Phys 410 - Homework \#6

All problems from Taylor.

1) 13.5
2) 13.13
3) 13.27
4) 13.28
5) 13.18 part (a) only. A few comments:
a. For background, read Taylor section 7.9.
b. A is the vector potential; the magnetic field (\mathbf{B}) is derived from the vector potential by taking its curl: $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$.
c. You should derive the Hamiltonian by applying the definition given in Taylor's equation 13.22. The sum will be over the three spatial dimensions ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).
d. To get the quantum mechanical Hamiltonian for a charged particle in a magnetic field, we take inspiration from the classical Hamiltonian that you derive in this problem and substitute $\boldsymbol{p} \rightarrow \frac{\hbar}{i} \boldsymbol{\nabla}$ to find:

$$
\widehat{H}=\frac{1}{2 m}\left(\frac{h}{i} \boldsymbol{\nabla}-q \boldsymbol{A}\right)^{2}+q V
$$

Comparison with experiment demonstrates that this is, in fact, the correct Hamiltonian operator for this quantum system. See also Griffiths Introduction to Quantum Mechanics, $2^{\text {nd }}$ edition, Problems 4.59 to 4.61.

