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PHYSICS 410 Prof. S. J. Gates
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This is a OPEN book examination. Read the entire examination before you begin
to work. Be sure to read each problem carefully. Any questions should be directed
to the proctor. There is an hour & fifty minute time limit. Show all of your work.
Use the backs of pages if necessary or request an extra booklet. Be sure to complete
the front page of the examination booklet including your name. Show all calculations
needed to support your answers, where necessary. Most importantly, THINK before
you start to calculate.

Problem (1.)

(a.) Using the inverse of the radial distance, (i.e. 7 = u~') and 6 as the indepen-
dent variable, leads to
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and thus
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This equation then implies
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Since the right hand side of the equation involves an exponential, it is natural
to make the ansatz
u(f) = ag expl]

where «q is a constant. The equation will be solved it ag = v/ m Ag



(b.) From the solution above

(0) = = car[ 0]
If the angular momentum is given by Loexp|—2(t/7¢) ]| then it must be the case
that
Lo exp[—2(t/0)] = { 2;0 } exp[—20] (Cflf)
exp|—2(t/1o)|dt = { QAJLO } exp[—20]do
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To make further progress, it is useful to choose 6y such that

1

exp[d] = W%ﬂ (t/70)]

which leads to

0(t) = (t/70) — 3 In[279Ag Lo]

) = [\/27;;“ cap|~ (t/70)]

Now the if there is a potential U(r, ) it must satisfy

-G = m |G -G

and when the expressions for r(¢) and 0(t) are used this implies
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This implies that U(r, 8
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= U(#). Next there is the equation
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and this has the solution
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Ur,0) = — | ————| exp[—29
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Problem (2.)

(a.) To find the location of the center of mass, we first find the mass/length for each
wire. The mass of each is M, and the radius of each semi-circle is ro = 4. So
that mass/length = M,,/mry. This means that we have using cylindrical coordi-
nates

/dV,uF /dppdgbdzu / do = M,

where p(7) is the mass per unit volume. So the center of mass for the wire in
the z-y plane is given by

B = 3 [ dppdodz 7 ()
) _ L My [T 1] [T
RO = o {W}/Odgbr— [W}/Odm

On the first piece of wire, we have

—

7 = 19 [cos¢T + singy]|

so that .
RO = %0 / do [cospT + singy]
= %0 /dgf) [sing] = [%}Tog
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and thus for the second wire

Finally to find the center of mass of the system

M, RY + M,R?

R’(Tot) —
cm oM,

= [%}ro 7 + Z]

(b.) To find the moment of inertia tensor for the system of wire we start
with the definition of the moment of inertia tensor for the first
wire

70 = [ dppdodz p(7) |76 — rir]

— /()Wd¢]\ﬁlj[|ﬂ25zj — T'Z'Tj}

2
. y — Ty 0
= [%} / do —yx x? 0
0 0 0 % + 32
M2l T sin?g — cospsing 0
— {;’;7’0]/ do — sing coso cos?¢ 0
0 0 0 1
5 00
= Msr5| 0 1 0
0 0 1
This implies for the second wire
5 0 0
79 = Myr2| 0 1 0
1
0 0 3
and thus for the total moment
0 0
70 = 10 + 7% = IM,2 | 0 3 0
0o o0 3

(c.) The rotational kinetic energy of the wire system is thus
Tro = 5 Murd [2(we)? + 3(w,)* + 3(w.)?]
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Problem (3.)

Each captain states in their frame of reference the frequency of their running light is
430 trillion Hz. The data of the Vulcan scientist reads

Table 1: Sensor Data

Mass Frequency Length
190 million kg | 680 trillion Hz | 1000 m
200 million kg | 720 trillion Hz | 1250 m

Enterprise
Warbird

(a.) If the scientist observed speed of the approach vg of the Enterprise to Vulcan
and the speed of the approach vy, of the Warbird to Vulcan, she could deduce

the speed of approach of the Warbird observed from the deck of the Enter-

VE + vw VA
VAo = , Ba =4

VE U
1+072W

prise. l

The formulae for the relativistic Doppler Effect is given by

;L 1L+ 3
=17 1 F 7

If we define the ratio f/f’ = F this leads to

ﬁ _ | 1 — F2 ‘ (f/)Q _ f2
1 + F2 (f/)Q + f?
Fp = (68/43) , Fy = (72/43) |
o, (43)2 — (68)2 5y —
B (432 + (682 | * P T«
o, (43)2 — (72)? P—
W (432 + (722 | "7 c

(b.) The Vulcan scientist is not in the rest from of the Enterprise, so the mass
she observes (Mg ) = 190 x 10° kg is not the rest mass of the ship M. The

relation between these is

My = (Mg) 1 — (Bg)?

The mass ( Mg )" observed from the deck of the Warbird is related to the



rest mass of the ship MY via

(ME)” _ "B

Problem (4.)

(a.) To find the acceleration and velocity vectors of the airplane we see

Vo= = powo [sin(wot) + cos(wot)j] — voZ

!

A, = — po (wo)? [cos(wot)T — sin(wot)7]

(b.) The airplane lands when 2 - ﬁp = 0 and this occurs at the time t = H/vy.
If n denotes the number of complete rotations and f the fractional part
then

1 [woHo ]
n —+ = 5=
f 2 [ Vo
(c.) The orthogonal unit vectors for your ‘z-direction,” ‘y-direction” and ‘z-direc-
tion” may be denoted by é1, é5 and é3. For an observer on the ground these
are written as

5 = {powo [sin(wot)T + cos(wot)y] + vo 2}
L= —

\/(Powo)2 + (vo)?
éy = [cos(wot)T — sin(wot)y]

s = {—”0 [sin(eo )7 + costwnt)7) + posz}
\/(Powo)2 + (v9)?

It is convenient to define ¢y by

{ Vo }
ta/n@o ==
Po Wo

so that
é1 = —cospowy [sin(wot)T + cos(wot)y] — singpyz
ey = [cos(wot)T — sin(wotl)y]
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é3 = —singowy [sin(wot)T + cos(wot)y] + cospyz

(d.) To write Newton’s Second Law in your frame of reference, it is important to note

d . R

—61 = — wycosypyé

7 0 Yo €2

d . . . .
62 = wo [cospgé1 + singg és]
d . ) .

—63 = — Wy Singgé

P 0 ¥o €2

The position vector for an object in your reference frame takes the form

E=Ué + Ve, + Wes

for some coordinates U, V, W. If the object has a mass of M you write

4 &2 - d d -
F—M@—Maai’
oyt ﬂé+ﬂé+ﬂé
A dt dt ? dt °

d
- /\/l% {Uwqcospg és}

d
+ M% {Vwy [cospoér + singpés]}

d
- M% {WWO SinQOO ég}

. U . 2V . W
F = M { a2 er + di2 €2 + 7dt2 63}
dUu .

- 2M {dtwocosgooeg}

dv
+ 2M {dtwo [cospgér + singpoég]}

dt
— M (wo)? {Ucospy + W singg } [cospgés + singgés]
- M (W0)2 Vég

- 2M {dvvwosmcpoég}

Problem (5.)




A bead of mass M is constrained to slide along the frictionless surface of a sphere
of radius Ry. There is a potential energy associated with the position of the given by

U) = MAy[lix + by + l32]

(a.) To find the Lagrangian for this system we note spherical coordinate are
perfect to use

r = Rocospsind , y = Rosingsind , z = Rgycost .

so that
_ 1 2 d 2 . 9 dﬁ 2
T = 5M(Ry) [(dt) -+ sm&(dt)
U = M Ay Ro| {1 cosp sinf + Ly sing sin + {3 cost |
L=T - U

(b.) For the equation of motion of this system via the Euler-Lagrange equations

we find
oLy _ 2 (4 oL} _ 2 20 (d
[a(é)] — MR () . [8(@] — M (R sin®0(9) |
[aag] = M (Ry)? sinf cosf(0)>
— M Ay Ry 01 cosp cos® + Ly sing cosd — L3sinf | |
[085] = — MAgRysinf [ — {1 sing + {5cos¢ |

d[oL oL
o]~ w
g | M (RoP(0) | — M (Ro)* sinf cost(9)?

+ M Ay Ro[ ¢4 cospcost + lysingcosd — l3sinf ] = 0
d '8L] 0L
#low| ~ %

— 'M(RO)Q sin’6 ((b)] + M AgRysinf | — lysing + lycosp] = 0 .

Y

(c.) To find the Hamiltonian of this system, we first note.

b = [g(j)] — MR () |

b= || = i)
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and thus

H=py(0) + ps(¢) — L

[ (ps)? ] +[ (Ps)*
2 M (Ro)? 2 M (Ro)? sin?0

+ M A Ro[ 41 cosp sinf + {5 sing sinf) + {3 cost |

Problem (6.)

Given two particles of mass M; and M, with coordinates (z1, y1, 21) and (22, ya, 22)
are constrained to the surface of the same sphere, we can introduce spherical coor-
dinates for both and use angular coordinates for both. The potential energy of the

new system is given by
. . 1
UTotal = U( 1) + U(T2> + ikA R20 (691 — 592)2

1 1
+ 51@3320 (0,)* + 51@320 (65)?

(a.) What is the form of Newton’s second law?

ccllt [M(Ro)2(91)] = M (Ry)* sinb cosfy(61)°

— M Ay Ry[ 1 cospy costy + {y singy cosfy — {3 sinb; |
— 6ky R% (60, — 505) — kg R% (0)

d .
% [M (R0)2 sm291 (¢1)} = — MAO RO sinel [ — gl Sin¢1 + 62 COS(bl ]

fzi [ M (Ro)*(82)] = M (Ro)” sinf; costa(6,)”

— M Ag Ry[ 1 cospg cosly + Uy singy cosly — L3 sinby |
+ 5ka R% (60, — 505) — ke R% (6s)

d .
% [M (R0)2 87;71202 <¢2):| = — MAO RO sin92 [ — gl Sin¢2 + 62 COS¢2 ]

(b.) To describe the equation of motion for this including a discussion of
normal modes, eigenmodes and eigenfrequencies. it is first important
to look at the potential in problem five. This potential implies a force



given by

F = — MA i3 + by + l33]
_ —MAQ|E|2|: [€1$+€2y+€32] ]
V)2 + ()2 + (6)?

= — MA|fn

where |¢]? is defined by \/(61)2 + (€2)? 4+ (¢5)? . This is a constant
force with magnitude of M Ay |¢)* directed along the direction of 7. But
this is exactly like the force of gravity! It follows that the angle p with
which the force meets with the z-axis is given by

VO + (L2 + (&)
This implies that we can use generalized coordinates to simplify the problem

i =0 —pu , B2 =10 —p

cospy = zZ-n =

and the Lagrangian for the system using the new coordinates takes the form

£ B R | (G s+ ) (|

— M Ay Ry [€)* [cosB1 + cosf3a]
1
= Ska R (661 — 582 + p)?
1 1
- ikB R? (B1 + N)Q - 5160 R? (B2 + H)Q

Now the first benefit of the coordinate change is apparent. The potential is
independent of ¢; and ¢3! To make further progress it is useful to make
the small angle approximation.

as

L2 sin () (

a5 a9y,
dt dt

— MAR |12 — 3(81)? — (52)?]
— SkaR% (661 — 50 + )’

1 1
- ikB R? (B1 + ,u)2 - ikc R? (B2 + ,u)2
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which makes it clear that only the -angles are involved in the normal modes.
The equations of motion for these takes the form

d [ d ]

% M(R0)2 (CZI> = — MAO RO |€|2ﬁl — 6k'A R20 (6ﬂ1 — 552 + M)
— kg R% (81 + )

d [ 2 dﬂ2 ] o 2 2

T M (Ro) (W) = — MAyRy|l)* B2 + 5kaR% (681 — 502 + )

— ke R20 (B2 + p)

or more simply

d _dﬁl- o AOM' kA

AR I R R
_%(514—#)

d [dps] Ag |02 k

%W :—T052+5MA<661—552+M)

- %(52-{—#)

and after further simplification

d? B Ao |0)? 36 ka +kp 30k,
= = TR () s+ s
6kstk
- () 8y
d? 3 30k 4 Ao |0 25ka+ ke
ol 51—{}30 +< i )}ﬁl
5katke\ k
_< B} C)HB”

The terms that are independent of the ’s can be eliminated via a redefinition.
Now it is convenient to define three frequencies

o 30k 4
Qa =4/ i

_ 36kA+kB Ao €2
QAB - \/ + Ry )

25ka +k Ao |02
QAC - \/ ?M_F = + (}40| )

11



This leads to the eigenvalue condition

[(WQ - (QAB)Q} [(W)2 - (QAC)Q} — Q) =0

@" = [@ap) + )] @ + (Qap)* (o) — () = 0
(W?* = bw)? —c=0

(w)? = % [b + Vb2 + 40}

@2 = 3 [@an)? + (Qac)?] +5V[(Qun)? — el + ()"

and this is the standard two coupled oscillator system so the eigenvectors are

e (1] e[ 2]
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