Phys 410 - Homework \#5

Numbered problems are from Taylor.

1) Taylor 6.1 (3 pts)
2) Taylor 6.16 (3 pts)
3) A minimum in the action, or a saddle point? (9 pts total).
a) Write down the Lagrangian for a simple harmonic oscillator (mass on a spring) without drag forces in terms of x, x-dot, m , and k . Let $\mathrm{x}_{0}(\mathrm{t})$ denote a true path of the oscillator. We now consider variations on this path of the form $\mathrm{x}_{0}(\mathrm{t})+\xi(\mathrm{t})$, where $\xi(\mathrm{t})$ goes to zero at $t=0$ and $t=t_{1}$. If $S[\xi]$ represents the action for the variation ξ, show that

$$
S[\xi]=\int_{0}^{t 1}\left(\frac{m}{2}\left(\dot{x}_{0}^{2}+\dot{\xi}^{2}\right)-\frac{k}{2}\left(x_{0}^{2}+\xi^{2}\right)\right) d t
$$

Hint: you will have cross terms involving x_{0}, ξ, and their first time derivatives. Use integration by parts and the fact that x_{0} satisfies the equation of motion to eliminate these terms.
b) Consider whether the variation $\xi(\mathrm{t})$ increases or decreases the action in the neighborhood of $\mathrm{x}_{0}(\mathrm{t})$. Let $\mathrm{S}_{0}=\mathrm{S}[\xi=0]$, the action for the true path, and let $\Delta \mathrm{S}=\mathrm{S}[\xi]$ $-\mathrm{S}_{0}$, so that $\Delta \mathrm{S}$ is the change in the action due to variation $\xi(\mathrm{t})$. Then we have

$$
\Delta S=S[\xi]-S_{0}=\frac{1}{2} \int_{0}^{t 1}\left(m \dot{\xi}^{2}-k \xi^{2}\right) d t
$$

Let's choose a simple triangle function for the variation:

$$
\xi(t)=\left\{\begin{array}{cl}
\frac{\varepsilon t}{t_{1}}, & 0 \leq t \leq \frac{t_{1}}{2} \\
\varepsilon\left(1-\frac{t}{t_{1}}\right), & \frac{t_{1}}{2} \leq t \leq t_{1}
\end{array}\right.
$$

Find the condition for t_{1} under which $\Delta \mathrm{S}$ is negative (where the variation has decreased the action), and compare this value of t_{1} to the full period of the oscillator. Remark: Since the triangle function variation can decrease the action for certain values of t 1 , this shows that the true path $\mathrm{x}_{0}(\mathrm{t})$ can be a saddle point in the (not a minimum).
c) Repeat part (b) for a variation of the type $\xi(t)=\varepsilon \sin \left(\pi t / t_{1}\right)$

