) = (3500)(1.429...)
5000 = 5000

Michelson — Morley experiment. Show that we were justified in keeping only the
first term of the binomial expansion when deriving the expected fringe shift. If
2Lv?
c?
if you kept the next term and compare it to the resolution of the experiment

(o =0.01 fringe). Are we justified?

you recall, Shift [ In other words, calculate what the fringe shift would be

Fringe

1
The binomial expansion to the next term is (1+x)" U1+ nx + En(n -1)x’

In deriving the expected fringe shift, we had the following exact expression,

2L P -1 P -1/2
At=tl—t2=—[[1—v—2J —(1—V—2J ]
C C C

Approximating this using the binomial theorem to the next term we find,

2 4 2 4 2 4
a2k 1+V_2+V_4—1—1V—2—3V—4 SEAMEE
c ¢ < 2¢° 8c c 4 ¢
The expected fringe is therefore,

2 4
Shift = 2cAt D2Lv2 +§LV4
A Ac® 2 Ac
Where we 've plugged the numbers provided in the book (i.e. L = 11 m, v = 30
km/s, A = 500 nm). Since this correction is much smaller than the resolution of the
experiment, we are perfectly justified in keeping only the first term of the binomial

expansion.

=0.4400000055

Synchronized clocks are stationed at regular intervals, 1million km apart, along a
straight line. When the clock next to you reads 12 noon, what time do you see
(assuming you have a really powerful telescope) on the 90" clock down the line?

If the clocks are spaced 1 million km apart, then the 90" clock down the line is 90
million km from the clock next to me (i.e. d = 9 x 10'° m). Light takes t = d/c =
(9x10"° m)/(3x10° m/s) = 300 seconds = 5 minutes to get to me. So the clock will
always seem to be 5 minutes behind. In other words, when I see 12 noon on the
clock by my side, the light that reaches me from the 90™ clock down, must have
left 5 minutes prior to that. Hence, the 90" clock down will read 11:55 am.



C : . - dp . .
Solve the non-relativistic Newton’s equation of motion ( F = d_p) in the case of a
t

constant force in the positive x direction (F = F% ). As a boundary condition,
letx(t =0) = x, and x'(t =0) =v_, . Ignore motion in the y & z directions.

Ignoring motion in the y and z directions, we want to solve the one-dimensional
2" order differential equation for x(1).

2
F=d—p=i mv):mi ax = d’x
dt dt dr\ dt dr’
Let’s initially leave it in terms of the velocity.
dv
F=m—
dt

This equation is separable and can be solved by integrating with respect to each

variable subject to the initial conditions.
Fdt =mdv

t v

IF dt = J. mdv

0 Vo

Ft =mv(t)—mv_,

Dividing by m to clean things up and replacing v with dx/dt,

F_dx

—l=—= VxO

m dt
Since this is again separable we repeat the procedure (subject to initial
conditions),

oM

1512 =x(t) —x, —V !

j-ﬁtdt = j-dx - jvxodt
X 0

Thus, we derive Newton’s equation of motion (remember that F/m = a)...

1 F
x(t) = x, +v ot +——1’
2m



