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Fall 2005 Final Exam Dec. 16, 2005

This is a OPEN book examination. Read the entire examination before you begin
to work. Be sure to read each problem carefully. Any questions should be directed
to the proctor. There is an hour & fifty minute time limit. Show all of your work.
Use the backs of pages if necessary or request an extra booklet. Be sure to complete
the front page of the examination booklet including your name. Show all calculations
needed to support your answers, where necessary. Most importantly, THINK before
you start to calculate.

Problem (1.)

(a.) Using the inverse of the radial distance, (i.e. r = u−1) and θ as the indepen-
dent variable, leads to

K =
1

2
m

{
(
d r

dθ
)2 + r2

}
(
d θ

dt
)2 , L = m r2 d θ

dt
,

K =
1

2
m

{
1

u4
(
d u

dθ
)2 +

1

u2

}
(
d θ

dt
)2 , L = m u−2 d θ

dt
,

and thus
K

L2
=

1

2 m

{
(
d u

dθ
)2 + u2

}

This equation then implies

1

2 m

{
(
d u

dθ
)2 + u2

}
= A0 exp[ 2 θ ]

Since the right hand side of the equation involves an exponential, it is natural
to make the ansatz

u(θ) = α0 exp[ θ ]

where α0 is a constant. The equation will be solved it α0 =
√

m A0



(b.) From the solution above

r(θ) =
1√

m A0

exp[− θ ]

If the angular momentum is given by L0exp[−2(t/τ 0) ] then it must be the case
that

L0 exp[−2(t/τ 0) ] =
{

1

2 A0

}
exp[− 2 θ ] (

d θ

dt
)

exp[−2(t/τ 0) ]d t =
{

1

2 A0 L0

}
exp[− 2 θ ] d θ

− (τ 0/2)d { exp[−2(t/τ 0) ]} = − d

{
exp[− 2 θ ]

4 A0 L0

}

d { exp[−2(t/τ 0) ]} =
{

1

2 τ 0 A0 L0

}
d { exp[− 2 θ ] }∫

d { exp[−2(t/τ 0) ]} =
{

1

2 τ 0 A0 L0

} ∫
d { exp[− 2 θ ] }

exp[−2(t/τ 0) ] − 1 =
{

1

2 τ 0 A0 L0

}
{ exp[− 2 θ ] − exp[− 2 θ0 ] }

To make further progress, it is useful to choose θ0 such that

exp[ θ ] =
1√

2 τ 0 A0 L0

exp[ (t/τ 0) ]

which leads to

θ(t) = (t/τ 0) − 1
2 ln[2 τ 0 A0 L0 ]

r(t) =

 √
2 τ 0 L0

m

 exp[− (t/τ 0) ]

Now the if there is a potential U(r, θ) it must satisfy

− (
∂ U

∂r
) = m

[
d2 r

dt2
− r (

d θ

dt
)2

]

and when the expressions for r(t) and θ(t) are used this implies

(
∂ U

∂r
) = 0
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This implies that U(r, θ) = U(θ). Next there is the equation

− (
∂ U

∂θ
) = m

d

dt

[
r2 d θ

dt

]

=
m

τ 0

d

dt

[
r2

]
=

2 m

τ 0

r

[
d r

dt

]

=
2 m

τ 0

[
1√

m A0

exp[− θ ]

]
d

dt

[
1√

m A0

exp[− θ ]

]

=
[

2

τ 0 A0

]
exp[− θ ]

d

dt
[ exp[− θ ] ]

= −
[

2

(τ 0)2 A0

]
exp[− 2 θ ]

and this has the solution

U(r, θ) = −
[

1

(τ 0)2 A0

]
exp[− 2 θ ]

Problem (2.)

(a.) To find the location of the center of mass, we first find the mass/length for each
wire. The mass of each is Mw and the radius of each semi-circle is r0 = 4. So
that mass/length = Mw/πr0. This means that we have using cylindrical coordi-
nates ∫

d V µ(~r) =
∫

dρ ρdφ dz µ(~r) =
∫ π

0
d φ Mw

π .

where µ(~r) is the mass per unit volume. So the center of mass for the wire in
the x-y plane is given by

~R(1)
cm = 1

Mw

∫
dρ ρdφ dz ~r µ(~r)

~R(1)
cm = 1

Mw

[
Mw

π

] ∫ π

0
dφ ~r =

[ 1
π

] ∫ π

0
dφ ~r

On the first piece of wire, we have

~r = r0 [ cosφ x̂ + sinφ ŷ ]

so that
~R(1)

cm =
[

r0

π

] ∫ π

0
dφ [ cosφ x̂ + sinφ ŷ ]

=
[

r0

π

]
ŷ

∫ π

0
dφ [ sinφ ] =

[ 2
π

]
r0 ŷ
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and thus for the second wire

~R(2)
cm =

[ 2
π

]
r0 ẑ

Finally to find the center of mass of the system

~R(Tot)
cm =

 Mw
~R(1)

cm + Mw
~R(2)

cm

2Mw

 = 1
2

[
~R(1)

cm + ~R(2)
cm

]
=

[ 1
π

]
r0 [ ŷ + ẑ ]

(b.) To find the moment of inertia tensor for the system of wire we start
with the definition of the moment of inertia tensor for the first
wire

I(1)
i j =

∫
dρ ρdφ dz µ(~r)

[
|~r|2δi j − ri rj

]
=

∫ π

0
d φ Mw

π

[
|~r|2δi j − ri rj

]

=
[
Mw

π

] ∫ π

0
d φ

 y2 − x y 0
− y x x2 0

0 0 x2 + y2



=
[
Mw r2

0

π

] ∫ π

0
d φ

 sin2φ − cosφ sinφ 0
− sinφ cosφ cos2φ 0

0 0 1



= Mw r2
0


1
2 0 0

0 1
2 0

0 0 1

 .

This implies for the second wire

I(2)
i j = Mw r2

0


1
2 0 0

0 1 0

0 0 1
2

 .

and thus for the total moment

I(Tot)
i j = I(1)

i j + I(2)
i j = 1

2Mw r2
0

 2 0 0
0 3 0
0 0 3

 .

(c.) The rotational kinetic energy of the wire system is thus

TRot = 1
4 Mw r2

0

[
2(ωx)

2 + 3 (ωy)
2 + 3 (ωz)

2
]
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Problem (3.)

Each captain states in their frame of reference the frequency of their running light is
430 trillion Hz. The data of the Vulcan scientist reads

Table 1: Sensor Data

Mass Frequency Length
Enterprise 190 million kg 680 trillion Hz 1000 m
Warbird 200 million kg 720 trillion Hz 1250 m

(a.) If the scientist observed speed of the approach vE of the Enterprise to Vulcan
and the speed of the approach vW of the Warbird to Vulcan, she could deduce
the speed of approach of the Warbird observed from the deck of the Enter-
prise.

vA =

[
vE + vW

1 + vE vW

c2

]
, βA = vA

c

The formulae for the relativistic Doppler Effect is given by

f ′ = f

√
1 ± β

1 ∓ β

If we define the ratio f/f ′ = F this leads to

β =

∣∣∣∣∣ 1 − F 2

1 + F 2

∣∣∣∣∣ =

∣∣∣∣∣ (f ′)2 − f 2

(f ′)2 + f 2

∣∣∣∣∣
FE = (68/43) , FW = (72/43) ,

vE = c

∣∣∣∣∣ (43)2 − (68)2

(43)2 + (68)2

∣∣∣∣∣ , βE = vE

c

vW = c

∣∣∣∣∣ (43)2 − (72)2

(43)2 + (72)2

∣∣∣∣∣ , βW = vW

c

(b.) The Vulcan scientist is not in the rest from of the Enterprise, so the mass
she observes ( ME )′ = 190 × 106 kg is not the rest mass of the ship M0

E. The
relation between these is

M0
E = ( ME )′

√
1 − (βE)2

The mass ( ME )′′ observed from the deck of the Warbird is related to the
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rest mass of the ship M0
E via

( ME )′′ =
M0

E√
1 − (βA)2

= (ME)′

√√√√ 1 − (βE)2

1 − (βA)2

Problem (4.)

(a.) To find the acceleration and velocity vectors of the airplane we see

~V p = − ρ0 ω0 [ sin(ω0 t)x̂ + cos(ω0 t)ŷ ] − v0 ẑ

~Ap = − ρ0 (ω0)
2 [ cos(ω0 t)x̂ − sin(ω0 t)ŷ ]

(b.) The airplane lands when ẑ · ~Rp = 0 and this occurs at the time t = H0/v0.
If n denotes the number of complete rotations and f the fractional part
then

n + f = 1
2π

[
ω0 H0

v0

]

(c.) The orthogonal unit vectors for your ‘x-direction,’ ‘y-direction’ and ‘z-direc-
tion’ may be denoted by ê1, ê2 and ê3. For an observer on the ground these
are written as

ê1 = −

ρ0 ω0 [ sin(ω0 t)x̂ + cos(ω0 t)ŷ ] + v0 ẑ√
(ρ0 ω0)2 + (v0)2


ê2 = [ cos(ω0 t)x̂ − sin(ω0 t)ŷ ]

ê3 =

− v0 [ sin(ω0 t)x̂ + cos(ω0 t)ŷ ] + ρ0 ω0 ẑ√
(ρ0 ω0)2 + (v0)2


It is convenient to define ϕ0 by

tanϕ0 =

{
v0

ρ0 ω0

}

so that

ê1 = − cosϕ0 ω0 [ sin(ω0 t)x̂ + cos(ω0 t)ŷ ] − sinϕ0 ẑ

ê2 = [ cos(ω0 t)x̂ − sin(ω0 t)ŷ ]
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ê3 = − sinϕ0 ω0 [ sin(ω0 t)x̂ + cos(ω0 t)ŷ ] + cosϕ0 ẑ

(d.) To write Newton’s Second Law in your frame of reference, it is important to note

d

dt
ê1 = − ω0 cosϕ0 ê2

d

dt
ê2 = ω0 [ cosϕ0 ê1 + sinϕ0 ê3 ]

d

dt
ê3 = − ω0 sinϕ0 ê2

The position vector for an object in your reference frame takes the form

~ξ = U ê1 + V ê2 + W ê3

for some coordinates U, V, W . If the object has a mass of M you write

~F = M d2

dt2
~ξ = M d

dt

d

dt
~ξ

= Md

dt

{
dU

dt
ê1 +

dV

dt
ê2 +

dW

dt
ê3

}

− Md

dt
{U ω0 cosϕ0 ê2}

+ Md

dt
{V ω0 [ cosϕ0 ê1 + sinϕ0 ê3 ] }

− Md

dt
{W ω0 sinϕ0 ê2}

~F = M
{

d2U

dt2
ê1 +

d2V

dt2
ê2 +

d2W

dt2
ê3

}

− 2M
{

dU

dt
ω0 cosϕ0 ê2

}

+ 2M
{

dV

dt
ω0 [ cosϕ0 ê1 + sinϕ0 ê3 ]

}

− 2M
{

dW

dt
ω0 sinϕ0 ê2

}
− M (ω0)

2 {U cosϕ0 + W sinϕ0 } [ cosϕ0 ê1 + sinϕ0 ê3 ]

− M (ω0)
2 V ê2

Problem (5.)
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A bead of mass M is constrained to slide along the frictionless surface of a sphere
of radius R0. There is a potential energy associated with the position of the given by

U(~r) = M A0 [ `1 x + `2 y + `3 z ]

(a.) To find the Lagrangian for this system we note spherical coordinate are
perfect to use

x = R0 cosφ sinθ , y = R0 sinφ sinθ , z = R0 cosθ .

so that

T = 1
2 M (R0)

2

[
(
d θ

dt
)2 + sin2θ (

d φ

dt
)2

]
U = M A0 R0[ `1 cosφ sinθ + `2 sinφ sinθ + `3 cosθ ]

L = T − U

(b.) For the equation of motion of this system via the Euler-Lagrange equations
we find[

∂ L

∂(θ̇)

]
= M (R0)

2 (θ̇) ,

[
∂ L

∂(φ̇)

]
= M (R0)

2 sin2θ (φ̇) ,

[
∂ L

∂θ

]
= M (R0)

2 sinθ cosθ(θ̇)2

−M A0 R0[ `1 cosφ cosθ + `2 sinφ cosθ − `3 sinθ ] ,[
∂ L

∂φ

]
= − M A0 R0 sinθ [ − `1 sinφ + `2 cosφ ]

d

dt

[
∂ L

∂(θ̇)

]
− ∂ L

∂θ
=

d

dt

[
M (R0)

2(θ̇)
]
− M (R0)

2 sinθ cosθ(θ̇)2

+ M A0 R0[ `1 cosφ cosθ + `2 sinφ cosθ − `3 sinθ ] = 0 ,

d

dt

[
∂ L

∂(φ̇)

]
− ∂ L

∂φ
=

d

dt

[
M (R0)

2 sin2θ (φ̇)
]

+ M A0 R0 sinθ [ − `1 sinφ + `2 cosφ ] = 0 .

(c.) To find the Hamiltonian of this system, we first note.

pθ =

[
∂ L

∂(θ̇)

]
= M (R0)

2 (θ̇) ,

pφ =

[
∂ L

∂(φ̇)

]
= M (R0)

2 sin2θ (φ̇) ,
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and thus

H = pθ (θ̇) + pφ (φ̇) − L

=

[
(pθ)

2

2 M (R0)2

]
+

[
(pφ)

2

2 M (R0)2 sin2θ

]
+ M A0 R0[ `1 cosφ sinθ + `2 sinφ sinθ + `3 cosθ ]

Problem (6.)

Given two particles of mass M1 and M2 with coordinates (x1, y1, z1) and (x2, y2, z2)
are constrained to the surface of the same sphere, we can introduce spherical coor-
dinates for both and use angular coordinates for both. The potential energy of the
new system is given by

UTotal = U(~r1) + U(~r2) +
1

2
kA R2

0 (6θ1 − 5θ2)
2

+
1

2
kB R2

0 (θ1)
2 +

1

2
kC R2

0 (θ2)
2

(a.) What is the form of Newton’s second law?

d

dt

[
M (R0)

2(θ̇1)
]

= M (R0)
2 sinθ1 cosθ1(θ̇1)

2

− M A0 R0[ `1 cosφ1 cosθ1 + `2 sinφ1 cosθ1 − `3 sinθ1 ]

− 6 kA R2
0 (6θ1 − 5θ2) − kB R2

0 (θ1)

d

dt

[
M (R0)

2 sin2θ1 (φ̇1)
]

= − M A0 R0 sinθ1 [ − `1 sinφ1 + `2 cosφ1 ] .

d

dt

[
M (R0)

2(θ̇2)
]

= M (R0)
2 sinθ2 cosθ2(θ̇2)

2

− M A0 R0[ `1 cosφ2 cosθ2 + `2 sinφ2 cosθ2 − `3 sinθ2 ]

+ 5 kA R2
0 (6θ1 − 5θ2) − kC R2

0 (θ2) ,

d

dt

[
M (R0)

2 sin2θ2 (φ̇2)
]

= − M A0 R0 sinθ2 [ − `1 sinφ2 + `2 cosφ2 ] .

(b.) To describe the equation of motion for this including a discussion of
normal modes, eigenmodes and eigenfrequencies. it is first important
to look at the potential in problem five. This potential implies a force

9



given by

~F = − M A0 [ `1 x̂ + `2 ŷ + `3 ẑ ]

= − M A0 |`|2
 [ `1 x̂ + `2 ŷ + `3 ẑ ]√

(`1)2 + (`2)2 + (`3)2
,


= − M A0 |`|2 n̂

where |`|2 is defined by
√

(`1)2 + (`2)2 + (`3)2 . This is a constant

force with magnitude of M A0 |`|2 directed along the direction of n̂. But
this is exactly like the force of gravity! It follows that the angle µ with
which the force meets with the z-axis is given by

cosµ = ẑ · n̂ =

 `3√
(`1)2 + (`2)2 + (`3)2

,


This implies that we can use generalized coordinates to simplify the problem

β1 = θ1 − µ , β2 = θ2 − µ

and the Lagrangian for the system using the new coordinates takes the form

L = 1
2 M (R0)

2

[
(
d β1

dt
)2 + sin2(β1 + µ) (

d φ1

dt
)2

]

+ 1
2 M (R0)

2

[
(
d β2

dt
)2 + sin2(β2 + µ) (

d φ2

dt
)2

]
− M A0 R0 |`|2 [ cosβ1 + cosβ2 ]

− 1

2
kA R2

0 (6β1 − 5β2 + µ)2

− 1

2
kB R2

0 (β1 + µ)2 − 1

2
kC R2

0 (β2 + µ)2

Now the first benefit of the coordinate change is apparent. The potential is
independent of φ1 and φ2! To make further progress it is useful to make
the small angle approximation.

L ≈ 1
2 M (R0)

2

[
(
d β1

dt
)2 + sin2(µ) (

d φ1

dt
)2

]

+ 1
2 M (R0)

2

[
(
d β2

dt
)2 + sin2(µ) (

d φ2

dt
)2

]

− M A0 R0 |`|2 [ 2 − 1
2 (β1)

2 − 1
2 (β2)

2 ]

− 1

2
kA R2

0 (6β1 − 5β2 + µ)2

− 1

2
kB R2

0 (β1 + µ)2 − 1

2
kC R2

0 (β2 + µ)2

10



which makes it clear that only the β-angles are involved in the normal modes.
The equations of motion for these takes the form

d

dt

[
M (R0)

2 (
d β1

dt
)

]
= − M A0 R0 |`|2 β1 − 6 kA R2

0 (6β1 − 5β2 + µ)

− kB R2
0 (β1 + µ)

d

dt

[
M (R0)

2 (
d β2

dt
)

]
= − M A0 R0 |`|2 β2 + 5 kA R2

0 (6β1 − 5β2 + µ)

− kC R2
0 (β2 + µ)

or more simply

d

dt

[
d β1

dt

]
= − A0 |`|2

R0
β1 − 6 kA

M (6β1 − 5β2 + µ)

− kB

M (β1 + µ)

d

dt

[
d β2

dt

]
= − A0 |`|2

R0
β2 + 5 kA

M (6β1 − 5β2 + µ)

− kC

M (β2 + µ)

and after further simplification

d2 β1

dt2
= −

[
A0 |`|2

R0
+

( 36 kA + kB

M

) ]
β1 + 30kA

M β2

−
( 6 kA + kB

M

)
kB

M µ

d2 β2

dt2
= 30kA

M β1 −
[

A0 |`|2
R0

+
( 25 kA + kC

M

) ]
β1

−
( 5 kA + kC

M

)
kB

M µ

The terms that are independent of the β’s can be eliminated via a redefinition.
Now it is convenient to define three frequencies

ΩA =

√
30kA

M ,

ΩAB =

√
36 kA + kB

M +
A0 |`|2

R0
,

ΩAC =

√
25 kA + kC

M +
A0 |`|2

R0
,

11



This leads to the eigenvalue condition[
(ω)2 − (ΩAB)2

] [
(ω)2 − (ΩAC)2

]
− (ΩA)4 = 0

(ω)4 −
[
(ΩAB)2 + (ΩAC)2

]
(ω)2 + (ΩAB)2 (ΩAC)2 − (ΩA)4 = 0

(ω)4 − b (ω)2 − c = 0

(ω)2 = 1
2

[
b ±

√
b2 + 4 c

]
(ω)2 = 1

2

[
(ΩAB)2 + (ΩAC)2

]
± 1

2

√
[ (ΩAB)2 − (ΩAC)2 ]2 + 4 (ΩA)4

and this is the standard two coupled oscillator system so the eigenvectors are

~E− =

[
1
1

]
, ~E+ =

[
1
− 1

]
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