Homework \# 2

Problems

1. Generalize the Galilean transformation of coordinates to motion in three dimensions by showing that $\vec{r}^{\prime}=\vec{r}-\vec{v} t \& t^{\prime}=t$.
2. In a laboratory frame of reference, an observer notes that Newton's $2^{\text {nd }}$ law is valid. (a) Show that it's also valid for an observer moving at constant speed relative to the laboratory frame (we did this in class) \& (b) Show that it is not valid in a reference frame moving past with constant acceleration. This problem is simply SMM Chapter 1, Problems 1 \& 2 combined.
3. What happens to Maxwell's equations under a Galilean transformation? In a stationary reference frame (K) in free space, the scalar field $\varphi(x, y, z, t)$ satisfies the scalar wave equation, $\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}+\frac{\partial^{2} \varphi}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \varphi}{\partial t^{2}}$. Show that the form of the wave equation is not invariant under Galilean transformations.
4. SMM, Chapter 1, Problem 3. A 2000-kg car moving with a speed of $20 \mathrm{~m} / \mathrm{s}$ collides with and sticks to a $1500-\mathrm{kg}$ car at rest at a stop sign. Show that because momentum is conserved in the rest frame, momentum is also conserved in a reference frame moving with a speed of $10 \mathrm{~m} / \mathrm{s}$ in the direction of the moving car.
5. Michelson - Morley experiment. Show that we were justified in keeping only the first term of the binomial expansion when deriving the expected fringe shift. If you recall, Shift $\cong \frac{2 L v^{2}}{\lambda c^{2}}$. In other words, calculate what the fringe shift would be if you kept the next term and compare it to the resolution of the experiment ($\sigma_{\text {Fringe }}=0.01$ fringe). Are we justified?
6. Synchronized clocks are stationed at regular intervals, 1million km apart, along a straight line. When the clock next to you reads 12 noon, what time do you see (assuming you have a really powerful telescope) on the $90^{\text {th }}$ clock down the line?
7. Solve the non-relativistic Newton's equation of motion $\left(\vec{F}=\frac{d \vec{p}}{d t}\right)$ in the case of a constant force in the positive x direction $(\vec{F}=F \hat{x})$. As a boundary condition, let $x(t=0)=x_{0}$ and $x^{\prime}(t=0)=v_{x 0}$. Ignore motion in the $y \& z$ directions.
