
Problems 
1.  (3 points) What is the physical meaning of the normalization condition? 

Answer: Because the particle must be somewhere along the x-axis, the sum of the 

probabilities over all values of x must be 1: 1),( 2 =∫
∞

∞−

dxtxψ . Physically 

speaking, this is simply a statement that the particle exists all the time. Any wave 
function satisfying this equation is said to be normalized.  

 
2. (4 points) Name two observables of a particle and state whether they are 

sharp or fuzzy. 
Answer: An observable is any particle property that can be measured. For 
example, the position, momentum and total energy are all observables. 
Observables can be either fuzzy, where repeated measurements of the quantity 
yield different values (such as position or momentum), or sharp, where repeated 
measurements yield the same value (such as the total energy for stationary 
states). 
 

3. (3 points) Explain the difference between phase and group velocities for a 
wave packet. 
Answer: A localized wave packet is made up of many frequency components. 
Typically, it’s a sum of plane waves having a continuous distribution of 
frequencies. The speed at which a single frequency component travels is called 

the phase velocity and is given by 
k

v phase
ω= . The entire wave packet usually 

travels, as a whole, at a different velocity called the group velocity and given by 

0k
group dk

dv ω= . 

4. (10 points; 2 each) Of the following functions, which are candidates for the 
Schrödinger wave function of an actual physical system? For those that are 
not, state why they fail to qualify. 

 

    
(a) (b) (c) (d) (e) 

 (a) Yes. It’s ok, the requirement is that )(xψ must be finite everywhere. 
(b) Yes. This wave function is still a candidate even though the slope is not 

continuous. The requirement is that 
dx
dψ  be continuous for a finite U(x). This 

choice of wave function just implies that the potential is not finite. 
(c) No. )(xψ must be continuous everywhere. 
(d) Yes. )(xψ can be zero outside of some range (think of the infinite square well). 
(e) No. )(xψ must be finite everywhere but it’s diverging for ∞→x . 



5. (5 points) Consider a particle in a box (a.k.a. the infinite square well). 
Calculate the probability that a particle, in the ground state, will be found in 

the middle half of the well (i.e. ]
4

3,
4

[ LL ). 

The probability density is given by 
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 Numerically, 

818.0=P  
 
 Classically, we expect the particle to spend half its time inside half of the well (i.e. 

equal time in all parts of the well). For the ground state, we see that this is 
considerably larger than ½. If we were to repeat this calculation for the nth state 
we would see that the result approaches the classical value ½ in the limit ∞→n . 

 
6. (8 points; 2 each) Graphically compare the 1st and 2nd bound state of the 

infinite and finite square well by carefully sketching their wave functions in 
the space provided. 

 

 



7. (5 points) Consider an electron bound in a harmonic oscillator, 
22
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xm

m
pEtotal ω+= , with an arbitrary uncertainty a ( ax ~∆ ). Using the 

uncertainty principle, (a) estimate the value of a that minimizes the total 
energy and (b) find this minimum energy and compare it to the exact 
harmonic oscillator ground state energy. 
 
Answer: (a) Letting ax ~∆ , and using the uncertainty principle, we find 

that
a

p
2

~ h∆ . For this general estimation, let’s assume that the uncertainty in 

momentum is on the same scale as the momentum itself, pp ~∆ . And so, we can 
write the total energy for the quantum harmonic oscillator in terms of ‘a’: 
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minimizes the energy, we set 0=
da
dE and solve for mina : 
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 (b) Plugging back into the energy we find that  
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which is the value of the exact ground state energy. 
 
8. (3 points) The curve in the figure is alleged to be the plot of a computer-

calculated wave function for the fifth energy level of a particle in the 
diagrammed one-dimensional potential well. Indicate the way in which the 
plot fails to be qualitatively correct. 

 
The asymmetry in the wave function is correct (the potential is not symmetric), the 
number of nodes is also correct (4 nodes for the 5th bound state), the relative 
wavelengths are also correct (shorter wavelength on the right side where the 
kinetic energy [E-U(x)] is bigger), BUT the relative amplitudes are NOT correct! 
We expect the amplitude to be inversely proportional to KE. So our wave function 
should have higher amplitude on the left side and lower on the right. 



9. (9 points; 3 each) Sketch careful, qualitatively accurate plots (on the space 
provided) for the 1st, 2nd, and 3rd bound state of a 1-D Coulomb potential. In 
your plots, don’t forget to clearly mark the location of the classical turning 
points. Notice that ∞=≤ )0(rV . Important: Check that your wave function 
has the correct symmetry, number of nodes, relative wavelengths, maximum 
values of amplitudes and relative rate of decrease outside the well.  

 

 



10. (14 points) The 2nd bound state (n = 1) wave function of the harmonic 
oscillator is given by 
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(a) (2 points) Carefully sketch a qualitative but accurate plot of )(1 xψ . 
Clearly mark the location of the classical turning points. 
(b) (3 points) Show that the wave function is normalized. 
(c) (6 points) Compute the quantum uncertainty in the position, x∆ , in terms 
of a. 
(d) (3 points) What is >< H ? 
 
Answer: (a) This is a plot of the potential with the 1st bound state shown. The 
classical turning points are defined as the places on the potential where the 
energy of the particle equals the potential energy. 
 

 
 

(b) If the given wave function is normalized, then 1)( 2 =∫
∞
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dxxψ . And so 
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Where we’ve made use of the integral: 
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(c) In order to find the quantum uncertainty in the position, x∆ , we must compute 

22 ><−><=∆ xxx , which is really two separate integrals.  
 
Solving for >< x  first:  
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Notice that the function 3x  is odd and the function 2
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 is even. Their product is 
therefore odd. We see that, just like in the homework problems, we are taking the 
integral of an odd function over all of space. In this case, the integral over the 
negative half-axis exactly cancels that over the positive half-axis. 
 
For the calculation of >< 2x , however, the integrand is even and the two half-
axes contribute equally, giving 
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Where we’ve made use of the integral: 
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And so 
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(d) Asking for the expectation value of the Hamiltonian operator, >< H , is the 

same thing as asking for the energy of the state, which is simply ωh
2
3

1 =E ! 

 
If for some reason, you didn’t recognize this, you can still do the calculation fairly 
easily. 
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Here you needed to recognize that ψ][H is just a short hand notation of the 
Schrödinger equation (i.e. nnn EH ψψ =][ ). 


