Phys 410 - Homework \#3

All numbered problems from Taylor.

1) 5.13 (3 pts)
2) 5.26 (3 pts)
3) 5.49 (3 pts) (computer problem)
4) 5.53 (a and b) (6 pts) (computer problem, this is a continuation of problem 5.49.)
5) The Green's function for a linear oscillator that starts from rest is

$$
G\left(t, t^{\prime}\right)=\left\{\begin{array}{l}
\frac{1}{m \omega_{1}} e^{-\beta\left(t-t^{\prime}\right)} \sin \left(\omega_{1}\left(t-t^{\prime}\right)\right), \text { for } \mathrm{t} \geq \mathrm{t}^{\prime} \\
0, \text { for } \mathrm{t}<\mathrm{t}^{\prime}
\end{array}\right.
$$

The solution for a forced oscillator with a forcing function $\mathrm{F}(\mathrm{t})$ is then

$$
x(t)=\int_{-\infty}^{t} F\left(t^{\prime}\right) G\left(t, t^{\prime}\right) d t^{\prime}
$$

a) (3 pts) Calculate $\mathrm{x}(\mathrm{t})$ for an oscillator for the case where it is undamped, has natural frequency ω_{0}, and is driven by the following force function: it is zero before $t=0$, is constant with value F_{0} for $0<\mathrm{t}<\tau$, where $\tau=2 \pi / \omega_{0}$, and is zero again for $\mathrm{t}>\tau$.
b) (3 pts) Make a plot or sketch of the resulting motion of the oscillator.
c) (3 pts) Give an intuitive physical explanation for why the oscillator behaves the way it does for time $t>\tau$.

