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Problem (1.)

(a.) The formal expressions for the center of mass can be found in the textbook.
However, as in the presentation discussing the practice examination, we can
use symmetry arguments to deduce the location is given by

~rCM = 1
2

[
a x̂ + b ŷ + c ẑ

]
(b.) Find the explicit form of the moment of inertia tensor, Ii j.

Ii j =
M
a b c

∫ c

0
dz

∫ b

0
dy

∫ a

0
dx


(
y2 + z2

)
− x y − x z

− x y
(
x2 + z2

)
− y z

− z x − z y
(
x2 + y2

)


= M


1
3
[ b2 + c2 ] − 1

4 a b − 1
4 a c

− 1
4 a b

1
3
[ a2 + c2 ] − 1

4 b c

− 1
4 a c − 1

4 b c
1
3
[ a2 + b2 ]



(c.) The other coordinate system is simply the one where the half the object is
above the new x-y plane and half below. A direct calculation yields

Ii j = M


1
3
[ b2 + 1

4 c
2 ] − 1

4 a b 0

− 1
4 a b

1
3
[ a2 + 1

4 c
2 ] 0

0 0 1
3
[ a2 + b2 ]


which is of the form,

Ii j = M{ a2 + b2 + c2 }

 m11 m12 0
m12 m22 0
0 0 m33


where the m’s can be seen by simple comparison. This is block diagonal and
one principal axis is given by

ê3 =

 0
0
1





and the other two principal axes are found from solving the eigenvalue pro-
blem for

M = M{ a2 + b2 + c2 }
[
m11 m12

m12 m22

]

as a simple 2 × 2 matrix problem. If (w1, w2) is an eigenvector, then[
m11 m12

m12 m22

] [
w1

w2

]
= λ̃

[
w1

w2

]

This leads to the requirement that

(λ̃)2 − (m11 + m22 ) λ̃ +
(
m11m22 − (m12)

2
)

= 0

which implies

λ̃± = 1
2

[
(m11 + m22 )±

√
(m11 + m22 )2 − 4 (m11m22 − (m12)2)

]
Two solutions of this are given by

w1± = − m12

w2± = 1
2

[
(m11 − m22 )∓

√
(m11 + m22 )2 − 4 (m11m22 − (m12)2)

]
thenyield

ê+ =



− m12

1
2

[
(m11 −m22)−

√
(m11 +m22)2 − 4 (m11m22 − (m12)2)

]
0


and

ê− =



− m12

1
2

[
(m11 −m22) +

√
(m11 +m22)2 − 4 (m11m22 − (m12)2)

]
0



Problem (2.)

(a.) The equation of motion for the electron launched vertically upward takes
the form

dvy

d t
= − c

m ( vy )2

2



and we divide by ( vy )2 and find

vy(t) =
V0[

1 + c V0 t
m

]
after performing an integration. A second integral can be performed to find

y(t) = (m
c ) ln

[
1 + c V0 t

m

]

(b.) If we assume the electron is effectively at rest when it reaches a velocity

that is 10−3 of its initial velocity, then we must have
[
1 + c V0 T

m

]
= 103

for the time T when this occurs. At this time, the y-position of the elec-
tron is given by

y(T ) = 3 (m
c ) ln 10

Problem (3.)

(a.) First we can find the direction of the piece of ball just prior to the collision.
Since there are no forces acting on the ball from the time it is thrown until
the collision with the globe, it travels in a straight line with a constant speed.
The displacement vector is thus 1√

3R[ x̂+ ŷ + ẑ] − αRx̂ and the unit vector

describing this direction is

Û =
[ (1 −

√
3α) x̂+ ŷ + ẑ]√

2 + (1 −
√

3α)2

and the total momentum ~P T before the collision must be

~P T = mV Û =
mV [ (1 −

√
3α) x̂+ ŷ + ẑ]√

2 + (1 −
√

3α)2

The momentum of the ball after the collision is given by

~pb = m~vb =
[ mV ( ŷ + ẑ )√

(1− α)2 + 2

]
.
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. The momentum of the globe ~pG must be given by

~pG =
[ mV [ (1 −

√
3α) x̂+ ŷ + ẑ]√

2 + (1 −
√

3α)2

]
−

[ mV ( ŷ + ẑ )√
(1− α)2 + 2

]

=
[ mV [ (1 −

√
3α) x̂+ ŷ + ẑ]√

2 + (1 −
√

3α)2

]
−

[ mV ( ŷ + ẑ )√
(1− α)2 + 2

]
≡ A0 x̂ + B0 ( ŷ + ẑ )

(b.) The angular momentum at the instant before the collision

~LT = ~rC × ~P T =
−
√

3αmV R [ x̂+ ŷ + ẑ] × x̂√
3[ 2 + (1 −

√
3α)2 ]

=
[ −

√
3αmV R√

3[ 2 + (1 −
√

3α)2 ]

]
( ŷ − ẑ ) = C0 ( ŷ − ẑ )

The angular momentum of the ball after the collision is

~Lb = ~rC × ~P b = mV R
[ x̂ × ( ŷ + ẑ )√

3 [ (1− α)2 + 2 ]

]

=
[ mV R√

3 [ (1− α)2 + 2 ]

]
( ŷ − ẑ ) = D0 ( ŷ − ẑ ) .

Conservation of angular momentum implies the angular momentum of the
sphere ~LG is given by

~LG = ~LT − ~Lb =
√

2 [C0 − D0 ] 1√
2 ( ŷ − ẑ )

and using the moment of inertia of the globe

~LG =
2

3
M R2 ~ω =

2

3
M R2 ω ω̂ .

These different expressions are set equal one to the other to find
ω̂ = 1√

2 ( ŷ − ẑ ) and

ω =
3√

2M R2
[C0 − D0 ]
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Problem (4.)

The earth is actually slowing down in its spinning about its axis. Let us model
this by writing

~Ω = Ω0 [ 1 − (
α0

ø0

)t ][ sinλ r̂ − cosλ θ̂ ] ,

where Ω0 = 7.5× 10−5s−1 and r̂, θ̂ and φ̂ are the standard unit vectors of
a spherical coordinate system.

(a.) As was noted in class one day, the actual form of Newton’s Second law for
a rotating frame is given by

m~̈r = ~F + 2m~̇r × ~Ω + m~r × ~̇Ω + m
(
~Ω × ~r

)
× ~Ω

The second term is velocity-dependent and is the “Coriolis Term” which
is to be ignored in our analysis following the text and ~F corresponds to
force of gravity on the surface of the Earth ~F = −mg0 r̂. Since H <<
RE, ~r ∼ RE r̂ which implies

m~̈r = − mg0 r̂ − mΩ0 (
α0

ø0

)RE r̂ × [ sinλ r̂ − cosλ θ̂ ]

+ m (Ω0)
2 [ 1 − (

α0

ø0

)t ]2
(

[ sinλ r̂ − cosλ θ̂] × r̂
)
×

[ sinλ r̂ − cosλ θ̂]

= − mg0 r̂ + mΩ0 (
α0

ø0

)RE cosλ φ̂

+ m (Ω0)
2 [ 1 − (

α0

ø0

)t ]2RE cosλ [ cosλ r̂ + sinλ θ̂]

= − m
[
g0 − (Ω0)

2 [ 1 − (
α0

ø0

)t ]2RE cos
2λ

]
r̂

+ m (Ω0)
2 [ 1 − (

α0

ø0

)t ]2RE cosλ sinλ θ̂

+ mΩ0 (
α0

ø0

)RE cosλ φ̂ = m~geff .

This implies upon using the local x-y-z coordinates

~geff = Ω0 (
α0

ø0

)RE cosλ x̂ − (Ω0)
2RE [ 1 − (

α0

ø0

)t ]2 cosλ sinλ ŷ

−
[
g0 − (Ω0)

2RE [ 1 − (
α0

ø0

)t ]2 cos2λ
]
ẑ .
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d2 x

dt2
= Ω0 (

α0

ø0

)RE cosλ

d2 y

dt2
= − (Ω0)

2RE cosλ sinλ [ 1 − (
α0

ø0

)t ]2

d2 z

dt2
= −

[
g0 − (Ω0)

2RE cos
2λ [ 1 − (

α0

ø0

)t ]2
]

This gives the following equations for the position of the object.

x(t) = 1
2 Ω0 (

α0

ø0

)RE cosλ t
2

y(t) = − RE cosλ sinλ

12
(
Ω0 ø0

α0

)2
{

[ 1 − (
α0

ø0

)t ]4

+ 4 (
α0

ø0

) t − 1
}

z(t) = H − 1
2 g0 t

2

+
RE cos

2λ

12
(
ø0 Ω0

α0

)2
{

[ 1 − (
α0

ø0

)t ]4

+ 4 (
α0

ø0

) t − 1
}

Thus an object that starts at position (0, 0,H) lands at

~rf ≈ Ω0RE [ (
α0

ø0

) cosλ x̂ − (Ω0) cosλ sinλ ŷ ]
[ H
g0

]
.

where we have approximated the time it takes to land by
√

2H/g0 and ne-

glected terms of order (ø0/α0)
2.

Problem (5.)

(a.) Along the equator z = 0 the force ~F given by

~F =
[ f2 [x3 x̂ − x z2 ŷ − 2x y z ẑ ]

(R)3

]
.

is much more simply expressed by

~F =
f2

R3
x3 x̂

and the path is described by (with 0 ≤ φ ≤ π)

~̀(φ) = R
[
cosφ x̂ + sinφ ŷ

]
→ x = R cosφ , y = Rsinφ

d~̀ = Rdφ
[
− sinφ x̂ + cosφ ŷ

]
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This all implies that∫ π

0

~F · d~̀= − f2R
∫ π

0
dφ cos3φ sinφ dφ

= − f2R
∫ 1

−1
du u3 du = 0.

(b.) The shortest path on a sphere is a circle. We need a circle that in-
cludes the points described by the vectors

~ξ1 = R x̂ , ~ξ2 = 1√
3R[ x̂+ ŷ + ẑ] , ~ξ3 = − R x̂ .

We start by finding the normal to the plane that contains these three
vectors. This is found by calculating the cross product between ~ξ1 and
~ξ2 then writing the unit vector N̂ that points along the direction of the
cross product. This vector is given by

N̂ = 1√
2 [− ŷ + ẑ ]

If we cross this vector with x̂, we must get a vector

M̂ = 1√
2 [ ŷ + ẑ ]

that must also lie in the plane along with ~ξ1 and ~ξ2. It must be the
case that the path for which we are looking takes the form,

~̀(ψ) = R
[
cosψ x̂ + sinψ M̂

]
→

R
[
cosψ x̂ + 1√

2sinψ ŷ + 1√
2sinψ ẑ

]
→

d~̀ = Rdψ
[
− sinψ x̂ + 1√

2cosψ ŷ + 1√
2cosψ ẑ

]
x = R cosψ , y = 1√

2Rsinψ , z = 1√
2Rsinψ

Notice that for the path described by ~̀(ψ)

cosψ =
1√
3

→ sinψ =
√

1 − cos2ψ → sinψ =

√
2

3

so that when ψ = tan−1
√

2 we find

~̀(tan−1
√

2) = 1√
3 R

[
x̂ + ŷ + ẑ

]
and this is the point thru this path must pass. Along this path the force,
~F is given by

~F = f2 [ cos3ψ x̂ − 1
2 cosψ sin

2ψ ŷ − cosψ sin2ψ ẑ ] .
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This all implies that∫ π

0

~F · d~̀= − f2R
∫ π

0
dψ

[
cos3ψ sinψ + 3

2
√

2 cos
2ψ sin2ψ

]
= − 3

2
√

2 f2R
∫ π

0
dψ

[
cos2ψ sin2ψ

]
= − 3

8
√

2 f2R
∫ π

0
dψ

[
sin2(2ψ)

]
= − 3

16
√

2 f2R
∫ π

0
dψ

[
1 − cos(4ψ)

]
= − 3 π

16
√

2 f2R
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