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Measurement of resonant frequency and quality factor of microwave
resonators: Comparison of methods
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Precise microwave measurements of sample conductivity, dielectric, and magnetic properties are
routinely performed with cavity perturbation measurements. These methods require the accurate
determination of quality factor and resonant frequency of microwave resonators. Seven different
methods to determine the resonant frequency and quality factor from complex transmission
coefficient data are discussed and compared to find which is most accurate and precise when tested
using identical data. We find that the nonlinear least-squares fit to the phase versus frequency is the
most accurate and precise when the signal-to-noise ratio is greater than 65. For noisier data, the
nonlinear least-squares fit to a Lorentzian curve is more accurate and precise. The results are general
and can be applied to the analysis of many kinds of resonant phenomen&99&® American
Institute of Physicg.S0021-897@28)04317-3

I. INTRODUCTION quality factor of the cavity:*"-8Cauvity stabilization methods
put the cavity in a feedback loop to stabilize an oscillator at

Our objective is to accurately and precisely measure théne resonant frequency of the cavity'? For one port cavi-
quality factorQ, and resonant frequendy, of a microwave ties, reflection measurements provide a determination of the
resonator, using complex transmission coefficient data as Ralf-power points and also determine the coupling constant,
function of frequency. Accurat® andf, measurements are gajjowing one to calculate the unload€d>~®In more recent
needed for high precision cavity perturbation measurementgears, complex transmission coefficient data versus fre-
of surface impedance, dielectric constant, magnetic permeyyency is found from vector measurements of transmitted
ability, etc. Under realistic experimental conditions, corrup-signals through the cavity2° Methods which use this type
tion of the data occurs because of crosstalk between thgs data to determin® andf,, are the subject of this article.
transmission lines and between coupling structures, the sepa- \ye have selected seven different methods for determin-
ration between the coupling ports and measurement devicgq f, andQ from complex transmission coefficient data. We
and noise. Although there are many methods discussed in th@ye collected sets of “typical” data from realistic measure-
literature for measuring and resonant frequency, we are men situations to test all of th® and f, determination
aware of no ftreatment of these different methods whichyethods. We have also created data and added noise to it to
quantitatively compares their accuracy or precision undepeasure the accuracy of the methods. In this article we con-
real measurement conditions. In practice, @ecan vary  gider only random errors and not systematic errors, such as
from 10 to 1C° in superconducting cavity perturbation ex- iprations of the cavity which artificially broaden the
periments, so that & determination must be robust over regonancd=12 After comparing all of the different methods,
many orders of magnitude @. Also, it must be possible t0 e find that the nonlinear least-squares fit to the phase versus
accurately detgrmm@ qnd f(? in the presence ,Of modest frequency and the nonlinear least squares fit of the magni-
amounts of noise. In this article we will determine the besty,je of the transmission coefficient to the Lorentzian curve
methods of evaluating complex transmission coefficient data, g the pest methods for determining the resonant frequency
i.e., the most precise, accurate, robusQirand robustin the 54 quality factor. The phase versus frequency fit is the most
presence of noise. precise and accurate over many decade® afalues if the

Many diff_erent methods have been introduced_to mea’signal—to—noise ratiéSNR) is high (SNR>65), however the
sure the quality factor and resonant frequency of MiCrowave 4 antzian fit is more robust for noisier data. Some of the

cavities over the past 50 years. Smith chart methods havigieihods discussed here rely on a circle fit to the complex
been used to determine half-power points which can be useglnsmission coefficient data as a step to findiggand Q.
in conjunction with the value of the resonant frequency to\ye find that by adjusting this fitting we can improve the

deduce the quality factor of the cavity® In the decay  getermination of the quality factor and resonant frequency;,
method for determining the quality factor, the fields in theparticularly for noisy data.

cavity are allowed to build up to equilibrium, the input =, gec || of this article, the simple lumped element
power is turned off, and the exponential decrease in the,oe| for a microwave resonator is reviewed and developed.
power leaving the cavity is measured and fit to determine thg, description of our particular experimental setup is then
given, although the results of this article apply to any trans-
dElectronic mail: anlage@squid.umd.edu mission resonator. We then discuss the data collected and
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FIG. 1. Measured magnitude of the complex transmission coeffiSgraf
a superconducting resonator as a function of frequency for measured da{phe p|0t 0f|sz | versus frequency forms a Lorentzian curve
(Input power=+10 dBm, SNR=108). A Lorentzian curve is fit to the data. ith th 1 tf | ted at th iti f th
Inset is the lumped element model circuit diagram for the resonator. ThV! . N resonan requency ocate _a . € p0$| an 0 e
input and output transmission lines have impedafige |, andl,, are ~ Maximum magnitudeéFig. 1). A numerical investigation of
coupling mutual inductance€, is the capacitanc® s the resistance, and ~ |S,;| with and without the simplified denominator assump-
is the inductance of the model resonator. tion leading to Eq(2), shows that even for a relatively low
Q(Q=100), the difference between the magnitudes is less

generated for use in the method comparison in Sec. IlI. Sedhan half a percent of the magnitude using B. For larger

tion IV outlines all of the methods that are studied in this @ the difference is much smaller, so we take this assumption
article. It should be noted that each method is tested using® valid- All of the analysis methods treated in this article
exactly the same data. The results of the comparison ardake use of the simplified denominator assumption, as well

presented and discussed in Sec. V. Possible improvemerf$ &l the data we create to test the methods.
for some of the methods follow in Sec. VI, and the conclud- 1 he plot of the imaginary part &, [Eq. (2)] versus the

ing remarks of the article are made in the final section. €@l part(with frequency as a paramelgforms a circle in
canonical position with its center on the real aui&g. 2).
Il. LUMPED ELEMENT MODEL OF A RESONATOR The circle inters.ects the real axis at two points, at the origin
and at the location of the resonant frequency.

To set the stage for our discussion of the different meth-  |mportant alterations to the data occur when we take into
ods of determiningQ and resonant frequency, we briefly account several aspects of the real measurement situation.
review the simple lumped-element model of an electromagThe first modification arises when considering the crosstalk
netic resonator. As a model for an ideal resonator, we use thgetween the cables and/or the coupling structures. This intro-
seriesRL C circuit (see inset of Fig. )l defining 1/2rVLC as  duces a complex translatiot= (xo,Yo), of the center of the
the resonant frequendy.* The quality factor is defined as circle away from its place on the real atis?! Secondly, a
2m times the ratio of the total energy stored in the resonatophase shiftp is introduced because the coupling ports of the
to the energy dissipated per cyél&or the lumped element resonator do not necessarily coincide with the plane of the
model in Fig. 1, the quality facto is 2wfoL/R. The reso-  measurement. This effect rotates the circle around the origin
nator is coupled to transmission lines of impedadg®y the  (Fig. 2).2°-?'The corrected complex transmission coefficient,
mutual inductancek,; andl,. The complex transmission ~521, is then given by:
coefficient,S,; (ratio of the voltage transmitted to the inci-
dent voltagg as a function of driving frequendyis given in 'é21:(321+ X)e'?. (5)
the limit of weak coupling by?

- It should be noted that the order in which the translation and

S,(f )= S (1)  rotation are performed is uniqét.
14iQ __f_o Any method of determiningQ and f, from complex
fo f transmission data must effectively deal with the corruption

of the data represented by E@). In addition, the method
used to determiné, and Q must give accurate and precise
|%sults even in the presence of noise. This is necessary since,

The additional assumption thét- f, near resonance simpli-
fies the frequency dependence in the denominator resultin

n- o in typical measurements) ranges over several orders of
S, magnitude causing the signal-to-noise rg8iNR, defined in
Sau(f )= ' 2 sec. Il O during a single data run to vary significantly.
1+i2Q %—1> Further corruption of the data can occur if there are nearby

. resonances present, particularly those with lo@ef his in-
where S,; is the maximum of the transmission coefficient troduces a background variation onto the circles shown in
which occurs at the peak of the resonance: Fig. 2 and may interfere with the determinationfgfand Q.
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0.008 . . . . . where the temperature varies from 4.2 to 200 Kdecreases
circle Fit by about 10 MHz andQ changes from about>210’ to 4
| Clrele Gomplex S, D’é‘;'rcle . X 10%. For accurate measurement of the electrodynamic
in Canonical properties of samples, it is important to be able to resolve
__ 0004} Position | frequency shifts of the cavity as small as 1 Hz at low tem-
o peratures.
- -4
E \ 1. Fixed powers
0 7 One hundred,; versus frequency traces were taken us-
Re'f;e",c; P)°'"t Resonant j ing the network analyzer held at a fixed power and with
rof” Tret Frequency 1 constant coupling to the cavity. One such data set was made
0008 | | . A F“r::;::,"';% with the source power at—g6 15 dBm (SNR~368, f,
- 0.008 o 0.004 0.008 ~9.600 242 GHz,Q~6.39x 10°), another set was taken

with the source power at+10 dBm (SNR~108, f,
~9.599 754 GHzQ~6.46%x 10°), a third data set was taken

FIG. 2. Measured imaginary vs real part of the complex transmission coefwlth the source power at+3 dBm (SN.R%A'Q’ fo
ficient S,, for a single resonant modégnput power=+3 dBm, SNR=49). ~9.599 754 GHzQ~6.50x 10P). (The approximate values
This plot shows data and a circle fit, as well as the translated and rotatefor f, and Q are obtained from the phase versus frequency

circle in canonical position[X~(1.67x10"%,—2.52x10%), ¢~116°]. averages discussed below.
Large dots indicate centers of circles, and the size of the translation vector
has been exaggerated for clarity.

Re {Sn}

2. Power ramp

) ) ) ] ) To collect data with a systematic variation of signal-to-
In this article we consider only single isolated resonances,gise ratio, we took single traces at a series of different input

and refer the reader to an existing treatment of mUItiplepowers. A power-ramped data set was taken in a cavity

resonance? where controllable parameters, such as temperature and cou-
pling, were fixed, the only thing that changed was the micro-
Ill. DATA USED FOR METHOD COMPARISON wave power input to the cavity. AS,; versus frequency
In this section we discuss the data we use for making{;agfe‘”fsmfa(')‘%”;grrnp°¥firss gg?rge':gofr:ggit% tg tﬁgndEem;ﬁ the
guantitative comparisons of each method. The data is se- P = .' P 9
) , signal-to-noise ratio from about 5 to 168(f,
lected to be representative of that encountered in real mea-
= : ~9.603 938 GHzQ~8.71x 1(F).
surement situations. Each trace consists of 801 frequency
points, each of which have an associated real and imaginar
part of S,;. Two types of data have been used for comparin
the methods; measured data and generated data. The mea- To check the accuracy of all the methods, we generated

sured data is collected with the network analyzer and cavityata with known characteristics, and added a controlled
described below. The generated data is constructed to logkmount of noise to simulate the measured data. The data was

like the measured data, but the underlyiQgand resonant created using the real and imaginary parts of an iGgahs
frequency are known exactly. All of the methods discussed function of frequency Eq2);
in the next section are tested using exactly the same data. _

. Generated data

Sa
A. Measured data Re S,(f )= 5
Complex transmission coefficient versus frequency data 1+4Q2(f_0_ 1)
is collected using a superconducting cylindrical Niobium (6)
cavity submerged in liquid Helium at 4.2 K. Microwave cou- - f
. o . ; . -S$2Q|+—1
pling to the cavity is achieved using magnetic loops located fo
at the end of 0.086 in. coaxial cables. The loops are intro- M Sa(f )= f 2
duced into the cavity with controllable position and orienta- 1+4Q2(f—— 1)
0

tion. The coaxial cables come out of the cryogenic dewar and .
are then connected to a HP8510C vector network anafyzer.whereS,, is the diameter of the circle being generatede
The cavity desigff has recently been modified to allow top Fig. 2), Q is the quality factor, and, is the resonant fre-
loading of the samples into the cavity. quency, which are all fixed. The frequentyis incremented

A sample is introduced into the center of the cavity onaround the resonant frequency to create the circle. There are
the end of a sapphire rod. The temperature of the sample ca#®0 equally spaced frequency points before and after the
be varied by heating the rod, with a minimal perturbation toresonant frequency, totaling 801 data points. The total span
the superconducting Nb walls. The quality factor of the cav-of the generated data is about four 3 dB bandwidths foQall
ity resonator in the Tk, mode can range from about 2 values.
X 10" to 1x 10%, with a resonant frequency of approximately To simulate measured data, noise was added to the data
9.6 GHz. In a typical run with a superconducting crystal,using Gaussian distributed random numberthat were
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scaled to be a fixed fraction of the radiuspf the circle  A. The 3 dB method
described by the data in the compl8, plane. The noisy
data was then translated and rotated to mimic the effect O(fFi g

cross talk in the cables and coupling structures, and delagt maximum magnitude is used as the resonant frequency,

[Ea. ()] fo. The half power points (¥2 maxS,,|) are determined on

1. Power ramp either side of the resonant frequency and the difference of
A power ramp was simulated by varying the amplitudethose frequency positions is the bandwidtfg, 45. The qual-

of the noise added to the circles. A total of 88, versus Ity factor is then given by:

frequency traces were created with a variation of the signal-  Q=f,/Af; . 9)

to-noise ratio from about 1 to 200(f,=9.600 GHz, Q ) _ .
—1.00x 10P, xo=0.1972,yo= —0.0877,r =0.2, p=/17) Because this method relies solely on the discrete data, not a

fit, it tends to give poor results as the signal-to-noise ratio
decreases.

The 3 dB method uses th&,,| versus frequency data
. 1), where|S,,| = V(Re S,)?+ (Im S,;)2. The frequency

2. Fixed Q values

Data with different fixedQ values were created using the g_ | grentzian fit

above real and imaginary expressions ;. Groups of ) L
data were created with 100 traces each uspg:1®?, 1C°, For this method, théS,,| versus frequency data is fit to

10%, 10° (f,=9.600 GHz and SNR65 for all sets. They & Lorentzian curvdEg. (4) and Fig. 1 using a nonlipear
include fixed noise amplitude, and were each rotated anlfast-squares fit. The resonant frequenc, bandwidth

translated equal amounts to simulate measured @ata 2 fLorent; cOnstant background,, slope on the background
=0.01,y,=0.015,r =0.2, = m/19). A,, skewAs, and maximum magnitudgS,,,,| are used as

fitting parameters for the Lorentzian:

C. Signal-to-noise ratio IS + Asf
The signal-to-noise ratio was found for all data sets by |Saa(F)[=AstAxf + f—fy |2 (10
first determining the radius;,qe, and centerX;,y.) of the \/1+4 AT )
circle when plotting the imaginary part of the complex trans- Loren
mission coefficient versus the real pdRig. 2). Next, the The least-squares fit is iterated until the change in chi
distance to each data point (y;) (i=1-801) from the cen- squared is less than one part irf1TheQ is then calculated
ter is calculated from: using the values of, and Af |y from the final fit param-
_ 5 . eters:Q="fy/Af oent- This method is substantially more ro-
b= V(X =Xe)*+ (Vi —Yo)* (7 pust in the presence of noise than the 3 dB method. For
The signal-to-noise ratio is defined as: purposes of comparison with other methods, we shall use the
simple expressions fdi, andQ given above, rather than the
SNR= - I circle _ ®) values modified by the skew parameter.
2
ﬁ)g (i~ Foicie) C. Resonance curve area method

In the case of generated data, where the center and radius of |5 an attempt to use all of the data, but to minimize the

the SNR values are approximate for the measured data bgyyrve Area(RCA) method was developéd. In this ap-

radius of the circles. arrive at a determination a®. In detail, the RCA method
uses the magnitude data squarfBh,|?, versus frequency
IV. DESCRIPTION OF METHODS and fits it to a Lorentzian pealsame form as Fig.)i
In this section we summarize the basic principles of the Po
leading methods for determining tH@ and resonant fre- |Sou(f )|2=ﬁ (11)
quency from complex transmission coefficient versus fre- 1+4 AchOA)

guency data. Further details on implementing these particular
methods can be found in the cited references. Because wesing the resonant frequendy,, and the maximum magni-
believe that this is the first published description of the in-tude squared,P,, as fitting parameters. The bandwidth
verse mapping technigue, we shall discuss it in more detaih fzc4 is a parameter in the Lorentzian fit, but is not allowed
than the other methods. The Resonance Curve Area artd vary. This method iterates the Lorentzian fit until chi
Snortland techniques are not widely known, hence a briefquared changes by less than one part th Next, using the
review of these methods is also included. fit values from the Lorentzian, the squared magnitude
The first three methods take the data as it appears ar|&,,(fo=f,)|? is found at two pointso=+ f, on the tails of
determine theQ from the estimated bandwidth of the reso- the Lorentzian far from the resonant frequency. The area
nance. The last four methods make an attempt to first correcinder the dataS;, from fo—f, to fo+f, (symmetric posi-
the data for rotation and translatipiq. (5)], then determine tions on either side of the resonant frequernisyfound using
f, andQ of the data in canonical position. the trapezoidal rulé®
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fotf, )
S, = jf i |521,dat£f )| df

0
fo+f, f
= 2 5 (SnedN)P+SadN+T D). (12
N=fo—f,
Here |S;1 4a{N)|? indicates the magnitude squared data
point at the frequenci, and &f is the frequency step be-
tween consecutive data points. Ref
The quality factor is subsequently computed from the
area as follow$?

Q=f Po an \/—ZPO -1 (13)
°s |So(fox 1)l '

This Q is compared to the previously determined one. If
Q changes by more than one part irf 1éhe Lorentzian fit is
repeated using as initial guesses fgrand P, the values of
fo and Py from the previous Lorentzian fit, but the fixed
value of the bandwidth becomesfgca=fo/Q. With the

new returned parameters from the f,is again computed F'C: 3- (8. The complex frequency plane is shown with frequency points
fi, f», andf; on the imaginary axis and a pole off of the axis. The imagi-

by Egs.(12) an_d(13) anc_j compared to the_ prev!ous Oone, _andnary frequency axis is mapped onto the compgxplane(b) as a circle in
the cycle continues until convergence @Qns achieved. This  canonical position, and the corresponding frequency points are indicated on
method is claimed to be more robust against noise becausettie circumference of the circle.
uses all of the data in the integral given in Efj2).2’

All of the above methods assume a simple Lorentzian-
like appearance of this,,| versus frequency data. However, 2. Inverse mapping
the translation and rotation of the data described by (Bq.
can significantly alter the appearance |&;| versus fre-
guency. In addition, other nearby resonant modes can dr
matically alter the appearance|&|.?% For these reasons, it
is necessary, in general, to correct the meas@&gdlata to
remove the effects of crosstalk, delay, and nearby resona
modes. The remaining methods in the section all addre
these issues before attempting to calculate@and reso-
nant frequency.

We now know the center and radius of the circle which
has suffered translation and rotation, as described by3iq.
Rather than unrotating and translating the circle back into
canonical position, this method uses the angular progression
of the measured points around the cir¢és seen from the
lagnte) as a function of frequency to extract tf@pand reso-
SRant frequency® Three data points are selected from the
circle, one randomly chosen near the resonant frequency
(f,), and two othergf,; andfs) randomly selected but ap-
proximately one bandwidth above and below the resonant
frequency[see Fig. &)]. Figure 3a) shows the complex
D. Inverse mapping technique frequency plane with the measurement frequency axis
(Im f) and the pole of interest at a positiofy— Afya4/2.

The conformal mapping defined by:

1. Circle fit —
- . . _ Subfyeg2
The inverse mapping technique, as well as all subse- $;;= Af (15
guent methods in this section, make use of the comglgx f—|ifo— Map)
data and fit a circle to the plot of I18f;) vs Re,,) (Fig. 2. 2

The details of fits of comples,, data to a circle have been maps the imaginary frequency axis into a circle in canonical
discussed before by several authtr§’ The data is fit to a position in theS,; plane(this mapping is obtained from Eq.
circle using a linearized least-squares algorithm. In the circl€2) by rotating the frequency plane by '™?). Under this
fit, the data is weighted by first locating the point midway transformation, a line passing through the pole in the com-
between the first and last data point; this is the referencglex frequency plan¢such as the line connecting the pole
point (Xer,Yrer) (S€€ Fig. 2 Next, the distance from the andif, in Fig. 2a)] will map into a line of equal but oppo-
reference point to each data poing {y;) is calculated. A  site slope through the origin in th®,; plane®® In addition,
weight is then assigned to each data pgint1 to 800 as:  because the magnitudes of the slopes are preserved, the
_ Y N212 angles between poinfs andf, (6,), and pointsf, andf,
Wtap, =[ (Xrer=Xi) " (Yrer—¥i)“J" (14 (6,), in the S,; plane[Fig. 3b)] are exactly the same as
This gives the points closer to the resonant frequency #hose subtended from the pole in the complex frequency
heavier weight than those further away. The circle fit deterplane [Fig. 3@].3° The angles subtended by these three
mines the center and radius of a circle which is a best fit tgpoints, as seen from the center of the circle in $¢eplane,
the data. define circles in the complex frequency plane which repre-
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' ' ' ' ' f
_ 0.003 e ] (f )=o+2tan ! 2Q(1—f—0”. (17)
w2 -~ Phas}‘( . . .
2 _Phase Data o o N % 1] In this equationgg, the angle at which the resonant fre-
3 Py 7 quency occursf,, andQ are determined from the fit. A
g o - ARE weighting is used in the fit to emphasize data near the reso-
=~ Nonlinear Fit  \2-003 nant frequency and discount the noisier data far from the
2 0.003 resonance which shows little phase variation. Again we find
£ . that the quality of this fit is sensitive to the method of fitting
the originalS,; data to a circle.

9,603,936,506 ‘9,603,|93B,000 9,603,939,500
G. Snortland method
Frequency (Hz)

As will be shown below, the main weakness of the In-

FéGN Rﬁ-31'\§'915t:;eg tphasz ?ts a f“:°“°”|°f ftr?q‘tfniy folf :T‘sasuc;edtdf‘“@erse Mapping and Phase versus Frequency methods is in the
E:ircle, Whely'e ict)s ceﬁt:razrs] atlthag?)rsigicr)lwgr;dﬁz rl)iasg t:)agz(?hepoianr; isr(():::llceufhmaI circle fit of the complexS,, data. To f”malyze t_he fre-
lated from the positive real axis. quency dependence of the data, or to bring the circle back

into canonical position for further analysis, the center and

rotation anglg Eqg. (5)] must be known to very high preci-
sent the possib|e locations of the resonance pjdmhed sion. The Snortland method makes use of internal self-
circles in Fig. 3a)).2531 The intersection of these two circles consistency checks on the data to make fine adjustments to
off of the imaginary frequency axis uniquely locates thethe center and rotation angle parameters, thus improving the
resonance pole. The resonant frequency @nare directly ~accuracy of any subsequent determination of the resonant
calculated from the pole position in the complex frequencyfrequency and. . . _
plane asfy andfq/Afy,,. This procedure is repeated many The Snortland methdd starts with a standard circle fit
times by again choosing three data points as describe@nd phase versus frequency(ffig. 4 as discussed above. A

above, and the results f6@ and resonant frequency are av- Self-consistency check is made on tBg data versus fre-
eraged. guency by making use of the variation of the stored energy in

the resonator as the frequency is scanned through resonance.
As the resonant frequency is approached from below, the
E. Modified inverse mapping technique current densities in the resonator increase. Beyond the reso-
We find that the fit of the compleS,, data to a circle is nant frequency they decrease again. Hence a sweep through
critically important for the quality of all subsequent determi- the résonance is equivalent to an increase and decrease of
nations ofQ andf,. Hence we experimented with different Stored energy in the cavity and power dissipated in the
ways of weighting the data to accomplish the circle fit. TheSample. In general, there is a slight nonlinear dependence of
modified inverse mapping technique is identical to the prefh® sample resistance and inductance on resonator clirrent
vious inverse mapping, except for a difference in the weight- NiS léads to a resonant frequency and quality factor which
ing schemes for the fit of the data to a cir¢ig. 2). Here  are current-l_evel dependent. The generalized expression for a
the weighting on each data point, known as the standarbezslonator with current-dependent resonant frequencyand

weighting, is: IS
Wistngi = [ (Xrer= 1)+ (Yrer—i)?] (16 oo @) ! g
and is the square root of the weighting in E44). Other So1( @max: I max) Qﬂxﬂz o= woll)
Qma
kinds of weighting will be discussed in Sec. VI. Q(l) wo(l)

wherew . andQ .y are the resonant frequency aQdat the

point of maximum current in the resonatog,,,. The Q and

resonant frequency are therefore determined at every fre-
In the phase versus frequency'fitthe complex trans- quency point on the resonance curvé'as

mission data is first fit to a circle as discussed above for the

F. Phase versus frequency fit

inverse mapping technique. In addition, an estimate is made Q)= QLE’; (19

of the rotation angle of the circle. The circle is then rotated Res 7]

and translated so that its center lies at the origin of$he ©

plane (rather than canonical positipnand an estimation of wo(l)= — . (20

the resonant frequency is found from the intersection of the [1+Im[s"1/2Qmax

circle with the positive real axisee Fig. 4 inset The phase If it is assumed that the response of the resonator is

angle of every data point with respect to the positive real aximonhysteretic as a function of power, then the up and down
is then calculated. Next the phase as a function of frequencypower ramps” must give consistent values for tieand
(Fig. 4), obtained from the ratio of the two parts of Ef), is  resonant frequency at each current level. If the data is cor-
fit to this form using a nonlinear least-squaresit: rupted by a rotation in thé&,; plane, the slight nonlinear
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FIG. 5. Plot of fit resonant frequency vs trace number for measured data Trace Number

when the source power i510 dBm. Results are shown for three methods. FIG. 6. Plot of fit quality factor vs trace number for measured data when the
power is+10 dBm. Results are shown for three methods.

response of andf, with respect to field strength causes the

plots of Q and f, versus the current level to trace out hys-

teresis curve$! By adjusting the rotation phase angle andfo from trace to trace, seen in Fig. 5 is due entirely to the

Qmax Parameters, one can make the two legs of@ie) and  particular noise distribution on th&,(f ) trace. On the

wo(1) curves coincide, thereby determining the resonant freother hand, the determinations Qfare very different for the

quency andQ more precisely’ three methods. From Fig. 6, we see that the phase versus
In practice, the resonant frequency is determined from drequency fit is more precise in findin@ than both the

fit to the nonlinear inductance as a function of resonatotorentzian fit and the modified inverse mapping technique

current | through (1) ?2=cy+cyl so that o, (See also Table)l Thus the fixed power data identifies the

=1/\co+ €1l max Qmaxis determined by making the two legs Phase versus frequency fit as the best.

of the wq(l) curve overlap. The resulting determination of

resonant frequency and quality factor ang,,, and Qmax

respectively. B. Power-ramped data

Figures 7 and 8 show the results fiy and Q, respec-
tively, from the same methods, for the measured power-
The values ofQ and f, obtained by each method for a ramped data sets. The data are plotted versus the signal-to-
group of datge.qg., fixed power or fixe®@) are averaged and noise ratio discussed in Sec. lll. As the SNR decreases, the
their standard deviations are determined. These results adetermination off; becomes less precise, but as in the case
used to compare the methods. The accuracy of each methad fixed power, all of the methods return similar ratios for
is determined using the generated data since, in those cases, /f, as confirmed by Table I. The determination@#lso

the true values foQ andf, are known. The most accurate pecomes less precise as the SNR decreases tending to over-
method is simply the one that yields an averafigQ@) clos-  estimate its value for noisier data. But, from Fig. 8, we see
est to the actual valuef {*",Q¥"°"). The standard devia- that while the modified inverse mapping technique and phase
tions (o, 0q) for the measured data are used as a measurgersus frequency fit give systematically increasing values of
of precision for the methods. The smaller the standard deviaQ as the SNR decreases, the Lorentzian fit simply jumps
tion returned, the more precise the method. To determine tharound the average value. This implies that for a low SNR,
most robust method over a wide dynamic rangeQoind  the Lorentzian fit is a more precise method. Table | confirms
noise, both accuracy and precision are considered. Hence tlii@is statement by showing that the Lorentzian fit has the
algorithm that is both accurate and precise over var@@  smallest ratio ofro/Q. We thus conclude that over a wide

V. COMPARING METHODS AND DISCUSSION

noise is deemed the most robust. dynamic range of SNR the Lorentzian fit is superior, al-
A. Fixed power data though the phase versus frequency fit is not significantly
worse.
Figures 5 and 6 show the values fof and Q, respec- From Figs. 7 and 8, we see that thig determination

tively, resulting from the Lorentzian fitH), the modified  does not degrade nearly as much as@hdetermination as
inverse mapping techniquee], and the phase versus fre- SNR decreases. Herey /f, changes by a factor of 2, while

quency fit ), for the +10 dBm (SNR-108) fixed power 0q/Q changes by a factor of 300 as SNR decreases from
run. For fgy, all three methods return values that are Very, 50 4 3. so the precision in the determinatibnis much
close to each other. This '.S verified by the ratiosogf /o greater than that dD. The trend of decreasin@ as the SNR

for those methods shown in Table 1, which shows the norincreases beyond a value of about 50 in Fig. 8 is most likely
malized ratio(normalized to the lowest numbeof the stan-  gye to the nonlinear resistance of the superconducting walls
dard deviation offy andQ to their averageds /fo,0/Q)  in the cavity. An analysis of generated data power ramps
returned by each method on identical data. The difference idoes not show a decreasi@at high SNR.
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TABLE I. Measurements of relative precision of the seven methods used to detdigrandQ from complex transmission data. Tabulated are ratios of the
standard deviation to the average values for both resonant frequeq)o&f({) and quality factor ¢4 /Q) normalized to the best valugiven in parenthesgs
for SNR=49, 368, and ramped from 5 to 168. All entries are based on measured data.

Noisy (P=+3 dBm, SNR=49) Less noisy(P=+15 dBm, SNR=368 Power ramp (SNR 5-168)
Precision table
Method Q fo Q fo Q fo
3dB 5.91 1.069 7.50 4.77 190.44 1.274
Lorentzian 1.55 1.025 2.27 1.10 1(191072) 1.004
RCA 5.66 1.030 5.24 1 11.04 1.031
Inverse mapping 6.02 1.021 7.95 157 4.27 1.321
Modified mapping 1.49 1.031 5.89 2.13 1.61 1 (I °)
Phase vs freq 1(2.5110 %) 1(1.15x10°9) 1(2.80x107%) 1(3.12x10719 1.47 1.025
Snortland 2.27 1.029 2.09 1 5.98 1.086
C. Precision, accuracy, and robustness for SNR<10). Over several decades @, the most robust

The most precise methods over different fixed powerdnethod for the determination df is the phase versus fre-
are the nonlinear least-squares fit to the phase versus frguency fit, which is precise to about one part i’ 1hen
quency €) and the Lorentzian nonlinear least-squares fitQ=10", and to about 1 part in fovhenQ=10°, averaged
(B) (Table ). They consistently give the smallest ratios of ©ver 100 traces with SNR6S. For the determination @,
their standard deviation to their average for b@hand f, the_ phase versus frequendy)(_ls also the most robust, pro-
compared to all other methods. At high power (SN850)  Viding precision to two parts in fowhenQ=10"-10 av-
the phase versus frequency fit is precise to about three parg§aged over 100 traces.
in 10 for the resonant frequency and to three parts ifi 10
for the quality factor, when averaged over about 75 traces.

When looking at the generated data with SN65, the  VI. IMPROVEMENTS
most accurate method for the determination of the resonant

frequency is the phase versus frequency fit, because it returns ;’he ﬁ(;St three mﬁthOdS (:)isc_ussed a(;)(;MiB, Lor_entz-h
an average closest to the true value, or as in Table Il, it hal@h fit, and RCA met odcan be improved by correcting the

the smallest ratio of the difference between the average an%ata for rotation and transation in the compi plane. Al

the known value divided by the known valuem{ of the remaining methods can be improved by carefully ex-

_ f(‘j“°W"|/f'{,”°W”,|Q—Q"”OWW/Q"”OWF). The value returned amining the validity of the circle fit. We have observed that

for the resonant frequency is accurate to about eight parts iPLy modifying the weighting we can improve the fit to the

10° for Q=10%, and one part in Tfor Q= 10° when aver- circle for noisy data, and thereby improve the determination

. of Q and f,. For instance, Fig. 9 shows that the standard
aged over 100 traces. For the quality factor, the phase Versys ightin (the weighting from the modified inverse mappin
frequency fit £) is most accuraté€Table 1), with accuracy ghting ghing bping

: "~ . technique systematically overestimates the radius of the
to about one part in fofor Q= 10, and one part in Z0for circle for noisy data. Below we discuss several ways to im-
Q=10 when averaged over 100 traces.

: N . . prove these fits.
(seeT?r?emztvr\]/g(rj-rerSt ggﬁj Lrlﬁ:]smo?otlyz(:hIS‘r;gTe;olreS)t]zdlﬁg fit By introducing a radial weighting, we can improve the
rovided \F/)alues fof pan dQ that were the most precise and circle fit substantiallyan example is shown in Fig.)9For
P -0 . : pre the radial weighting, we first do the standard weighting to
accurate as the signal-to-noise ratio decredgadticularly

~~
E 3 - =-Lorentzian Fit ]
= 9,603,938,500 ] ~——Modified Inverse Mapping
Z \ 9,600,000 ~——Phase vs, Frequency b
£ ! g
g °
g = _
=] fe
- 9,603,838,300 | ' =
2 = 9,000,000}
g 3
g = o
@ -=-Lorentzian Fit
-4 40Hz -~ Modified Inverse Mapping L
T ——Phase vs. Frequency
9,603,938,100 1-0 T 60 8,400,000 / ) ]

10 100
Signal-to-Noise Ratio

Signal-to-Noise Ratio
FIG. 7. Plot of fit resonant frequency vs the signal-to-noise ratio on a log

scale for the measured power-ramped data set. Results are shown for thrEES. 8. Plot of fit quality factor vs the signal-to-noise ratio on a log scale for
methods. the measured power-ramped data set. Results are shown for three methods.
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TABLE Il. Measurements of the relative accuracy of the seven methods used to detésram®Q from complex transmission data. Tabulated are ratios of
the difference of the averages fif andQ from the known value divided by the known values, for both resonant frequéhgy """/ and quality

factor (Q— QX""/Q*"°""), The entries are normalized to the best valgigen in parenthesgsfor Q=10°, Q=10" (both with SNR=65), and SNR ramped
from 1 to 2000. All entries are based on generated data.

Q=10 Q=10 Power ramp (SNR1—2000)
Accuracy table
Method Q fo Q fo Q fo
3dB 253.08 217.39 240.21 117.15 401.48 43.87
Lorentzian 15.38 27.25 14.93 17.28 1(3410°?) 1(1.46¢10°9)
RCA 246.15 403.05 23.35 217.76 8.39 73.39
Inverse mapping 3.85 3.01 10.43 2.21 2.84 5.72
Modified mapping 2.77 35 5.64 1.57 1.83 8.43
Phase vs freq 1(1.3010°%) 1(7.88<1078) 1(1.40<107%) 1(1.46x1079) 4.03 12.00
Snortland 103.08 12.68 95.21 8.50 5.11 13.50
extract an estimate for the center of the cirotg,f/.), which In addition to errors in the fit radius of the circle at low
is not strongly corrupted by noise. The radial weighting onSNR, there can also be errors in the fit center of the circle.
each point (=1-801) is then defined as: Figure 11 shows the normalized erréx, :
w ! (22 2 2
Radialj = > = Xe ™ Xt Ye— Yiit
\/(Xc_xi) +(Ye—Vi) E.= \/( X + y (22
C C

which reduces the influence of noisy data points well outside

the circle. Figure 10 shows a plot of the calculated radluqn the calculation of the center of the circle from weightings:

versus the signal-to-noise ratio for the generated powerwsmd, Wiadials leigdiah andwgeadiai vs the SNR in log scal-

ra(rjr_]ped d_ata ?et. th? flgutre shor\]/\t/_s pSL(;;S of éhe clzzlculate%g_ Here &.,Y.) is the true center of the circle angg, ys)
\r/?/ us lésnglou(Nl,lz eren dv\\;ség m% S‘”dh.[ q.I ( ,)].’ is the calculated center from the circle fit. From Fig. 11, we
Radial [EQ- (D], Wragia, andWrgqg From this plot, itis — go0 ot the calculation of the center of the circle is accurate

clear that above a SNR of about 30 all of the weightings give, \ ithin 1% for SNR~20 and above using any weighting.
very similar radius values. However, below that value we Se¢ owever below SNR 10. all of the weightings give de-

; 1/2 Ut ;
that the radius from th&VgZ,, Weighting agrees best with graded fits. The insetb) of Fig. 11 shows the angle vs

th.e true 'ra<'jius of.0.2.. Therefore, by improving the circle ﬁtSNR, wherex is the angle between the vector connecting the
W,'th a S|m|lgr weighting scheme, we hope to extract €VeMyue and calculated centers, and the vector connecting the
higher precision a_nd beFter accuracy from these methods e center to the position of the resonant frequency. From
lower signal-to-noise ratio. this figure we see that the angle between these vectors ap-
proachesr as SNR decreases, which means that the fit center
migrates in the direction away from the resonant frequency

0.004 ' ' ' ' as the data becomes noisy. This indicates that the points on
the side of the circle opposite from the resonant frequency
[ Square Root
Radial Weight
0 0.25 :
- . \
mN .2, /
v L .
[ :‘: [t 1 g J'\_
E A 2 02 S n e
-0.004 - ] & Yoo
. 1 3 A
. .\‘c\. N E i
O G = H
- oo ] 2015t ! e
oo T i -=-Stlanaar:
Standard Weight © I ———Radial Weight W
Jil —--W Square
-0.008 L L L L g ~——Square Root W
-0.008 -0.004 0 0.004 H
04 L .
Re {S,} 10 100

Signal to Noise Ratio
FIG. 9. Measured imaginary vs real part of the complex transmission coef-

ficient for measured datdSNR~4, X~(7.22<10 °3.26x10°%), ¢ FIG. 10. The calculated circle fit radius vs the signal-to-noise ratio on a log
~220°]. Plot shows data and two circle fits, one where the standard weightscale is shown for the generated power-ramped data set. The plot shows the
ing is useddashed ling and one where the square root radial weighting is results from four different weighting®eng, Wragia» Waagias Wi zgia- The
used(solid line). true value for the radius is 0.2.
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e ' All of these methods are good for SNR greater than about
oak —Standard ] 10. Below this value, all methods of determiniQgand reso-
= R Weiont W nant frequency from complex transmission coefficient data
Ex ——W Square ] degrade dramatically. Concerning robustness, the phase ver-
5E sus frequency fit does well for a dynamic range@fwhile
58“ ' ] the Lorentzian fit does well in the power-ramp (SNR
2° | ] =1-2000).
-_35 We also find that significant improvements can be made
ESort 1 to the determination of resonant frequency &dn noisy
z= situations when careful attention is paid to the circle fitting
© f O] , ] procedure of the comple®,, data. Further development of
. . 10 sNR 100 the inverse mapping and Snortland methods can greatly im-
10 100 1000 prove the accuracy and precision of resonant frequency and
Signal-to-Noise Ratio Q determination in realistic measurement situations.
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