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Chapter 1

From Microscopic to Macroscopic
Behavior

c©2007 by Harvey Gould and Jan Tobochnik
12 December 2007

The goal of this introductory chapter is to explore the fundamental differences between micro-
scopic and macroscopic systems and the connections between classical mechanics and statistical
mechanics. We note that bouncing balls come to rest and hot objects cool, and discuss how the
behavior of macroscopic objects is related to the behavior of their microscopic constituents. Com-
puter simulations will be introduced to demonstrate the relation of microscopic and macroscopic
behavior.

1.1 Introduction

Our goal is to understand the properties of macroscopic systems, that is, systems of many elec-
trons, atoms, molecules, photons, or other constituents. Examples of familiar macroscopic objects
include systems such as the air in your room, a glass of water, a copper coin, and a rubber band
(examples of a gas, liquid, solid, and polymer, respectively). Less familiar macroscopic systems
are superconductors, cell membranes, the brain, the stock market, and the galaxies.

We will find that the type of questions we ask about macroscopic systems differ in important
ways from the questions we ask about systems that we treat microscopically. For example, you
might wondered about the nature of a successful free throw in basketball. Although the basketball
consists of many particles, we are interested in this context only in the trajectory of its center of
mass. In contrast, have you ever wondered about the trajectory of a particular molecule in the air
of your room? Why not? Is it relevant that these molecules are not visible to the eye? Examples
of questions that we ask about macroscopic systems include the following:

1. How does the pressure of a gas depend on the temperature and the volume of its container?

1
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2. How does a refrigerator work? What is its maximum efficiency?

3. How much energy do we need to add to a kettle of water to change it to steam?

4. Why are the properties of water different from those of steam, even though water and steam
consist of the same type of molecules?

5. How are the molecules arranged in a liquid?

6. How and why does water freeze into a particular crystalline structure?

7. Why does helium condense into a superfluid phase at very low temperatures? Why do some
materials exhibit zero resistance to electrical current at sufficiently low temperatures? In
general, how do the properties of a system emerge from its constituents?

8. How fast does a river current have to be before its flow changes from laminar to turbulent?

9. What will the weather be tomorrow?

The above questions can be roughly classified into three groups. Questions 1–3 are concerned
with macroscopic properties such as pressure, volume, and temperature and questions related to
heating and work. These questions are relevant to thermodynamics which provides a framework
for relating the macroscopic properties of a system to one another. Thermodynamics is concerned
only with macroscopic quantities and ignores the microscopic variables that characterize individual
molecules. For example, we will find that understanding the maximum efficiency of a refrigerator
does not require a knowledge of the particular liquid used as the coolant. Many of the applications
of thermodynamics are to thermal engines, for example, the internal combustion engine and the
steam turbine.

Questions 4–7 relate to understanding the behavior of macroscopic systems starting from the
atomic nature of matter. For example, we know that water consists of molecules of hydrogen
and oxygen. We also know that the laws of classical and quantum mechanics determine the
behavior of molecules at the microscopic level. The goal of statistical mechanics is to begin with
the microscopic laws of physics that govern the behavior of the constituents of the system and
deduce the properties of the system as a whole. Statistical mechanics is the bridge between the
microscopic and macroscopic worlds.

Thermodynamics and statistical mechanics assume that the macroscopic properties of the
system do not change with time on the average. Thermodynamics describes the change of a
macroscopic system from one equilibrium state to another. Questions 8 and 9 concern macroscopic
phenomena that change with time. Related areas are nonequilibrium thermodynamics and fluid
mechanics from the macroscopic point of view and nonequilibrium statistical mechanics from the
microscopic point of view. Although there has been progress in our understanding of nonequi-
librium phenomena such as turbulent flow and hurricanes, our understanding of nonequilibrium
phenomena is much less advanced than our understanding of equilibrium systems. Because un-
derstanding the properties of macroscopic systems that are independent of time is easier, we will
focus our attention on equilibrium systems and consider questions such as those in Questions 1–7.
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1.2 Some Qualitative Observations

We begin our discussion of macroscopic systems by considering a glass of water. We know that if
we place a glass of hot water into a cool room, the hot water cools until its temperature equals
that of the room. This simple observation illustrates two important properties associated with
macroscopic systems – the importance of temperature and the arrow of time. Temperature is
familiar because it is associated with the physiological sensation of hot and cold and is important
in our everyday experience. We will find that temperature is a subtle concept.

The direction or arrow of time is an even more subtle concept. Have you ever observed a glass
of water at room temperature spontaneously become hotter? Why not? What other phenomena
exhibit a direction of time? Time has a direction as is expressed by the nursery rhyme:

Humpty Dumpty sat on a wall
Humpty Dumpty had a great fall
All the king’s horses and all the king’s men
Couldn’t put Humpty Dumpty back together again.

Is there a direction of time for a single particle? Newton’s second law for a single particle,
F = dp/dt, implies that the motion of particles is time reversal invariant, that is, Newton’s second
law looks the same if the time t is replaced by −t and the momentum p by −p. There is no
direction of time at the microscopic level. Yet if we drop a basketball onto a floor, we know that it
will bounce and eventually come to rest. Nobody has observed a ball at rest spontaneously begin
to bounce, and then bounce higher and higher. So based on simple everyday observations, we can
conclude that the behavior of macroscopic bodies and single particles is very different.

Unlike generations of about a century or so ago, we know that macroscopic systems such as a
glass of water and a basketball consist of many molecules. Although the intermolecular forces in
water produce a complicated trajectory for each molecule, the observable properties of water are
easy to describe. Moreover, if we prepare two glasses of water under similar conditions, we would
find that the observable properties of the water in each glass are indistinguishable, even though
the motion of the individual particles in the two glasses would be very different.

Because the macroscopic behavior of water must be related in some way to the trajectories of its
constituent molecules, we conclude that there must be a relation between the notion of temperature
and mechanics. For this reason, as we discuss the behavior of the macroscopic properties of a glass
of water and a basketball, it will be useful to discuss the relation of these properties to the motion
of their constituent molecules.

For example, if we take into account that the bouncing ball and the floor consist of molecules,
then we know that the total energy of the ball and the floor is conserved as the ball bounces
and eventually comes to rest. What is the cause of the ball eventually coming to rest? You
might be tempted to say the cause is “friction,” but friction is just a name for an effective or
phenomenological force. At the microscopic level we know that the fundamental forces associated
with mass, charge, and the nucleus conserve the total energy. So if we take into account the
molecules of the ball and the floor, their total energy is conserved. Conservation of energy does
not explain why the inverse process does not occur, because such a process also would conserve
the total energy. So a more fundamental explanation is that the ball comes to rest consistent with
conservation of the total energy and consistent with some other principle of physics. We will learn
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that this principle is associated with an increase in the entropy of the system. For now, entropy is
only a name, and it is important only to understand that energy conservation is not sufficient to
understand the behavior of macroscopic systems. (As for most concepts in physics, the meaning
of entropy in the context of thermodynamics and statistical mechanics is very different than the
way entropy is used by nonscientists.)

For now, the nature of entropy is vague, because we do not have an entropy meter like we do
for energy and temperature. What is important at this stage is to understand why the concept of
energy is not sufficient to describe the behavior of macroscopic systems.

By thinking about the constituent molecules, we can gain some insight into the nature of
entropy. Let us consider the ball bouncing on the floor again. Initially, the energy of the ball
is associated with the motion of its center of mass, that is, the energy is associated with one
degree of freedom. However, after some time, the energy becomes associated with many degrees
of freedom associated with the individual molecules of the ball and the floor. If we were to bounce
the ball on the floor many times, the ball and the floor would each feel warm to our hands. So we
can hypothesize that energy has been transferred from one degree of freedom to many degrees of
freedom at the same time that the total energy has been conserved. Hence, we conclude that the
entropy is a measure of how the energy is distributed over the degrees of freedom.

What other quantities are associated with macroscopic systems besides temperature, energy,
and entropy? We are already familiar with some of these quantities. For example, we can measure
the air pressure in a basketball and its volume. More complicated quantities are the thermal
conductivity of a solid and the viscosity of oil. How are these macroscopic quantities related to
each other and to the motion of the individual constituent molecules? The answers to questions
such as these and the meaning of temperature and entropy will take us through many chapters.

1.3 Doing Work

We already have observed that hot objects cool, and cool objects do not spontaneously become
hot; bouncing balls come to rest, and a stationary ball does not spontaneously begin to bounce.
And although the total energy must be conserved in any process, the distribution of energy changes
in an irreversible manner. We also have concluded that a new concept, the entropy, needs to be
introduced to explain the direction of change of the distribution of energy.

Now let us take a purely macroscopic viewpoint and discuss how we can arrive at a similar
qualitative conclusion about the asymmetry of nature. This viewpoint was especially important
historically because of the lack of a microscopic theory of matter in the 19th century when the
laws of thermodynamics were being developed.

Consider the conversion of stored energy into heating a house or a glass of water. The stored
energy could be in the form of wood, coal, or animal and vegetable oils for example. We know that
this conversion is easy to do using simple methods, for example, an open fireplace. We also know
that if we rub our hands together, they will become warmer. In fact, there is no theoretical limit1

to the efficiency at which we can convert stored energy to energy used for heating an object.
What about the process of converting stored energy into work? Work like many of the other

concepts that we have mentioned is difficult to define. For now let us say that doing work is
1Of course, the efficiency cannot exceed 100%.
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equivalent to the raising of a weight (see Problem 1.22). To be useful, we need to do this conversion
in a controlled manner and indefinitely. A single conversion of stored energy into work such as the
explosion of a bomb might do useful work, such as demolishing an unwanted football stadium, but
a bomb is not a useful device that can be recycled and used again. It is much more difficult to
convert stored energy into work and the discovery of ways to do this conversion led to the industrial
revolution. In contrast to the primitiveness of the open hearth, we have to build an engine to do
this conversion.

Can we convert stored energy into work with 100% efficiency? On the basis of macroscopic
arguments alone, we cannot answer this question and have to appeal to observations. We know
that some forms of stored energy are more useful than others. For example, why do we bother to
burn coal and oil in power plants even though the atmosphere and the oceans are vast reservoirs
of energy? Can we mitigate global warming by extracting energy from the atmosphere to run a
power plant? From the work of Kelvin, Clausius, Carnot and others, we know that we cannot
convert stored energy into work with 100% efficiency, and we must necessarily “waste” some of
the energy. At this point, it is easier to understand the reason for this necessary inefficiency by
microscopic arguments. For example, the energy in the gasoline of the fuel tank of an automobile
is associated with many molecules. The job of the automobile engine is to transform this energy
so that it is associated with only a few degrees of freedom, that is, the rolling tires and gears. It
is plausible that it is inefficient to transfer energy from many degrees of freedom to only a few.
In contrast, transferring energy from a few degrees of freedom (the firewood) to many degrees of
freedom (the air in your room) is relatively easy.

The importance of entropy, the direction of time, and the inefficiency of converting stored
energy into work are summarized in the various statements of the second law of thermodynamics.
It is interesting that historically, the second law of thermodynamics was conceived before the first
law. As we will learn in Chapter 2, the first law is a statement of conservation of energy.

1.4 Quality of Energy

Because the total energy is conserved (if all energy transfers are taken into account), why do we
speak of an “energy shortage”? The reason is that energy comes in many forms and some forms are
more useful than others. In the context of thermodynamics, the usefulness of energy is determined
by its ability to do work.

Suppose that we take some firewood and use it to “heat” a sealed room. Because of energy
conservation, the energy in the room plus the firewood is the same before and after the firewood
has been converted to ash. But which form of the energy is more capable of doing work? You
probably realize that the firewood is a more useful form of energy than the “hot air” that exists
after the firewood is burned. Originally the energy was stored in the form of chemical (potential)
energy. Afterward the energy is mostly associated with the motion of the molecules in the air.
What has changed is not the total energy, but its ability to do work. We will learn that an increase
in entropy is associated with a loss of ability to do work. We have an entropy problem, not an
energy shortage.
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1.5 Some Simple Simulations

So far we have discussed the behavior of macroscopic systems by appealing to everyday experience
and simple observations. We now discuss some simple ways that we can simulate the behavior of
macroscopic systems, which consist of the order of 1023 particles. Although we cannot simulate
such a large system on a computer, we will find that even relatively small systems of the order of
a hundred particles are sufficient to illustrate the qualitative behavior of macroscopic systems.

Consider a macroscopic system consisting of particles whose internal structure can be ignored.
In particular, imagine a system of N particles in a closed container of volume V and suppose that
the container is far from the influence of external forces such as gravity. We will usually consider
two-dimensional systems so that we can easily visualize the motion of the particles.

For simplicity, we assume that the motion of the particles is given by classical mechanics,
that is, by Newton’s second law. If the resultant equations of motion are combined with initial
conditions for the positions and velocities of each particle, we can calculate, in principle, the
trajectory of each particle and the evolution of the system. To compute the total force on each
particle we have to specify the nature of the interaction between the particles. We will assume
that the force between any pair of particles depends only on the distance between them. This
simplifying assumption is applicable to simple liquids such as liquid argon, but not to water. We
will also assume that the particles are not charged. The force between any two particles must be
repulsive when their separation is small and weakly attractive when they are reasonably far apart.
For simplicity, we will usually assume that the interaction is given by the Lennard-Jones potential,
whose form is given by

u(r) = 4ε
[(σ

r

)12
−
(σ
r

)6]
. (1.1)

A plot of the Lennard-Jones potential is shown in Figure 1.1. The r−12 form of the repulsive part
of the interaction is chosen for convenience only and has no fundamental significance. However,
the attractive 1/r6 behavior at large r is the van der Waals interaction.2 The force between any
two particles is given by f(r) = −du/dr.

Usually we want to simulate a gas or liquid in the bulk. In such systems the fraction of
particles near the walls of the container is negligibly small. However, the number of particles that
can be studied in a simulation is typically 103–106. For these relatively small systems, the fraction
of particles near the walls of the container would be significant, and hence the behavior of such
a system would be dominated by surface effects. The most common way of minimizing surface
effects and to simulate more closely the properties of a bulk system is to use what are known as
toroidal boundary conditions. These boundary conditions are familiar to computer game players.
For example, a particle that exits the right edge of the “box,” re-enters the box from the left side.
In one dimension, this boundary condition is equivalent to taking a piece of wire and making it
into a loop. In this way a particle moving on the wire never reaches the end.

Given the form of the interparticle potential, we can determine the total force on each particle
due to all the other particles in the system. Given this force, we find the acceleration of each
particle from Newton’s second law of motion. Because the acceleration is the second derivative

2The van der Waals interaction arises from an induced dipole-dipole effect. It is present in all molecules, but is
important only for the heavier noble gas atoms. See <en.wikipedia.org/wiki/Van_der_Waals_force> or John J.
Brehm and William J. Mullin, Introduction to the Structure of Matter, John Wiley & Sons (1989).

http://en.wikipedia.org/wiki/Van_der_Waals_force
<en.wikipedia.org/wiki/Van_der_Waals_force>
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Figure 1.1: Plot of the Lennard-Jones potential u(r), where r is the distance between the particles.
Note that the potential is characterized by a length σ and an energy ε.

of the position, we need to solve a second-order differential equation for each particle (for each
direction). (For a two-dimensional system of N particles, we would have to solve 2N differential
equations.) These differential equations are coupled because the acceleration of a given particle
depends on the positions of all the other particles. Obviously, we cannot solve the resultant
set of coupled differential equations analytically. However, we can use relatively straightforward
numerical methods to solve these equations to a good approximation. This way of simulating dense
gases, liquids, solids, and biomolecules is called molecular dynamics.3

Approach to equilibrium. In the following we will explore some of the qualitative properties
of macroscopic systems by doing some simple simulations. Before you actually do the simulations,
think about what you believe the results will be. In many cases, the most valuable part of the
simulation is not the simulation itself, but the act of thinking about a concrete model and its
behavior. The simulations can be run as applications on your computer by downloading the
Launcher from <stp.clarku.edu/simulations/>. The Launcher conveniently packages all the
simulations (and a few more) discussed in these notes into a single file. Alternatively, you can run
each simulation as an applet using a browser.

Problem 1.1. Approach to equilibrium
Suppose that we divide a box into three equal parts and place N particles at random in the middle
third of the box.4 The velocity of each particle is assigned at random and then the velocity of
the center of mass is set to zero. At t = 0, we remove the “barriers” between the three parts and

3The nature of molecular dynamics is discussed in Chapter 8 of Gould, Tobochnik, and Christian.
4We have divided the box into three parts so that the effects of the toroidal boundary conditions will not be as

apparent as if we had initially confined the particles to one half of the box. The particles are placed at random

http://stp.clarku.edu/simulations/
<stp.clarku.edu/simulations/>
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Figure 1.2: Evolution of the number of particles in each third of the box for N = 270. The particles
were initially restricted to the middle third of the box. Toroidal boundary conditions are used in
both directions. The initial velocities were assigned at random from a distribution corresponding
to temperature T = 5.

watch the particles move according to Newton’s equations of motion. We say that the removal of
the barrier corresponds to the removal of an internal constraint. What do you think will happen?
The applet/application at <stp.clarku.edu/simulations/approachtoequilibrium/md3.html>
implements this simulation. (The initial density ρ = N/A is ρ = 0.2.) Give your answers to the
following questions before you do the simulation.

(a) Start the simulation with N = 3 particles. Does the system appear to show a direction of
time?

(b) Choose N = 27 corresponding to n1 = 0, n2 = N , and n3 = 0. What is the qualitative
behavior of n1, n2, and n3, the number of particles in each third of the box, as a function of
the time t? Does the system appear to show a direction of time? Choose various values of N
that are multiples of three up to N = 270. Is the direction of time better defined for larger N?

(c) Run the simulation for a sufficiently long time so that the mean number of particles in each
cell is approximately equal. (For N = 270 this time is about t & 15. It is possible to make
a video of the motion of the particles (choose Video Capture under the Tools menu). Would
you be able to tell if the video were played forward or backward for the various values of N?
Does your conclusion about the direction of time become more certain as N increases?

The results of the simulations in Problem 1.1 might not seem very surprising until you start
to think about them. Why does the system as a whole exhibit a direction of time when the motion

with the constraint that no two particles can be closer than the length σ. This constraint prevents the initial force
between any two particles from being too big, which would lead to the breakdown of the numerical method used to
solve the differential equations.

http://stp.clarku.edu/simulations/approachtoequilibrium/md3.html
 <stp.clarku.edu/simulations/approachtoequilibrium/md3.html>
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of each particle is time reversible? Do the particles fill up the available space simply because the
system becomes less dense?

To gain some more insight into these questions, we consider a simpler simulation. Imagine
a closed box that is divided into two parts of equal volume. The left half initially contains N
identical particles and the right half is empty. We then make a small hole in the partition between
the two halves. What happens? Instead of simulating this system by solving Newton’s equations
for each particle, we adopt a simpler approach based on a probabilistic model. We assume that
the system is so dilute that the particles do not interact with one another. Hence, the probability
per unit time that a particle goes through the hole in the partition is the same for all particles
regardless of the number of particles in either half. We also assume that the size of the hole is such
that only one particle can pass through it in one unit of time.

One way to implement this model is to choose a particle at random and move it to the other
side. This procedure is cumbersome, because our only interest is the number of particles on each
side. That is, we need to know only n, the number of particles on the left side; the number on
the right side is N − n. Because each particle has the same chance to go through the hole in the
partition, the probability per unit time that a particle moves from left to right equals the number
of particles on the left side divided by the total number of particles; that is, the probability of a
move from left to right is n/N . The algorithm for simulating the evolution of the model is given
by the following steps:

1. Generate a random number r from a uniformly distributed set of random numbers in the
unit interval 0 ≤ r < 1.

2. If r ≤ n/N , move a particle from left to right, that is, let n → n − 1; otherwise, move a
particle from right to left, n→ n+ 1.

3. Increase the “time” by 1.

Problem 1.2. Particles in a box

(a) The applet at <stp.clarku.edu/simulations/approachtoequilibrium/box.html> imple-
ments this algorithm and plots the evolution of n. Describe the behavior of n(t) for various
values of N . Does the system approach equilibrium? How would you characterize equilibrium?
In what sense is equilibrium better defined as N becomes larger? Does your definition of equi-
librium depend on how the particles were initially distributed between the two halves of the
box?

(b) When the system is in equilibrium, does the number of particles on the left-hand side remain
a constant? If not, how would you describe the nature of equilibrium?

(c) If N & 32, does the system return to its initial state during the time you have patience to
watch the system?

(d) How does n, the mean number of particles on the left-hand side, depend on N after the system
has reached equilibrium? For simplicity, the program computes various averages from time
t = 0. Why would such a calculation not yield the correct equilibrium average values? What
is the purpose of the Zero averages button?

http://stp.clarku.edu/simulations/approachtoequilibrium/box.html
<stp.clarku.edu/simulations/approachtoequilibrium/box.html>
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(e) Define the quantity σ by the relation

σ2 = (n− n)2. (1.2)

What does σ measure? What would be its value if n were constant? How does σ depend on
N? How does the ratio σ/n depend on N?

From Problems 1.1 and 1.2 we conclude that after some time the macroscopic quantities of
interest become independent of time on the average, and we say that the system has reached
equilibrium. In equilibrium the macroscopic quantities exhibit fluctuations about their average
values. We also learned that the relative fluctuations about the average become smaller as the
number of constituents is increased and the details of the dynamics are irrelevant as far as the
general tendency of macroscopic systems to approach equilibrium. These properties of macroscopic
systems are independent of the dynamics, the nature of the particls, and many other details.

How can we understand why the systems considered in Problems 1.1 and 1.2 exhibit a direction
of time? There are two general approaches that we can take. One way would be to study the
dynamics of the system.5 A much simpler way is to change the question and take advantage of
the fact that the equilibrium state of a macroscopic system is independent of time on the average
and hence time is irrelevant in equilibrium. For the simple system considered in Problem 1.2 we
will see that counting the number of ways that the particles can be distributed between the two
halves of the box will give us much insight into the nature of equilibrium. This information tells
us nothing about the approach of the system to equilibrium, but it will give us insight into why
there is a direction of time.

Let us call each distinct arrangement of the particles between the two halves of the box a
configuration or in general, a microstate. A given particle can be in either the left half or the
right half of the box. Because the halves are equivalent, a given particle is equally likely to be in
either half if the system is in equilibrium. For N = 2, the four possible configurations are shown
in Table 1.1. Note that each configuration has a probability of 1/4 if the system is in equilibrium.

configuration n W (n)
L L 2 1
L R
R L 1 2

R R 0 1

Table 1.1: The four possible ways in which N = 2 particles can be distributed between the
two halves of a box. The quantity W (n) is the number of configurations corresponding to the
macroscopic state characterized by n.

Now let us consider N = 4 for which there are 2 × 2 × 2 × 2 = 24 = 16 configurations (see
Table 1.2). From a macroscopic point of view, we do not care which particle is in which half of the
box, but only the number of particles on the left. Hence, the macroscopic state or macrostate is
specified by n. Let us assume as before that all configurations are equally probable in equilibrium.
We see from Table 1.2 that there is only one configuration with all particles on the left and the
most probable macrostate is n = 2.

5The dynamics of the particles in Problem 1.2 is discussed in Section 1.13.1.
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For larger N , the probability of the most probable macrostate with n = N/2 is much greater
than the macrostate with n = N , which has a probability of only 1/2N corresponding to a single
configuration. The latter configuration is “special” and is said to be nonrandom, while the con-
figurations with n ≈ N/2, for which the distribution of the particles is approximately uniform,
are said to be “random.” So we can see that the equilibrium macrostate corresponds to the most
probable state.

configuration n W (n) P (n)
L L L L 4 1 1/16
R L L L 3
L R L L 3
L L R L 3
L L L R 3

4 4/16

R R L L 2
R L R L 2
R L L R 2
L R R L 2
L R L R 2
L L R R 2

6 6/16

R R R L 1
R R L R 1
R L R R 1
L R R R 1

4 4/16

R R R R 0 1 1/16

Table 1.2: The sixteen possible ways in which N = 4 particles can be distributed between the
two halves of a box. The quantity W (n) is the number of configurations corresponding to the
macroscopic state characterized by n. The probability P (n) of the macrostate n is calculated
assuming that each configuration is equally likely.

Problem 1.3. Enumeration of possible configurations

(a) Calculate the number of possible configurations for each macrostate n for N = 8 particles.
What is the probability that n = 8? What is the probability that n = 4? It is possible
to count the number of configurations for each n by hand if you have enough patience, but
because there are a total of 28 = 256 configurations, this counting would be very tedious. An
alternative is to derive an expression for the number of ways that n particles out of N can
be in the left half of the box. One way to motivate such an expression is to enumerate the
possible configurations for smaller values of N and see if you can observe a pattern.

(b) From part (a) we see that the macrostate with n = N/2 is much more probable than the
macrostate with n = N . Why?

We observe from this example and our counting of the number of configurations that the
macroscates that give us the least amount of information about the associated microstates are the
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most probable. Suppose that we wish to know where particle 1 is, given that N = 4. If n = 4, we
know with certainity that particle 1 is on the left. If n = 3, the probability that particle 1 is on
the left is 3/4. And if n = 2, we only know that particle 1 is on the left with probability 1/2. In
this sense the macrostate n = 2 is more random than macrostates n = 4 and n = 3.

We also observed that if an isolated macroscopic system changes in time due to the removal
of an internal constraint, it tends to evolve from a less random to a more random state. And once
the system reaches its most random state, fluctuations corresponding to an appreciably nonuni-
form state are very rare. These observations and our reasoning based on counting the number of
configurations corresponding to a particular macrostate allows us to conclude that

A system in a nonuniform macrostate will change in time on the average so as to
approach its most random macrostate where it is in equilibrium.

This conclusion is independent of the nature of the dynamics.
Note that our simulations involved watching the system evolve, but our discussion of the

number of configurations corresponding to each macrostate did not involve the dynamics in any
way. Instead this approach involved the enumeration of the configurations and assigning them
equal probabilities assuming that the system is isolated and in equilibrium. We will find that it is
much easier to understand equilibrium systems by ignoring the time altogether.

In the simulation of Problem 1.1 the total energy was conserved, and hence the macroscopic
quantity of interest that changed from the specially prepared initial state with n2 = N to the
most random macrostate with n2 ≈ N/3 was not the total energy. So what macroscopic quantity
changed besides n1, n2, and n3 (the number of particles in each third of the box)? Based on our
previous discussions, we can tentatively say that the quantity that changed is the entropy. This
statement is no more meaningful than saying that balls fall near the earth’s surface because of
gravity. We conjecture that the entropy is associated with the number of configurations associated
with a given macrostate. If we make this association, we see that the entropy is greater after the
system has reached equilibrium than in the system’s initial state. Moreover, if the system were
initially prepared in a random state, the mean value of n2 and hence the entropy would not change.
Hence, we can conclude the following:

The entropy of an isolated system increases or remains the same when an internal
constraint is removed.

This statement is equivalent to the second law of thermodynamics. You might want to skip to
Chapter 4, where this identification of the entropy is made explicit.

As a result of the two simulations that we have considered and our discussions, we can make
some additional tentative observations about the behavior of macroscopic systems.

Fluctuations in equilibrium. Once a system reaches equilibrium, the macroscopic quantities of
interest do not become independent of the time, but exhibit fluctuations about their average values.
That is, in equilibrium only the average values of the macroscopic variables are independent of
time. For example, for the particles in the box problem n(t) changes with t, but its average value
n does not. 6 If N is large, fluctuations corresponding to a very nonuniform distribution of the

6We have not been very careful to define the meaning of the average value n. One way to do so is to average
n(t) over some interval of time. Another way is to do an ensemble average. That is, run the same simulation many
times with different sets of random number sequences and then average the results at a given time (see Section 1.9).
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particles almost never occur, and the relative fluctuations, σ/n (see (1.2)), become smaller as N
is increased.7

History independence. The properties of equilibrium systems are independent of their history.
For example, n would be the same whether we had started with n(t = 0) = 0 or n(t = 0) = N .
In contrast, as members of the human race, we are all products of our history. One consequence
of history independence is that it is easier to understand the properties of equilibrium systems by
ignoring the dynamics of the particles. (The global constraints on the dynamics are important.
For example, it is important to know if the total energy is a constant or not.) We will find that
equilibrium statistical mechanics is essentially equivalent to counting configurations. The problem
will be that this counting is difficult to do in general.

Need for statistical approach. Systems can be described in detail by specifying their microstate.
Such a description corresponds to giving all the information that is possible. For a system of
classical particles, a microstate corresponds to specifying the position and velocity of each particle.
In our analysis of Problem 1.2, we specified only in which half of the box a particle was located, so we
used the term configuration rather than microstate. The terms are frequently used interchangeably.

From our simulations, we see that the microscopic state of the system changes in a complicated
way that is difficult to describe. However, from a macroscopic point of view, the description is
much simpler. Suppose that we simulated a system of many particles and saved the trajectories
of the particles as a function of time. What could we do with this information? If the number of
particles is 106 or more or if we ran long enough, we would have a problem storing the data. Do
we want to have a detailed description of the motion of each particle? Would this data give us
much insight into the macroscopic behavior of the system? As we have found, the trajectories of
the particles are not of much interest, and it is more useful to develop a probabilistic approach.
That is, the presence of a large number of particles motivates us to use statistical methods. In
Section 1.8 we will discuss another reason why a probabilistic approach is necessary.

We will find that the laws of thermodynamics depend on the fact that the number of particles in
macroscopic systems is enormous. A typical measure of this number is Avogadro’s number which
is approximately 6 × 1023, the number of atoms in a mole. When there are so many particles,
predictions of the average properties of the system become meaningful, and deviations from the
average behavior become less and less important as the number of atoms is increased.

An analogous example that illustrates the need for a statistical apporach is the stock market.
Assume that you wish to invest in stocks with the goal of making money in the short term. And
suppose that you could obtain information about all the transactions that are taking place in the
world at any one time. This information might be very helpful in planning your investments, but
its much too much information to be useful. Averages such as the Dow Jones, Standard & Poor
500, and the Nasdaq, which represent averages over subsets of stocks, are much more useful.

Equal a priori probabilities. In our analysis of the probability of each macrostate in Prob-
7In this introductory chapter some of our general statements need to be qualified. For example, just because a

system has constant macroscopic properties does not mean that it is in equilibrium. This statement applies only to
isolated systems, for example, systems with fixed energy, volume, and number of particles. If the system is driven
by external forces or currents that are time-independent, the observable macroscopic properties of the system can
also be time independent, and the system is said to be in a steady state. For example, consider a metal bar with
one end in contact with a large system at temperature Thot and the other end in contact with a large system at
temperature Tcold. If Thot > Tcold, energy will be continually transported from the “hot” end to the “cold” end.
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lem 1.2, we assumed that each configuration was equally probable. That is, each configuration of
an isolated system occurs with equal probability if the system is in equilibrium. We will make this
assumption explicit for isolated systems in Chapter 4.

Existence of different phases. So far our simulations of interacting systems have been restricted
to dilute gases. What do you think would happen if we made the density higher? Would a system
of interacting particles form a liquid or a solid if the temperature or the density were chosen
appropriately? The existence of different phases is investigated in Problem 1.4.

Problem 1.4. Different phases

(a) The applet/application at <stp.clarku.edu/simulations/lj.html> simulates an isolated
system of N particles interacting via the Lennard-Jones potential. Choose N = 64 and L = 18
so that the density ρ = N/L2 ≈ 0.2. The initial positions are chosen at random except that
no two particles are allowed to be closer than σ. Run the simulation and satisfy yourself that
this choice of density and resultant total energy corresponds to a gas. What is your criterion?

(b) Slowly lower the total energy of the system. (The total energy is lowered by rescaling the
velocities of the particles.) If you are patient, you might be able to observe “liquid-like”
regions. How are they different than “gas-like” regions?

(c) If you decrease the total energy further, you will observe the system in a state roughly corre-
sponding to a solid. What is your criteria for a solid? Explain why the solid that we obtain in
this way will not be a perfect crystalline solid.

(d) Describe the motion of the individual particles in the gas, liquid, and solid phases.

(e) Conjecture why a system of particles interacting via the Lennard-Jones potential in (1.1) can
exist in different phases. Is it necessary for the potential to have an attractive part for the
system to have a liquid phase? Is the attractive part necessary for there to be a solid phase?
Describe a simulation that would help you answer this question.

It is remarkable that a system with the same interparticle interaction can be in different
phases. At the microscopic level, the dynamics of the particles is governed by the same equations
of motion. What changes? How does such a phase change occur at the microscopic level? Why
doesn’t a liquid crystallize immediately when its temperature is lowered quickly? What happens
when it does begin to crystallize? We will find in later chapters that phase changes are examples
of cooperative effects. Familiar examples of phase transitions are the freezing and boiling of water.
Another example with which you might be familiar is the loss of magnetism of nickel or iron above
a certain temperature (358◦C for nickel). Other phase transitions are the occurrence of gridlock on
a highway when the density of vehicles exceeds a certain value, and the occurrence of an epidemic
as a function of immune response and population density.

1.6 Measuring the Pressure and Temperature

The obvious macroscopic variables that we can measure in our simulations of the system of particles
interacting via the Lennard-Jones potential include the average kinetic and potential energies, the

http://stp.clarku.edu/simulations/lj.html
<stp.clarku.edu/simulations/lj.html>
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number of particles, and the volume. We also learned that the entropy is a relevant macroscopic
variable, but we have not learned how to determine it from a simulation.8 We know from our
everyday experience that there are at least two other macroscopic variables that are relevant for
describing a macrostate, namely, the pressure and the temperature.

The pressure is relatively easy to measure because we are familiar with force and pressure from
courses in mechanics. To remind you of the relation of the pressure to the momentum flux, consider
N particles in a container of volume V and linear dimension L. The center of mass momentum
of the particles is zero. For simplicity, we will consider an ideal gas, which is a system of particles
in which we can ignore the forces between the particles. In this case the pressure arises from the
collisions of the particles with the walls of the container. The pressure P is the force per unit area
acting normal to the surface:

P =
Fx

A
. (1.3)

We have written P as a scalar because the pressure is the same in all directions on the average.
From Newton’s second law, we can rewrite (1.3) as

P =
1
A

d(mvx)
dt

. (1.4)

From (1.4) we see that the pressure is related to the amount of momentum transferred to the wall,
which we have assumed to be reflecting.9

Problem 1.5. Nature of temperature

(a) Summarize what you know about temperature. What reasons do you have for thinking that
it has something to do with energy?

(b) Discuss what happens to the temperature of a hot cup of coffee. What happens, if anything,
to the temperature of its surroundings?

The relation between temperature and energy is not simple. For example, one way to increase
the energy of a glass of water would be to lift it. However, this action would not affect the
temperature of the water. So the temperature has nothing to do with the motion of the center of
mass of the system. As another example, if we placed a container of water on a moving conveyor
belt, the temperature of the water would not change. We also know that temperature is a property
associated with many particles. It would be absurd to refer to the temperature of a single molecule.

This discussion suggests that temperature has something to do with energy, but it has missed
the most fundamental property of temperature, that is, the temperature is the quantity that becomes
equal when two systems are allowed to exchange energy with one another. (Think about what
happens to a cup of hot coffee.) In Problem 1.6 we identify the temperature from this point of
view for a system of particles.

8We will find that it is very difficult to determine the entropy directly by making either measurements in the
laboratory or during a simulation. Entropy, unlike pressure and temperature, has no mechanical analog.

9Because most of our simulations are done using toroidal boundary conditions, we will use the relation of the
pressure to the virial, a mechanical quantity that involves all the particles in the system, not just those colliding
with a wall. See Gould, Tobochnik, and Christian, Chapter 8. The relation of the pressure to the virial is usually
considered in graduate courses in mechanics.
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Problem 1.6. Identification of the temperature

(a) Consider two systems of particles interacting via the Lennard-Jones potential given in (1.1). Se-
lect the applet/application at <stp.clarku.edu/simulations/thermalcontact.html>. For
system A, we take NA = 81, εAA = 1.0, and σAA = 1.0; for system B, we have NB = 64,
εAA = 1.5, and σAA = 1.2. Both systems are in a square box with linear dimension L = 12. In
this case, toroidal boundary conditions are not used and the particles also interact with fixed
particles (with infinite mass) that make up the walls and the partition between them. Initially,
the two systems are isolated from each other and from their surroundings. Run the simulation
until each system appears to be in equilibrium. Does the kinetic energy and potential energy
of each system change as the system evolves? Why? What is the mean potential and kinetic
energy of each system? Is the total energy of each system fixed (to within numerical error)?

(b) Remove the barrier and let the two systems interact with one another.10 We choose εAB = 1.25
and σAB = 1.1. What quantity is exchanged between the two systems? (The volume of each
system is fixed.)

(c) Monitor the kinetic and potential energy of each system. After equilibrium has been established
between the two systems, compare the average kinetic and potential energies to their values
before the two systems came into contact.

(d) We are looking for a quantity that is the same in both systems after equilibrium has been
established. Are the average kinetic and potential energies the same? If not, think about what
would happen if you doubled the N and the area of each system? Would the temperature
change? Does it make more sense to compare the average kinetic and potential energies or the
average kinetic and potential energies per particle? What quantity does become the same once
the two systems are in equilibrium? Do any other quantities become approximately equal?
What do you conclude about the possible identification of the temperature?

From the simulations in Problem 1.6, you are likely to conclude that the temperature is
proportional to the average kinetic energy per particle. We will learn in Chapter 4 that the
proportionality of the temperature to the average kinetic energy per particle holds only for a
system of particles whose kinetic energy is proportional to the square of the momentum (velocity).

Another way of thinking about temperature is that temperature is what you measure with a
thermometer. If you want to measure the temperature of a cup of coffee, you put a thermometer
into the coffee. Why does this procedure work?

Problem 1.7. Thermometers

(a) Describe some of the simple thermometers with which you are familiar.

(b) On what physical principles do these thermometers operate?

(c) What requirements must a thermometer have?

10In order to ensure that we can continue to identify which particle belongs to system A and system B, we have
added a spring to each particle so that it cannot wander too far from its original lattice site.

http://stp.clarku.edu/simulations/thermalcontact.html
<stp.clarku.edu/simulations/thermalcontact.html>
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Now lets imagine a simulation of a simple thermometer. Imagine a special particle, a “demon,”
that is able to exchange energy with a system of particles. The only constraint is that the energy
of the demon Ed must be non-negative. The behavior of the demon is given by the following
algorithm:

1. Choose a particle in the system at random and make a trial change in one of its coordinates.

2. Compute ∆E, the change in the energy of the system due to the change.

3. If ∆E ≤ 0, the system gives the surplus energy |∆E| to the demon, Ed → Ed + |∆E|, and
the trial configuration is accepted.

4. If ∆E > 0 and the demon has sufficient energy for this change, then the demon gives the
necessary energy to the system, Ed → Ed − ∆E, and the trial configuration is accepted.
Otherwise, the trial configuration is rejected and the configuration is not changed.

Note that the total energy of the system and the demon is fixed.
We consider the consequences of these simple rules in Problem 1.8. The nature of the demon

is discussed further in Section 4.9.

Problem 1.8. The demon and the ideal gas

(a) The applet/application at <stp.clarku.edu/simulations/demon> simulates a demon that
exchanges energy with an ideal gas of N particles moving in d spatial dimensions. Because the
particles do not interact, the only coordinate of interest is the velocity of the particles. In this
case the demon chooses a particle at random and changes its velocity in one of its d directions
by an amount chosen at random between −∆ and +∆. For simplicity, the initial velocity of
each particle is set equal to +v0x̂, where v0 = (2E0/m)1/2/N , E0 is the desired total energy of
the system, and m is the mass of the particles. For simplicity, we will choose units such that
m = 1. Choose d = 1, N = 40, and E0 = 10 and determine the mean energy of the demon Ed

and the mean energy of the system E. Why is E 6= E0?

(b) What is e, the mean energy per particle of the system? How do e and Ed compare for various
values of E0? What is the relation, if any, between the mean energy of the demon and the
mean energy of the system?

(c) Choose N = 80 and E0 = 20 and compare e and Ed. What conclusion, if any, can you make?11

(d) Run the simulation for several other values of the initial total energy E0 and determine how e
depends on Ed for fixed N .

(e) From your results in part (d), what can you conclude about the role of the demon as a
thermometer? What properties, if any, does it have in common with real thermometers?

(f) Repeat the simulation for d = 2. What relation do you find between e and Ed for fixed N?

11There are finite size effects that are order 1/N .

http://stp.clarku.edu/simulations/demon
<stp.clarku.edu/simulations/demon>
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(g) Suppose that the energy momentum relation of the particles is not ε = p2/2m, but is ε = cp,
where c is a constant (which we take to be unity). Determine how e depends on Ed for fixed
N and d = 1. Is the dependence the same as in part (d)?

(h) Suppose that the energy momentum relation of the particles is ε = Ap3/2, where A is a constant
(which we take to be unity). Determine how e depends on Ed for fixed N and d = 1. Is this
dependence the same as in part (d) or part (g)?

(i) The simulation also computes the probability P (Ed)δE that the demon has energy between
Ed and Ed +δE. What is the nature of the dependence of P (Ed) on Ed? Does this dependence
depend on the nature of the system with which the demon interacts?

1.7 Work, Heating, and the First Law of Thermodynamics

If you watch the motion of the individual particles in a molecular dynamics simulation, you would
probably describe the motion as “random” in the sense of how we use random in everyday speech.
The motion of the individual molecules in a glass of water would exhibit similar motion. Suppose
that we were to expose the water to a low flame. In a simulation this process would roughly
correspond to increasing the speed of the particles when they hit the wall. We say that we have
transferred energy to the system incoherently because each particle would continue to move more
or less at random.

You learned in your classical mechanics courses that the change in energy of a particle equals
the work done on it and the same is true for a collection of particles as long as we do not change
the energy of the particles in some other way at the same time. Hence, if we squeeze a plastic
container of water, we would do work on the system, and we would see the particles near the wall
move coherently. So we can distinguish two different ways of transferring energy to the system.
That is, heating transfers energy incoherently and doing work transfers energy coherently.

Lets consider a molecular dynamics simulation again and suppose that we have increased
the energy of the system by either compressing the system and doing work on it or by randomly
increasing the speed of the particles that reach the walls of the container. Roughly speaking, the
first way would initially increase the potential energy of interaction and the second way would
initially increase the kinetic energy of the particles. If we increase the total energy by the same
amount, could we tell by looking at the particle trajectories after equilibrium has been reestablished
how the energy had been increased? The answer is no, because for a given total energy, volume,
and number of particles, the kinetic energy and the potential energy would have unique equilibrium
values. (See Problem 1.6 for a demonstration of this property.) We conclude that the energy of
the gas can be changed by doing work on it or by heating it or by both processes. This statement
is equivalent to the first law of thermodynamics and from the microscopic point of view is simply
a statement of conservation of energy.

Our discussion implies that the phrase “adding heat” to a system makes no sense, because
we cannot distinguish “heat energy” from potential energy and kinetic energy. Nevertheless, we
frequently use the word “heat ” in everyday speech. For example, we might way “Please turn on
the heat” and “I need to heat my coffee.” We will avoid such uses, and whenever possible avoid
the use of the noun “heat.” Why do we care? Because there is no such thing as heat! Once upon
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a time, scientists thought that there was a fluid in all substances called caloric or heat that could
flow from one substance to another. This idea was abandoned many years ago, but is still used in
common language. Go ahead and use heat outside the classroom, but we won’t use it here.

1.8 *The Fundamental Need for a Statistical Approach

In Section 1.5 we discussed the need for a statistical approach when treating macroscopic systems
from a microscopic point of view. Although we can compute the trajectory (the position and
velocity) of each particle for as long as we have patience, our disinterest in the trajectory of any
particular particle and the overwhelming amount of information that is generated in a simulation
motivates us to develop a statistical approach.

We now discuss why there is a more fundamental reason why we must use probabilistic meth-
ods to describe systems with more than a few particles. The reason is that under a wide variety of
conditions, even the most powerful supercomputer yields positions and velocities that are mean-
ingless! In the following, we will find that the trajectories in a system of many particles depend
sensitively on the initial conditions. Such a system is said to be chaotic. This behavior forces us
to take a statistical approach even for systems with as few as three particles.

As an example, consider a system of N = 11 particles moving in a box of linear dimension
L (see the applet/application at <stp.clarku.edu/simulations/sensitive.html>). The initial
conditions are such that all particles have the same velocity vx(i) = 1, vy(i) = 0, and the particles
are equally spaced vertically, with x(i) = L/2 for i = 1, . . . , 11 (see Fig. 1.3(a)). Convince yourself
that for these special initial conditions, the particles will continue moving indefinitely in the x-
direction (using toroidal boundary conditions).

Now let us stop the simulation and change the velocity of particle 6, such that vx(6) =
1.000001. What do you think happens now? In Fig. 1.3(b) we show the positions of the particles
at time t = 8.0 after the change in velocity of particle 6. Note that the positions of the particles
are no longer equally spaced and the velocities of the particles are very different. So in this case,
a small change in the velocity of one particle leads to a big change in the trajectories of all the
particles.

Problem 1.9. Irreversibility
The applet/application at <stp.clarku.edu/simulations/sensitive.html> simulates a system
of N = 11 particles with the special initial condition described in the text. Confirm the results that
we have discussed. Change the velocity of particle 6 and stop the simulation at time t and reverse
all the velocities. Confirm that if t is sufficiently short, the particles will return approximately to
their initial state. What is the maximum value of t that will allow the system to return to its
initial positions if t is replaced by −t (all velocities reversed)?

An important property of chaotic systems is their extreme sensitivity to initial conditions,
that is, the trajectories of two identical systems starting with slightly different initial conditions
will diverge exponentially in a short time. For such systems we cannot predict the positions and
velocities of the particles very far into the future because even the slightest error in our measurement
of the initial conditions would make our prediction entirely wrong if the elapsed time is sufficiently
long. That is, we cannot answer the question, “Where is particle 2 at time t?” if t is sufficiently

http://stp.clarku.edu/simulations/sensitive.html
<stp.clarku.edu/simulations/sensitive.html>
http://stp.clarku.edu/simulations/sensitive.html
<stp.clarku.edu/simulations/sensitive.html>
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(a) (b)

Figure 1.3: (a) A special initial condition for N = 11 particles such that their motion remains
parallel indefinitely. (b) The positions of the particles at time t = 8.0 after the change in vx(6).
The only change in the initial condition from part (a) is that vx(6) was changed from 1 to 1.000001.

long. It might be disturbing to realize that our answers are meaningless if we ask the wrong
questions.

Although Newton’s equations of motion are time reversible, this reversibility cannot be realized
in practice for chaotic systems. Suppose that a chaotic system evolves for a time t and all the
velocities are reversed. If the system is allowed to evolve for an additional time t, the system will
not return to its original state unless the velocities are specified with infinite precision. This lack
of practical reversibility is related to what we observe in macroscopic systems. If you pour milk
into a cup of coffee, the milk becomes uniformly distributed throughout the cup. You will never
see a cup of coffee spontaneously return to the state where all the milk is at the surface because
to do so, the positions and velocities of the milk and coffee molecules must be chosen so that the
molecules of milk return to this very special state. Even the slightest error in the choice of positions
and velocities will ruin any chance of the milk returning to the surface. This sensitivity to initial
conditions provides the foundation for the arrow of time.

1.9 *Time and Ensemble Averages

We have seen that although the computed trajectories are meaningless for chaotic systems, av-
erages over the trajectories are meaningful. That is, although a computed trajectory might not
be the one that we thought we were computing, the positions and velocities that we compute are
consistent with the constraints we have imposed, in this case, the total energy E, the volume V ,
and the number of particles N . This reasoning suggests that macroscopic properties such as the
temperature and pressure must be expressed as averages over the trajectories.
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Solving Newton’s equations numerically as we have done in our simulations yields a time
average. If we do a laboratory experiment to measure the temperature and pressure, our mea-
surements also would be equivalent to a time average. As we have mentioned, time is irrelevant in
equilibrium. We will find that it is easier to do calculations in statistical mechanics by doing an
ensemble average. We will discuss ensemble averages in Chapter 3. In brief an ensemble average is
over many mental copies of the system that satisfy the same known conditions. A simple example
might clarify the nature of these two types of averages. Suppose that we want to determine the
probability that the toss of a coin results in “heads.” We can do a time average by taking one
coin, tossing it in the air many times, and counting the fraction of heads. In contrast, an ensemble
average can be found by obtaining many similar coins and tossing them into the air at one time.

It is reasonable to assume that the two ways of averaging are equivalent. This equivalence
is called the quasi-ergodic hypothesis. The use of the term “hypothesis” might suggest that the
equivalence is not well accepted, but it reminds us that the equivalence has been shown to be
rigorously true in only a few cases. The sensitivity of the trajectories of chaotic systems to initial
conditions suggests that a classical system of particles moving according to Newton’s equations of
motion passes through many different microstates corresponding to different sets of positions and
velocities. This property is called mixing, and it is essential for the validity of the quasi-ergodic
hypothesis.

In summary, macroscopic properties are averages over the microscopic variables and give
predictable values if the system is sufficiently large. One goal of statistical mechanics is to give
a microscopic basis for the laws of thermodynamics. In this context it is remarkable that these
laws depend on the fact that gases, liquids, and solids are chaotic systems. Another important
goal of statistical mechanics is to calculate the macroscopic properties from a knowledge of the
intermolecular interactions.

1.10 *Models of Matter

There are many models of interest in statistical mechanics, corresponding to the wide range of
macroscopic systems found in nature and made in the laboratory. So far we have discussed a
simple model of a classical gas and used the same model to simulate a classical liquid and a solid.

One key to understanding nature is to develop models that are simple enough to analyze, but
that are rich enough to show the same features that are observed in nature. Some of the more
common models that we will consider include the following.

1.10.1 The ideal gas

The simplest models of macroscopic systems are those for which there is no interaction between
the individual particles. For example, if a system of particles is very dilute, collisions between
the particles will be rare and can be neglected under most circumstances. In the limit that the
interactions between the particles can be neglected completely, the model is known as the ideal
gas. The classical ideal gas allows us to understand much about the behavior of dilute gases,
such as those in the earth’s atmosphere. The quantum version will be useful in understanding
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blackbody radiation (Section 6.9), electrons in metals (Section 6.10), the low temperature behavior
of crystalline solids (Section 6.11), and a simple model of superfluidity (Section 6.12).

The term “ideal gas” is a misnomer because it can be used to understand the properties of
solids and other interacting particle systems under certain circumstances, and because in many
ways the neglect of interactions is not ideal. The historical reason for the use of this term is that
the neglect of interparticle interactions allows us to do some calculations analytically. However,
the neglect of interparticle interactions raises other issues. For example, how does an ideal gas
reach equilibrium if there are no collisions between the particles?

1.10.2 Interparticle potentials

As we have mentioned, the most popular form of the potential between two neutral atoms is the
Lennard-Jones potential12 given in (1.1). This potential has an weak attractive tail at large r and is
strongly repulsive at shorter distances. The Lennard-Jones potential is appropriate for closed-shell
systems, that is, rare gases such as Ar or Kr. The Lennard-Jones potential is a very important
model system and is the standard potential for studies where the focus is on fundamental issues,
rather than on the properties of a specific material.

An even simpler interaction is the hard core interaction given by

V (r) =

{
∞ (r ≤ σ)
0. (r > σ)

(1.5)

A system of particles interacting via (1.5) is called a system of hard spheres, hard disks, or hard
rods depending on whether the spatial dimension is three, two, or one, respectively. Note that
V (r) in (1.5) is purely repulsive.

1.10.3 Lattice models

In another class of models, the positions of the particles are restricted to a lattice or grid and the
momenta of the particles are irrelevant. In the most popular model of this type the “particles”
correspond to magnetic moments. At high temperatures the magnetic moments are affected by
external magnetic fields, but the interaction between moments can be neglected.

The simplest, nontrivial model that includes interactions is the Ising model, the most impor-
tant model in statistical mechanics. The model consists of spins located on a lattice such that
each spin can take on one of two values designated as up and down or ±1. The interaction energy
between two neighboring spins is −J if the two spins are in the same state and +J if they are
in opposite states. One reason for the importance of this model is that it is one of the simplest
to have a phase transition, in this case, a phase transition between a ferromagnetic state and a
paramagnetic state.

If we consider spin up to correspond to a particle and spin down to correspond to an empty
site, then the same model, now called a lattice gas, can be used to understand the transition from

12This potential is named after John Lennard-Jones, 1894–1954, a theoretical chemist and physicist at Cambridge
University.
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gas to fluid. The Ising model and the corresponding lattice gas model are the simplest models to
exhibit a phase transition.

We will focus on three classes of models – the ideal classical and quantum gas, classical systems
of interacting particles, and the Ising model and its extensions. These models will be used in many
contexts to illustrate the ideas and techniques of statistical mechanics.

1.11 Importance of Simulations

Only simple models such as the ideal gas or special cases such as the two-dimensional Ising model
can be analyzed by analytical methods. Much of what is done in statistical mechanics is to establish
the general behavior of a model and then relate it to the behavior of another model. This way of
understanding is not as strange as it first might appear. How many different systems in classical
mechanics can be solved exactly?

Statistical physics has grown in importance over the past several decades because powerful
computers and new computer algorithms have allowed us to explore the consequences of more com-
plex systems. Simulations play an important intermediate role between theory and experiment. As
our models become more realistic, it is likely that they will require the computer for understanding
many of their properties. In a simulation we start with a microscopic model for which the variables
represent the microscopic constituents and determine the consequences of their interactions. Fre-
quently the goal of our simulations is to explore these consequences so that we have a better idea
of what type of theoretical analysis might be possible and what type of laboratory experiments
should be done. Simulations allow us to compute many different kinds of quantities, some of which
cannot be measured in a laboratory experiment.

Not only can we simulate reasonably realistic models, we also can study models that are im-
possible to realize in the laboratory, but are useful for providing a deeper theoretical understanding
of real systems. For example, a comparison of the behavior of a model in three and four spatial
dimensions can yield insight into why the three-dimensional system behaves the way it does.

Simulations cannot replace laboratory experiments and are limited by the finite size of the
systems and by the short duration of our runs. For example, at present the longest simulations of
simple liquids are for no more than 10−6 s.

Not only have simulations made possible new ways of doing research, they also make it possible
to illustrate the important ideas of statistical mechanics. We hope that the simulations that we
have already discussed have already convinced you of their utility. For this reason, we will consider
many simulations throughout these notes.

1.12 Summary

This introductory chapter has been designed to whet your appetite, and at this point it is not
likely that you will fully appreciate the significance of such concepts as entropy and the direction
of time. We are reminded of the book, All I Really Need to Know I Learned in Kindergarten.13

13Robert Fulghum, All I Really Need to Know I Learned in Kindergarten, Ballantine Books (2004).
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In principle, we have discussed most of the important ideas in thermodynamics and statistical
physics, but it will take you a while before you understand these ideas in any depth.

We also have not discussed the tools necessary to solve any problems. Your understanding of
these concepts and the methods of statistical and thermal physics will increase as you work with
these ideas in different contexts. You will find that the unifying aspects of thermodynamics and
statistical mechanics are concepts such as the nature of equilibrium, the direction of time, and
the existence of cooperative effects and different phases. However, there is no unifying equation
such as Newton’s second law of motion in mechanics, Maxwell’s equations in electrodynamics, and
Schrödinger’s equation in nonrelativistic quantum mechanics.

There are many subtleties that we have glossed over so that we could get started. For example,
how good is our assumption that the microstates of an isolated system are equally probable? This
question is a deep one and has not been completely answered. The answer likely involves the
nature of chaos. Chaos seems necessary to insure that the system will explore a large number of
the available microstates, and hence make our assumption of equal probabilities valid. However,
we do not know how to tell a priori whether a system will behave chaotically or not.

Most of our discussion concerns equilibrium behavior. The “dynamics” in thermodynamics
refers to the fact that we can treat a variety of thermal processes in which a system moves from
one equilibrium state to another. Even if the actual process involves non-equilibrium states, we
can replace the non-equilibrium states by a series of equilibrium states which begin and end at
the same equilibrium states. This type of reasoning is analogous to the use of energy arguments
in mechanics. A ball can roll from the top of a hill to the bottom, rolling over many bumps and
valleys, but as long as there is no dissipation due to friction, we can determine the ball’s motion
at the bottom without knowing anything about how the ball got there.

The techniques and ideas of statistical mechanics are now being used outside of traditional
condensed matter physics. The field theories of high energy physics, especially lattice gauge theo-
ries, use the methods of statistical mechanics. New methods of doing quantum mechanics convert
calculations to path integrals that are computed numerically using methods of statistical mechan-
ics. Theories of the early universe use ideas from thermal physics. For example, we speak about
the universe being quenched to a certain state in analogy to materials being quenched from high
to low temperatures. We already have seen that chaos provides an underpinning for the need for
probability in statistical mechanics. Conversely, many of the techniques used in describing the
properties of dynamical systems have been borrowed from the theory of phase transitions, one of
the important areas of statistical mechanics.

Thermodynamics and statistical mechanics have traditionally been applied to gases, liquids,
and solids. This application has been very fruitful and is one reason why condensed matter physics,
materials science, and chemical physics are rapidly evolving and growing areas. Examples of new
materials include high temperature superconductors, low-dimensional magnetic and conducting
materials, composite materials, and materials doped with various impurities. In addition, scientists
are taking a new look at more traditional condensed systems such as water and other liquids,
liquid crystals, polymers, crystals, alloys, granular matter, and porous media such as rocks. And
in addition to our interest in macroscopic systems, there is growing interest is mesoscopic systems,
systems that are neither microscopic nor macroscopic, but are in between, that is, between ∼ 102

to ∼ 106 particles.
Thermodynamics might not seem to be as interesting to you when you first encounter it.
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However, an understanding of thermodynamics is important in many contexts including societal
issues such as global warming, electrical energy production, fuel cells, and other alternative energy
sources.

The science of information theory uses many ideas from statistical mechanics, and recently, new
optimization methods such as simulated annealing have been borrowed from statistical mechanics.

In recent years statistical mechanics has evolved into the more general field of statistical
physics. Examples of systems of interest in the latter area include earthquake faults, granular mat-
ter, neural networks, models of computing, genetic algorithms, and the analysis of the distribution
of time to respond to email. Statistical physics is characterized more by its techniques than by the
problems that are its interest. This universal applicability makes the techniques more difficult to
understand, but also makes the journey more exciting.

1.13 Supplementary Notes

1.13.1 Approach to Equilibrium

In Problem 1.2 we learned that n(t) decreases in time from its initial value to its equilibrium value
in an almost deterministic manner if N � 1. It is instructive to derive the time dependence of
n(t) to show explicitly how chance can generate deterministic behavior.

We know that if we run the simulation once, n(t) will exhibit fluctuations and not decay
monotonically to equilibrium. Suppose that we do the simulation many times and average the
results of each run at a given time t. As discussed in Section 1.9, this average is an ensemble
average, which we will denote as n(t). If there are n(t) particles on the left side after t moves, the
change in n in the time interval ∆t is given by

∆n =
[−n(t)

N
+
N − n(t)

N

]
∆t. (1.6)

(We defined the time so that the time interval ∆t = 1 in our simulations.) Equation (1.6) is
equivalent to assuming that the change in n in one time step is equal to the probability that a
particle is removed from the left plus the probability that it is added to the right. If we treat n
and t as continuous variables and take the limit ∆t→ 0, we have

∆n
∆t
→ dn

dt
= 1− 2n(t)

N
. (1.7)

The solution of the differential equation (1.7) is

n(t) =
N

2

[
1 + e−2t/N

]
, (1.8)

where we have used the initial condition n(t = 0) = N . Note that n(t) decays exponentially to its
equilibrium value N/2. How does this form (1.8) compare to your simulation results for various
values of N?

Note that we can define a relaxation time τ as the time it takes the difference [n(t) − N/2]
to decrease to 1/e of its initial value. Because τ = N/2, n(t) for large N varies slowly and we are
justified in rewriting the difference equation (1.6) as a differential equation.
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Problem 1.10. Independence of initial conditions
Show that if the number of particles on the left-hand side of the box at t = 0 is equal to n(0)
rather than N/2, the solution of (1.7) is

n(t) =
N

2
− N

2

[
1− 2n(0)

N

]
e−2t/N . (1.9)

Note that n(t)→ N/2 as t→∞ independent of the value of n(0).

1.13.2 Mathematics refresher

As discussed in Section 1.12, there is no unifying equation in statistical mechanics such as Newton’s
second law of motion to be solved in a variety of contexts. For this reason we will not use only one
mathematical tool, but instead will need many tools. Section 1.13.2 summarizes the mathematics
of thermodynamics which makes much use of partial derivatives. Appendix A summarizes some of
the mathematical formulas and relations that we will use. If you can do the following problems,
you have a good background for most of the mathematics that we will use in the following chapters.

Problem 1.11. Derivatives
Calculate the derivative with respect to x of the following functions: ex, e3x, eax, lnx, lnx2, ln 3x,
ln 1/x, sinx, cosx, sin 3x, and cos 2x.

Problem 1.12. Integrals
Calculate the following integrals: ∫ 2

1

dx

2x2
(1.10a)∫ 2

1

dx

4x
(1.10b)∫ 2

1

e3xdx (1.10c)

Problem 1.13. Partial derivatives
Calculate the partial derivative of x2 + xy + 3y2 with respect to x and y.

Vocabulary
thermodynamics, statistical mechanics
macroscopic system
configuration, microstate, macrostate
specially prepared state, equilibrium, fluctuations
thermal contact, temperature
sensitivity to initial conditions
models, computer simulations
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Additional Problems

Problems page
1.1 7
1.2 9
1.3 11
1.4 14
1.5 and 1.6 16
1.7 16
1.8 17
1.9 19
1.10 26

Table 1.3: Listing of inline problems.

Problem 1.14. The dye is cast

(a) What do you observe when a small amount of black dye is placed in a glass of water?

(b) Suppose that a video were taken of this process and the video was run backward without
your knowledge. Would you be able to observe whether the video was being run forward or
backward?

(c) Suppose that you could watch a video of the motion of an individual ink molecule. Would you
be able to know that the video was being shown forward or backward?

Problem 1.15. Irreversibility in everyday experience
Describe several examples based on your everyday experience that illustrate the unidirectional
temporal behavior of macroscopic systems. For example, what happens to ice placed in a glass of
water at room temperature? What happens if you make a small hole in an inflated tire? What
happens if you roll a ball on a hard surface?

Problem 1.16. Fluids as metaphor

(a) In what contexts can we treat water as a fluid? In what context can water not be treated as
a fluid?

(b) Why is “heat” treated as a fluid in everyday speech? After all most people are not familiar
with the caloric theory of heat!

(c) What evidence can you cite from your everyday experience that the molecules in a glass of
water or in the surrounding air are in seemingly endless random motion?

Problem 1.17. Temperature
How do you know that two objects are at the same temperature? How do you know that two
bodies are at different temperatures?
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Problem 1.18. Time reversal invariance
Show that Newton’s equations for a system of N particles are time reversal invariant.

Problem 1.19. Properties of macroscopic systems
Summarize your understanding of the properties of macroscopic systems.

Problem 1.20. What’s in a name?
Ask some friends why a ball falls when released above the Earth’s surface. Explain why the answer
“gravity” is not really an explanation.

Problem 1.21. Randomness
What is your understanding of the concept of “randomness” at this time? Does “random motion”
imply that the motion occurs according to unknown rules?

Problem 1.22. Meaning of abstract concepts
Write a paragraph on the meanings of the abstract concepts, “energy” and “justice.” (See the
Feynman Lectures, Vol. 1, Chapter 4, for a discussion of why it is difficult to define such abstract
concepts.)

Problem 1.23. Bicycle pump
Suppose that the handle of a plastic bicycle pump is rapidly pushed inward. Predict what happens
to the temperature of the air inside the pump and explain your reasoning. (This problem is given
here to determine how you think about this type of problem at this time. Similar problems will
appear in later chapters to see if and how your reasoning has changed.)

Problem 1.24. Granular matter
A box of glass beads is another example of a macroscopic system if the number of beads is suffi-
ciently large. In what ways is such a system different than the macroscopic systems such as a glass
of water that we have discussed in this chapter?
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Thermodynamic Concepts and
Processes

c©2008 by Harvey Gould and Jan Tobochnik
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We introduce the concepts of temperature, energy, work, heating, entropy, engines, and the laws
of thermodynamics and related macroscopic concepts.

2.1 Introduction

In this chapter we will discuss ways of thinking about macroscopic systems and introduce the basic
concepts of thermodynamics. Because these ways of thinking are very different from the ways that
we think about microscopic systems, most students of thermodynamics initially find it difficult
to apply the abstract principles of thermodynamics to concrete problems. However, the study of
thermodynamics has many rewards as was appreciated by Einstein:

A theory is the more impressive the greater the simplicity of its premises, the more
different kinds of things it relates, and the more extended its area of applicability.
Therefore the deep impression that classical thermodynamics made to me. It is the only
physical theory of universal content which I am convinced will never be overthrown,
within the framework of applicability of its basic concepts.1

The essence of thermodynamics can be summarized by two laws: (1) Energy is conserved
and (2) entropy increases. These statements of the laws are deceptively simple. What is energy?
You are probably familiar with the concept of energy from other courses, but can you define it?
Abstract concepts such as energy and entropy are not easily defined nor understood. However, as
you apply these concepts in a variety of contexts, you will gradually come to understand them.2

1A. Einstein, Autobiographical Notes, Open Court Publishing Company (1991).
2The nature of thermodynamics is nicely summarized in the song, First and Second Law, by Michael Flanders

and Donald Swann, <www.nyanko.pwp.blueyonder.co.uk/fas/anotherhat_first.html>.
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system

surroundings

boundary

Figure 2.1: Schematic of a thermodynamic system.

Because thermodynamics describes the macroscopic properties of macroscopic systems without
appeal to arguments based on the nature of their microcopic constituents, the concepts of energy
and entropy in this context are very abstract. So why bother introducing thermodynamics as a
subject in its own right, when we could more easily introduce energy and entropy from microscopic
considerations? Besides the intellectual challenge, an important reason is that the way of thinking
required by thermodynamics can be applied in other contexts where the microscopic properties
of the system are poorly understood or very complex. However, there is no need to forget the
general considerations that we discussed in Chapter 1. And you are also encouraged to read
ahead, especially in Chapter 4 where the nature of entropy is introduced from first principles.

2.2 The System

The first step in applying thermodynamics is to select the appropriate part of the universe of
interest. This part of the universe is called the system. In this context the term system is simply
anything that we wish to consider. The system is defined by a closed surface called the boundary
(see Figure 2.1)). The boundary may be real or imaginary and may or may not be fixed in shape
or size. The system might be as obvious as a block of steel, water in a container, or the gas in a
balloon. Or the system might be defined by an imaginary fixed boundary within a flowing liquid.

The remainder of the universe is called the surroundings. We usually take the surroundings
to be that part of the universe that is affected by changes in the system. For example, if an ice
cube is placed in a glass of water, we might take the ice to be the system and the water to be the
surroundings. In this case the amount of water would need to be very large compared to the size
of the ice cube. In this example we could ignore the interaction of the ice cube with the air in the
room and the interaction of the glass with the table on which the glass is set. However, if the size
of the ice cube and the amount of water were about the same, we would need to to consider the
ice cube and water to be the system and the air in the room to be the surroundings. The choice
depends on the questions of interest. The surroundings need not surround the system.
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2.3 Thermodynamic Equilibrium

Macroscopic systems often exhibit some memory of their recent history. A stirred cup of tea
continues to swirl. But if we wait for a while, we will no longer observe any large scale motion.
A hot cup of coffee cools and takes on the temperature of its surroundings regardless of its initial
temperature. The final states of such systems are called equilibrium states, which are characterized
by their time independence, history independence, and relative simplicity.

Time independence means that the measurable macroscopic properties (such as the tempera-
ture, pressure, and density) of equilibrium systems do not change with time except for very small
fluctuations that we can observe only under special conditions. In contrast, nonequilibrium states
change with time. The time scale for changes may be seconds or years, and cannot be determined
from thermodynamic arguments alone. We can say for sure that a system is not in equilibrium if its
properties change with time, but time independence during our observation time is not sufficient
to determine if a system is in equilibrium. It is possible that we just did not observe the system
long enough.3

As in Chapter 1 the macrostate of a system refers to its bulk properties such as its temperature
and pressure. Only a relatively few quantities are needed to specify the macrostate of a system in
equilibrium. For example, if you drop an ice cube into a cup of coffee, the temperature immediately
afterward will vary throughout the coffee until the coffee reaches equilibrium. Before equilibrium is
reached, we must specify the temperature everywhere in the coffee. Once equilibrium is reached, the
temperature will be uniform throughout and only one number is needed to specify the temperature.

History independence implies that a system can come to the same final equilibrium macrostate4

through an infinity of possible ways. The final macrostate has lost all memory of how it was
produced. For example, if we put several cups of coffee in the same room, they will all reach the
same final temperature, regardless of their different initial temperatures or how much milk was
added. However, there are many examples where the history of the system is important. For
example, a metal cooled quickly may contain defects that depend on the detailed history of how
the metal was cooled. Such a system is not in equilibrium.

It is difficult to know for certain whether a system is in equilibrium because the time it takes a
system to reach equilibrium may be very long and our measurements might not indicate whether a
system’s macroscopic properties are changing. In practice, the criterion for equilibrium is circular.
Operationally, a system is in equilibrium if its properties can be consistently described by the laws
of thermodynamics.

The circular nature of thermodynamics is not fundamentally different than that of other fields
of physics. For example, the law of conservation of energy can never be disproved, because we
can always make up new forms of energy to make it true. If we find that we are continually
making up new forms of energy for every new system we find, then we would discard the law of
conservation of energy as not being useful. As an example, if we were to observe a neutron at rest
decay into an electron and proton (beta decay) and measure the energy and momentum of the
decay products, we would find an apparent violation of energy conservation in the vast majority of

3A spin glass is an example of a system that can take days or even longer to each equilibrium. A theoretical
model of a spin glass is the Ising model with the exchange constant J = ±1 at random. See for example, <en.

wikipedia.org/wiki/Spin_glass>.
4Because thermodynamics deals only with macrostates (and not microstates), we will frequently use the term

state instead of macrostate.

http://en.wikipedia.org/wiki/Spin_glass
<en.wikipedia.org/wiki/Spin_glass>
http://en.wikipedia.org/wiki/Spin_glass
<en.wikipedia.org/wiki/Spin_glass>
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decays. Historically, Pauli did not reject energy conservation, but instead suggested that a third
particle (the neutrino) is also emitted. Pauli’s suggestion was made in 1930, but the (anti)neutrino
was not detected until 1956. In this example our strong belief in conservation of energy led to a
new prediction and discovery.

The same is true for thermodynamics. We find that if we use the laws of thermodynamics for
systems that experimentally appear to be in equilibrium, then everything works out fine. In some
systems such as glasses that we suspect are not in thermal equilibrium, we must be very careful in
interpreting our measurements according to the laws of thermodynamics.

2.4 Temperature

The concept of temperature plays a central role in thermodynamics and is related to the physiolog-
ical sensation of hot and cold. Because such a sensation is an unreliable measure of temperature,
we will develop the concept of temperature by considering what happens when two bodies are
placed in thermal contact. The most important property of the temperature is its tendency to
become equal. For example, if we put a hot and a cold body into thermal contact, the temperature
of the hot body decreases and the temperature of the cold body increases until both bodies are at
the same temperature and the two bodies are in thermal equilibrium.

Problem 2.1. Physiological sensation of temperature

(a) Suppose you are blindfolded and place one hand in a pan of warm water and the other hand in
a pan of cold water. Then your hands are placed in another pan of water at room temperature.
What temperature would each hand perceive?

(b) What are some other examples of the subjectivity of our perception of temperature?

To define temperature more carefully, consider two systems separated by an insulating wall.5

A wall is said to be insulating if the thermodynamic variables of one system can be changed without
influencing the thermodynamic variables of the other system. For example, if we place one system
under a flame, the temperature, pressure, and the volume of the second system would remain
unchanged. If the wall between the two systems were conducting, then the other system would be
affected. Insulating and conducting walls are idealizations. A good approximation to the former
is the wall of a thermos bottle; a thin sheet of copper is a good approximation to the latter.

Consider two systems surrounded by insulating walls, except for a common conducting wall.
For example, suppose that one system is a cup of coffee in a vacuum flask and the other system is
mercury or alcohol enclosed in a glass tube. (The glass tube is in thermal contact with the coffee.)
We know that the height of the mercury column will reach a time-independent value, and hence
the coffee and the mercury are in equilibrium. Next suppose that we dip the mercury thermometer
into a cup of tea in another vacuum flask. If the height of the mercury column is the same as it
was when placed into the coffee, we say that the coffee and tea are at the same temperature. This
conclusion can be generalized as

5An insulating wall is sometimes called an adiabatic wall.
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If two bodies are in thermal equilibrium with a third body, they are in thermal equi-
librium with each other (zeroth law of thermodynamics).

This conclusion is sometimes called the zeroth law of thermodynamics. The zeroth law implies the
existence of some universal property of systems in thermal equilibrium and allows us to obtain the
temperature of a system without a direct comparison to some standard. Note that this conclusion
is not a logical necessity, but an empirical fact. If person A is a friend of B and B is a friend of C,
it does not follow that A is a friend of C.

Problem 2.2. Describe some other measurements that also satisfy a law similar to the zeroth
law.

Any body whose macroscopic properties change in a well-defined manner can be used to
measure temperature. A thermometer is a system with some convenient macroscopic property that
changes with the temperature in a known way. Examples of convenient macroscopic properties
include the length of an iron rod, and the magnitude of the electrical resistance of gold. In all
these cases we need to measure only a single quantity to indicate the temperature.

Problem 2.3. Why are thermometers relatively small devices in comparison to the system of
interest?

To use different thermometers, we need to make them consistent with one another. To do
so, we choose a standard thermometer that works over a wide range of temperatures and define
reference temperatures which correspond to physical processes that always occur at the same
temperature. The familiar gas thermometer is based on the fact that the temperature T of a dilute
gas is proportional to its pressure P at constant volume. The temperature scale that is based on
the gas thermometer is called the ideal gas temperature scale. The unit of temperature is called
the kelvin (K). We need two points to define a linear function. We write

T (P ) = aP + b, (2.1)

where a and b are constants. We may choose the magnitude of the unit of temperature in any
convenient way. The gas temperature scale has a natural zero — the temperature at which the
pressure of an ideal gas vanishes — and hence we take b = 0. The second point is established
by the triple point of water, the unique temperature and pressure at which ice, water, and water
vapor coexist. The temperature of the triple point is defined to be 273.16 K exactly. Hence, the
temperature of a fixed volume gas thermometer is given by

T = 273.16
P

Ptp
, (ideal gas temperature scale) (2.2)

where P is the pressure of the ideal gas thermometer, and Ptp is its pressure at the triple point.
Equation (2.2) holds for a fixed amount of matter in the limit P → 0. From (2.2) we see that the
kelvin is defined as the fraction 1/273.16 of the temperature of the triple point of water.

Note that the gas scale of temperature is based on experiment, and there is no a priori reason to
prefer this scale to any other. However, we will show in Section 2.16 that the ideal gas temperature
defined by (2.2) is consistent with the thermodynamic temperature scale. Also note that we have
defined the temperature in terms of a quantity that is easy to measure.
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triple point 273.16 K definition
steam point 373.12 K experiment
ice point 273.15 K experiment

Table 2.1: Fixed points of the ideal gas temperature scale.

At low pressures all gas thermometers read the same temperature regardless of the gas that
is used. The relation (2.2) holds only if the gas is sufficiently dilute that the interactions between
the molecules can be ignored. Helium is the most useful gas because it liquefies at a temperature
lower than any other gas.

The historical reason for the choice of 273.16 K for the triple point of water is that it gave, to
the accuracy of the best measurements then available, 100 K for the difference between the ice point
(the freezing temperature at standard pressure6) and the steam point (the boiling temperature at
standard pressure of water). However, more accurate measurements now give the difference as
99.97 K (see Table 2.1).

It is convenient to define the Celsius scale:

Tcelius = T − 273.15, (2.3)

where T is the ideal gas temperature. Note that the Celsius and ideal gas temperatures differ
only by the shift of the zero. By convention the degree sign is included with the C for Celsius
temperature (◦C), but no degree sign is used with K for kelvin.

Problem 2.4. Temperature scales

(a) The Fahrenheit scale is defined such that the ice point is at 32◦F and the steam point is 212◦F.
Derive the relation between the Fahrenheit and Celsius temperature scales.

(b) What is body temperature (98.6◦F) on the Celsius and Kelvin scales?

(c) A meteorologist in Canada reports a temperature of 30◦C. How does this temperature compare
to 70◦F?

(d) The centigrade temperature scale is defined as

Tcentigrade = (T − Tice)
100

Tsteam − Tice
, (2.4)

where Tice and Tsteam are the ice and steam points of water (see Table 2.1). By definition,
there is 100 centigrade units between the ice and steam points. How does the centigrade unit
defined in (2.4) compare to the kelvin or Celsius unit?

(e) What were the contributions of Anders Celsius (1701–1744) and Gabriel Fahrenheit (1686–
1736)?

Problem 2.5. What is the range of temperatures that is familiar to you from your everyday
experience and from your prior studies?

6Standard atmospheric pressure is the pressure of the earth’s atmosphere under normal conditions at sea level
and is defined to be 1.013 × 105 N/m2. The SI unit of pressure is N/m2; this unit has been given the name pascal
(Pa). Note that the names of SI units are not capitalized.
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2.5 Pressure Equation of State

As we have discussed, the equilibrium macrostates of a thermodynamic system are much simpler
to describe than nonequilibrium states. For example, the pressure P of a simple fluid (gas or
liquid) consisting of a single species is uniquely determined its (number) density ρ = N/V, and
temperature T , where N is the number of particles and V is the volume of the system. That is,
the quantities P , T , and ρ are not independent, but are connected by a relation of the general
form

P = f(T, ρ). (2.5)

This relation is called the pressure equation of state. Each of these three quantities can be regarded
as a function of the other two, and the macrostate of the system is determined by any two of the
three. Note that we have implicitly assumed that the thermodynamic properties of a fluid are
independent of its shape.

In general, the pressure equation of state is very complicated and must be determined either
empirically or from a simulation or from an approximate theoretical calculation (an application of
statistical mechanics). One of the few exceptions is the ideal gas for which the equation of state
is very simple. As discussed in Section 1.10, the ideal gas represents a mathematical idealization
in which the potential energy of interaction between the molecules is very small in comparison to
their kinetic energy and the system can be treated classically. For an ideal gas, we have for fixed
temperature the empirical relation P ∝ 1/V at fixed temperature or

PV = constant. (fixed temperature) (2.6)

The relation (2.6) is sometimes called Boyle’s law and was published by Robert Boyle in 1660.7

Note that the relation (2.6) is not a law of physics, but an empirical relation. An equation such as
(2.6), which relates different states of a system all at the same temperature, is called an isotherm.

We also have the empirical relation

V ∝ T. (fixed pressure) (2.7)

Some textbooks refer to (2.7) as Charles’s law, but it should be called the law of Gay-Lussac.
We can express the empirical relations (2.6) and (2.7) as P ∝ T/V . In addition, if we hold

T and P constant and introduce more gas into the system, we find that the pressure increases in
proportion to the amount of gas. If N is the number of gas molecules, we can write

PV = NkT, (ideal gas pressure equation of state) (2.8)

where the constant of proportionality k in (2.8) is found experimentally to have the same value for
all gases in the limit P → 0. The value of k is

k = 1.38× 10−23 J/K, (Boltzmann’s constant) (2.9)

and is called Boltzmann’s constant. The equation of state (2.8) will be derived using statistical
mechanics in Section 4.5.

7You can learn about the first modern chemist at <en.wikipedia.org/wiki/Robert_Boyle>.

http://en.wikipedia.org/wiki/Robert_Boyle
<en.wikipedia.org/wiki/Robert_Boyle>
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Because the number of particles in a typical gas is very large, it sometimes is convenient to
measure this number relative to the number of particles in one (gram) mole of gas.8 A mole of
any substance consists of Avogadro’s number NA = 6.022× 1023 of that substance. If there are ν
moles, then N = νNA, and the ideal gas equation of state can be written as

PV = νNAkT = νRT, (2.10)

where
R = NAk = 8.314 J/K mole (2.11)

is the gas constant.
Real gases do not satisfy the ideal gas equation of state except in the limit of low density. For

now we will be satisfied with considering a simple phenomenological9 equation of state of a real
gas with an interparticle interaction similar to the Lennard-Jones potential (see Figure 1.1). The
simplest phenomenological pressure equation of state that describes the behavior of real gases at
moderate densities is due to van der Waals and has the form

(P +
N2

V 2
a)(V −Nb) = NkT, (van der Waals equation of state) (2.12)

where a and b are empirical constants characteristic of a particular gas. The parameter b takes into
account the finite size of the molecules by decreasing the effective available volume to any given
molecule. The parameter a is associated with the attractive interactions between the molecules.
We will derive this approximate equation of state in Section 8.2.

2.6 Some Thermodynamic Processes

A change from one equilibrium macrostate of the system to another is called a thermodynamic
process. Thermodynamics does not determine how much time such a process will take, and the
final macrostate is independent of the amount of time it took to reach this final equilibrium state.
To describe a process in terms of thermodynamic variables, the system must be in thermodynamic
equilibrium. However, for the process to occur, the system cannot be exactly in thermodynamic
equilibrium because at least one thermodynamic variable is changing. If the change is sufficiently
slow, the process is quasistatic, and the system can be considered to be in a succession of equilibrium
states. A quasistatic process is an idealized concept. Although no physical process is quasistatic,
we can imagine real processes that approach the limit of quasistatic processes. We will consider
thermodynamic processes where a system is taken from an initial to a final macrostate by a
continuous succession of intermediate equilibrium states. The name thermodynamics is a misnomer
because thermodynamics treats only equilibrium states and not dynamics.

Some thermodynamic processes can go only in one direction and others can go in either
direction. For example, a scrambled egg cannot be converted to a whole egg. Processes that can
go only in one direction are called irreversible. A process is reversible if it is possible to restore the

8A mole is defined as the quantity of matter that contains as many objects (for example, atoms or molecules) as
number of atoms in exactly 12 g of 12C.

9Phenomenological is a word that we will use often. It means a description of the phenomena that is not derived
from fundamental considerations.
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system and its surroundings to their original condition. (The surroundings include any body that
was affected by the change.) That is, if the change is reversible, the status quo can be restored
everywhere.

Processes such as stirring the cream in a cup of coffee or passing an electric current through a
resistor are irreversible because once the process is done, there is no way of reversing the process.
But suppose we make a small and very slow frictionless change of a constraint such as an increase
in the volume, which we then reverse. Because there is no “friction,” we do no net work in this
process. At the end of the process, the constraints and the energy of the system return to their
original values and the macrostate of the system is unchanged. In this case we can say that this
process is reversible. No real process is truly reversible because it would require an infinite time
to occur. The relevant question is whether the process approaches reversibility.

Consider a gas in a closed, insulated container that is divided into two chambers by an im-
permeable partition. The gas is initially confined to one chamber and then allowed to expand
freely into the second chamber to fill the entire container. What is the nature of this process? It
is certainly not quasistatic. But we can imagine this process to be performed quasistatically. We
could divide the second chamber into many small chambers separated by partitions and puncture
each partition in turn, allowing the expanded gas to come into equilibrium. So in the limit of an
infinite number of partitions, such a process would be quasistatic. However this process would not
be reversible, because the gas would never return to its original volume.

Problem 2.6. Are the following processes reversible or irreversible?

(a) Air is pumped into a tire.

(b) Air leaks out of a tire.

(c) The breaking of a vehicle coming to a complete stop.

2.7 Work

During a process the surroundings can do work on the system of interest or the system can do
work on its surroundings. We now obtain an expression for the mechanical work done on a system
in a quasistatic process. For simplicity, we assume the system to be a fluid. Because the fluid is
in equilibrium, we can characterize it by a uniform pressure P . For simplicity, we assume that
the fluid is contained in a cylinder of cross-sectional area A fitted with a movable piston (see
Figure 2.2). The piston allows no gas or liquid to escape. We can add weights to the piston
causing it to compress the fluid. Because the pressure is defined as the force per unit area, the
magnitude of the force exerted by the fluid on the piston is given by PA, which also is the force
exerted by the piston on the fluid. If the piston is displaced quasistatically by an amount dx, then
the work done on the fluid by the piston is given by10

dW = −(PA) dx = −P (Adx) = −PdV. (2.14)
10Equation (2.14) can be written as

dW

dt
= −P

dV

dt
, (2.13)

if you wish to avoid the use of differentials (see Section 2.26.1).
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F = PA

P

∆x

Figure 2.2: Example of work done on a fluid enclosed within a cylinder fitted with a piston when
the latter moves a distance ∆x.

The negative sign in (2.14) is present because if the volume of the fluid is decreased, the work done
by the piston is positive.

If the volume of the fluid changes quasistatically from an initial volume V1 to a final volume
V2, the system remains very nearly in equilibrium, and hence its pressure at any stage is a function
of its volume and temperature. Hence, the total work is given by the integral

W1→2 = −
∫ V2

V1

P (T, V ) dV. (quasistatic process) (2.15)

Note that the work done on the fluid is positive if V2 < V1 and is negative if V2 > V1.
For the special case of an ideal gas, the work done on a gas that is compressed at constant

temperature (an isothermal process) is given by

W1→2 = −NkT
∫ V2

V1

dV

V
(2.16)

= −NkT ln
V2

V1
. (ideal gas at constant temperature) (2.17)

We have noted that the pressure P must be uniform throughout the fluid. But compression
cannot occur if pressure gradients are not present. To move the piston from its equilibrium position,
we must add (remove) a weight from it. Then for a moment, the total weight on the piston will
be greater (less) than PA. This difference is necessary if the piston is to move down and do
work on the gas. If the movement is sufficiently slow, the pressure departs only slightly from its
equilibrium value. What does “sufficiently slow” mean? To answer this question, we have to go
beyond the macroscopic reasoning of thermodynamics and consider the molecules that comprise
the fluid. If the piston is moved down a distance ∆x, then the density of the molecules near
the piston becomes greater than the bulk of the fluid. Consequently, there is a net movement
of molecules away from the piston until the density again becomes uniform. The time τ for the
fluid to return to equilibrium is given by τ ≈ ∆x/vs, where vs is the mean speed of the molecules
(see Section 6.4). For comparison, the characteristic time τp for the process is τp ≈ ∆x/vp, where
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Figure 2.3: A block on an frictionless incline. The figure is taken from Loverude et al.

vp is the speed of the piston. If the process is to be quasistatic, it is necessary that τ � τp or
vp � vs. That is, the speed of the piston must be much less than the mean speed of the molecules,
a condition that is easy to satisfy in practice.

Problem 2.7. Work
To refresh your understanding of work in the context of mechanics, look at Figure 2.3 and explain
whether the following quantities are positive, negative, or zero:

(a) The work done on the block by the hand.

(b) The work done on the block by the earth.

(c) The work done on the hand by the block (if there is no such work, state so explicitly).

Work depends on the path. The solution of the following example illustrates that the work
done on a system depends not only on the initial and final states, but also on the intermediate
states, that is, on the path.

Example 2.1. Cyclic processes
Figure 2.4 shows a cyclic path ABCDA in the PV diagram of an ideal gas. How much work is
done on the gas during this cyclic process? (Look at the figure before you attempt to answer the
question.)

Solution. During the isobaric expansion A→ B, the work done on the gas is

WAB = −P2(V2 − V1). (2.18)

No work is done from B → C and from D → A. The work done on the gas from C → D is

WCD = −P1(V1 − V2). (2.19)

The net work done on the gas is then

Wnet = WAB +WCD = −P2(V2 − V1)− P1(V1 − V2) (2.20)
= −(P2 − P1)(V2 − V1) < 0. (2.21)

The result is that the net work done on the gas is the negative of the area enclosed by the path.
If the cyclic process were carried out in the reverse order, the net work done on the gas would be
positive.

Because the system was returned to its original pressure and volume, why is the net amount
of work done not zero? What would be the work done if the gas were taken from V2 to V1 along
the diagonal path connecting C and A?
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P

P2

P1

V1 V2 V

A B

CD

Figure 2.4: A simple cyclic process. What is the net work done on the gas?

2.8 The First Law of Thermodynamics

If we think of a macroscopic system as consisting of many interacting particles, we know that it
has a well defined total energy which satisfies a conservation principle. This simple justification of
the existence of a thermodynamic energy function is very different from the historical development
because thermodynamics was developed before the atomic theory of matter was well accepted.
Historically, the existence of a macroscopic conservation of energy principle was demonstrated by
purely macroscopic observations as outlined in the following.11

Consider a system enclosed by insulating walls. Such a system is thermally isolated. An
adiabatic process is one in which the macrostate of the system is changed only by work done on
the system. We know from overwhelming empirical evidence that the amount of work needed to
change the macrostate of a thermally isolated system depends only on the initial and final states
and not on the intermediate states through which the system passes. This independence of the
path under these conditions implies that we can define a function E such that for a change from
macrostate 1 to macrostate 2, the work done on a thermally isolated system equals the change in
E:

W = E2 − E1 = ∆E. (adiabatic process) (2.22)

The quantity E is called the (internal) energy of the system.12 The internal energy in (2.22) is
measured with respect to the center of mass.13 The energy E is an example of a state function,
that is, it characterizes the state of a macroscopic system and is independent of the path.

11These experiments were done by Joseph Black (1728–1799), Benjamin Thompson (Count Rumford) (1753–1814),
Robert Mayer (1814–1878), and James Joule (1818–1889). Mayer and Joule are now recognized as the co-discovers
of the first law of thermodynamics, but Mayer received little recognition at the time of his work.

12Another common notation for the internal energy is U .
13Microscopically, the internal energy of a system of particles is the sum of the kinetic energy in a reference frame

in which the center of mass velocity is zero and the potential energy arising from the forces of the particles on each
other.
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Problem 2.8. What is the difference between the total energy and the internal energy?

If we choose a convenient reference macrostate as the zero of energy, then E has an unique
value for each macrostate of the system because W is independent of the path for an adiabatic
process. (Remember that in general W depends on the path.)

If we relax the condition that the change be adiabatic and allow the system to interact with
its surroundings, we would find in general that ∆E 6= W . (The difference between ∆E and W is
zero for an adiabatic process.) We know that we can increase the energy of a system by doing work
on it or by heating it as a consequence of a temperature difference between it and its surroundings.
In general, the change in the internal energy of a closed system (fixed number of particles) is given
by

∆E = W +Q. (first law of thermodynamics) (2.23)

The quantity Q is the change in the system’s energy due to heating (Q > 0) or cooling (Q < 0) and
W is the work done on the system. Equation (2.23) expresses the law of conservation of energy
and is known as the first law of thermodynamics. This equation is equivalent to saying that there
are two macroscopic ways of changing the internal energy of a system: doing work and heating.

One consequence of the first law of thermodynamics is that ∆E is independent of the path,
even though the amount of work W does depend on the path. And because W depends on the
path and ∆E does not, the amount of heating also depends on the path. From one point of view,
the first law of thermodynamics expresses what seems obvious to us today, namely, conservation
of energy. However, from another point of view, the first law implies that although the work done
and the amount of heating depend on the path, their sum is independent of the path.

Problem 2.9. A cylindrical pump contains one mole of a gas. The piston fits tightly so that no air
escapes and friction is negligible between the piston and the cylinder walls. The pump is thermally
insulated from its surroundings. The piston is quickly pressed inward. What will happen to the
temperature of the gas? Explain your reasoning.

So far we have considered two classes of thermodynamic quantities. One class consists of state
functions because they have a specific value for each macroscopic state of the system. An example
of such a function is the internal energy E. As we have discussed, there are other quantities, such
as work and energy transfer due to heating, that do not depend on the macrostate of the system.
These latter quantities depend on the thermodynamic process by which the system changed from
one state to another.

The energy of a system is a state function. The mathematical definition of a state function
goes as follows. Suppose that f(x) is a state function that depends on the parameter x. If x
changes from x1 to x2, then the change in f is

∆f =
∫ x2

x1

df = f(x2)− f(x1). (2.24)

That is, the change in f depends only on the end points x1 and x2. We say that df is an exact
differential. State functions have exact differentials. Examples of inexact and exact differentials
are given in Section 2.26.1.

Originally, many scientists thought that there was a fluid called heat in all substances which
could flow from one substance to another. This idea was abandoned many years ago, but is still
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used in everyday language. Thus, people talk about adding heat to a system. We will avoid this use
and whenever possible we will avoid the use of the noun “heat” altogether. Instead, we will refer to
a process as heating or cooling if it changes the internal energy of a system without changing any
external parameters such as the external pressure. Heating occurs whenever two solids at different
temperatures are brought into thermal contact. In everyday language we would say that heat flows
from the hot to the cold body. However, we prefer to say that energy is transferred from the hotter
to the colder body. There is no need to invoke the noun “heat,” and it is misleading to say that
heat “flows” from one body to another.

To understand better that there is no such thing as the amount of heat in a body, consider
the following simple analogy adapted from Callen.14 A farmer owns a pond, fed by one stream and
drained by another. The pond also receives water from rainfall and loses water by evaporation.
The pond is the system of interest, the water within it is analogous to the internal energy, the
process of transferring water by the streams is analogous to doing work, the process of adding
water by rainfall is analogous to heating, and the process of evaporation is analogous to cooling.
The only quantity of interest is the water, just as the only quantity of interest is energy in the
thermal case. An examination of the change in the amount of water in the pond cannot tell us
how the water got there. The terms rain and evaporation refer only to methods of water transfer,
just as the terms heating and cooling refer only to methods of energy transfer.

Another example is due to Bohren and Albrecht.15 Take a small plastic container and add
just enough water to it so that its temperature can be conveniently measured. Let the water and
the bottle come into equilibrium with their surroundings. Measure the temperature of the water,
cap the bottle, and shake the bottle until you are too tired to continue further. Then uncap the
bottle and measure the water temperature again. If there were a “whole lot of shaking going on,”
you would find the temperature had increased a little.

In this example, the temperature of the water increased without heating. We did work on
the water, which resulted in an increase in its internal energy as manifested by a rise in the
temperature. The same increase in temperature could have been obtained by bringing the water
into contact with a body at a higher temperature. But it would be impossible to determine by
making measurements on the water whether shaking or heating had been responsible for taking
the system from its initial to its final state. (To silence someone who objects that you heated the
water with “body heat,” wrap the bottle with an insulating material.)

Problem 2.10. How could the owner of the pond distinguish between the different types of water
transfer assuming that the owner has flow meters, a tarpaulin, and a vertical pole?

Problem 2.11. Convert the following statement to the language used by physicists, “I am cold,
please turn on the heat.”

Before the equivalence of heating and energy transfer was well established, a change in en-
ergy by heating was measured in calories. One calorie is the amount of energy needed to raise
the temperature of one gram of water from 14.5◦C to 15.5◦C. We now know that one calorie is
equivalent to 4.186 J, but the use of the calorie for energy transfer by heating and the joule for
work still persists. Just to cause confusion, the calorie we use to describe the energy content of
foods is actually a kilocalorie.

14See page 20.
15See page 25.
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2.9 Energy Equation of State

In (2.8) we gave the pressure equation of state for an ideal gas. Now that we know that the
internal energy is a state function, we need to know how E depends on two of the three variables,
T , ρ, and N (for a simple fluid). The form of the energy equation of state for an ideal gas must
also be determined empirically or calculated from first principles using statistical mechanics (see
Section 4.5). From these considerations the energy equation of state for a monatomic gas is given
by

E =
3
2
NkT. (ideal gas energy equation of state) (2.25)

Note that the energy of an ideal gas is independent of its density (for a fixed number of particles).
The approximate thermal equation of state of a real gas corresponding to the pressure equation

of state (2.12) is given by

E =
3
2
NkT −NN

V
a. (van der Waals energy equation of state) (2.26)

Note that the energy depends on the density if the interactions between particles is included.

Example 2.2. Work is done on an ideal gas at constant temperature. What is the change in the
energy16 of the gas?

Solution. Because the energy of an ideal gas depends only on the temperature (see (2.25)), there
is no change in its internal energy for an isothermal process. Hence, ∆E = 0 = Q+W , and

Q = −W = NkT ln
V2

V1
. (isothermal process for an ideal gas) (2.27)

We see that if work is done on the gas (V2 < V1), then the gas must give energy to its surroundings
so that its temperature does not change.

Extensive and intensive variables. The thermodynamic variables that we have introduced so
far may be divided into two classes. Quantities such as the density ρ, the pressure P , and the
temperature T are intensive variables and are independent of the size of the system. Quantities
such as the volume V and the internal energy E are extensive variables and are proportional to
the number of particles in the system (at fixed density). As we will see in Section 2.10, it often
is convenient to convert extensive quantities to a corresponding intensive quantity by defining the
ratio of two extensive quantities. For example, the energy per particle and the energy per per unit
mass are intensive quantities.

2.10 Heat Capacities and Enthalpy

We know that the temperature of a macroscopic system usually increases when we transfer energy
to it by heating.17 The magnitude of the increase in temperature depends on the nature of the

16We actually mean the internal energy, but the meaning should be clear from the context.
17 What is a common counterexample?
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body and how much of it there is. The amount of energy transfer due to heating required to
produce a unit temperature rise in a given substance is called the heat capacity of the substance.
Here again we see the archaic use of the word “heat.” But because the term “heat capacity” is
common, we are forced to use it. If a body undergoes an increase of temperature from T1 to T2

accompanied by an energy transfer Q, then the average heat capacity is given by the ratio

average heat capacity =
Q

T2 − T1
. (2.28)

The value of the heat capacity depends on what constraints are imposed. We introduce the heat
capacity at constant volume by the relation

CV =
(∂E
∂T

)
V
. (2.29)

Note that if the volume V is held constant, the change in energy of the system is due only to
the energy transferred by heating. We have adopted the common notation in thermodynamics of
enclosing partial derivatives in parentheses and using subscripts to denote the variables that are
held constant. In this context, it is clear that the differentiation in (2.29) is at constant volume,
and we will write CV = ∂E/∂T if there is no ambiguity.18 (See Section 2.26.1 for a discussion of
the mathematics of thermodynamics.)

Equation (2.29) together with (2.25) can be used to obtain the heat capacity at constant
volume of a monatomic ideal gas:

CV =
3
2
Nk. (monatomic ideal gas) (2.30)

Note that the heat capacity at constant volume of an ideal gas is independent of the temperature.
The heat capacity is an extensive quantity, and it is convenient to introduce the specific

heat which depends only on the nature of the material, not on the amount of the material. The
conversion to an intensive quantity can be achieved by dividing the heat capacity by the amount
of the material expressed in terms of the number of moles, the mass, or the number of particles.
We will use lower case c for specific heat; the distinction between the various kinds of specific heats
will be clear from the context and the units of c.

The enthalpy. The combination of thermodynamic variables E+PV occurs sufficiently often to
acquire its own name. The enthalpy H is defined as

H = E + PV. (enthalpy) (2.31)

We can use (2.31) to find a simple expression for CP , the heat capacity at constant pressure. From
(2.14) and (2.23), we have dE = dQ− PdV or dQ = dE + PdV (at constant pressure). From the
identity, d(PV ) = PdV + V dP , we can write dQ = dE + d(PV ) − V dP . At constant pressure
dQ = dE + d(PV ) = d(E + PV ) = dH. Hence, we can define the heat capacity at constant
pressure as

CP =
∂H

∂T
, (2.32)

18Although the number of particles also is held constant, we will omit the subscript N in (2.29) and in other
partial derivatives to reduce the number of subscripts.
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where we have suppressed noting that the pressure P is held constant during differentiation. We
will learn that the enthalpy is another state function that often makes the analysis of a system
simpler. At this point, we can only see that CP can be expressed more simply in terms of the
enthalpy.

We can find the CP for an ideal gas by writing H = E + PV = 3
2NKT + NkT and using

the relation (2.32) to find that CP = 5
2Nk. Note also that we used the two equations of state

for an ideal gas, (2.8) and (2.25), to obtain CP , and we did not have to make an independent
measurement or calculation.

Why is CP bigger than CV ? Unless we prevent it from doing so, a system normally expands
as its temperature increases. The system has to do work on its surroundings as it expands. Hence,
when a system is heated at constant pressure, energy is needed both to increase the temperature
of the system and to do work on its surroundings. In contrast, if the volume is kept constant, no
work is done on the surroundings and the heating only has to supply the energy required to raise
the temperature of the system. In Chapter 7 we will derive the general relation CP > CV for any
thermodynamic system.

Problem 2.12. The heat capacity

(a) Give some examples of materials that have a relatively small and a relatively large heat capacity.

(b) Why do we have to distinguish between the heat capacity at constant volume and the heat
capacity at constant pressure?

Example 2.3. A water heater holds 150 kg of water. How much energy is required to raise the
water temperature from 18◦C to 50◦C?

Solution. The (mass) specific heat of water is c = 4184 J/kg K. (The difference between the specific
heats of water at constant volume and constant pressure is negligible at room temperatures.) The
energy required to raise the temperature by 32◦C is

Q = mc(T2 − T1) = 150 kg × (4184 J/kg K)× (50◦C− 18◦C) = 2× 107 J. (2.33)

We have assumed that the specific heat is constant in this temperature range.

Note that because the kelvin is exactly the same magnitude as a degree Celsius, it often is
more convenient to express temperature differences in degrees Celsius.

Example 2.4. A 1.5 kg glass brick is heated to 180◦C and then plunged into a cold bath containing
10 kg of water at 20◦C. Assume that none of the water boils and that there is no heating of the
surroundings. What is the final temperature of the water and the glass? The specific heat of glass
is approximately 750 J/kg K.

Solution. Conservation of energy implies that

∆Eglass + ∆Ewater = 0, (2.34a)

or
mglasscglass(T − Tglass) +mwatercwater(T − Twater) = 0. (2.34b)
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The final equilibrium temperature T is the same for both. We solve for T and obtain

T =
mglasscglassTglass +mwatercwaterTwater

mglasscglass +mwatercwater
(2.35a)

=
(1.5 kg)(750 J/kg K)(180◦C) + (10 kg)(4184 J/kg K)(20◦C)

(1.5 kg)(750 J/kg K) + (10 kg)(4184 J/kg K)
(2.35b)

= 24.2◦C. (2.35c)

Example 2.5. The temperature of two moles of helium gas is increased from 20◦C to 40◦C at
constant volume. How much energy is needed to accomplish this temperature change?

Solution. Because the amount of He gas is given in moles, we need to know the molar specific
heat. From (2.30) and (2.11), we have that cV = 3R/2 = 1.5× 8.314 = 12.5 J/mole K. Because cV
is constant (an excellent approximation), we have

∆E = Q =
∫
CV dT = νcV

∫
dT = 2 mole× 12.5

J
mole K

× 20 K = 500 J. (2.36)

Example 2.6. At very low temperatures the heat capacity of an insulating solid is proportional to
T 3. If we take C = AT 3 for a particular solid, what is the energy needed to raise the temperature
from T1 to T2? The difference between CV and CP can be ignored at low temperatures. (In
Section 6.11, we will use the Debye theory to express the constant A in terms of the speed of sound
and other parameters and find the range of temperatures for which the T 3 behavior is a reasonable
approximation.)

Solution. Because C is temperature dependent, we have to express the energy added as an integral:

Q =
∫ T2

T1

C(T ) dT. (2.37)

In this case we have

Q = A

∫ T2

T1

T 3 dT =
A

4
(T 4

2 − T 4
1 ). (2.38)

General relation between CP and CV . The first law can be used to find the general relation (2.42)
between CP and CV . The derivation involves straightforward, but tedious manipulations of ther-
modynamic derivatives. We give it here to give a preview of the general nature of thermodynamic
arguments.

From (2.31) and (2.32), we have

CP =
(∂H
∂T

)
P

=
(∂E
∂T

)
P

+ P
(∂V
∂T

)
P
. (2.39)

If we consider E to be a function of T and V, we can write

dE =
(∂E
∂T

)
V
dT +

(∂E
∂V

)
T
dV. (2.40)
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We divide both sides of (2.40) by ∆T , take the limit ∆T → 0 at constant P , and obtain(∂E
∂T

)
P

= CV +
(∂E
∂V

)
T

(∂V
∂T

)
P
. (2.41)

If we eliminate (∂E/∂T )P in (2.39) by using (2.41), we obtain our desired result:

CP = CV +
(∂E
∂V

)
T

(∂V
∂T

)
P

+ P
(∂V
∂T

)
P
. (general result) (2.42)

Equation (2.42) is a general relation that depends only on the first law. A more useful general
relation between CP and CV that depends on the second law of thermodynamics will be derived
in Section 2.24.2.

For the special case of an ideal gas, ∂E/∂V = 0 and ∂V/∂T = Nk/P , and hence

CP = CV +Nk (ideal gas) (2.43)

2.11 Adiabatic Processes

So far we have considered processes at constant temperature, constant volume, and constant pres-
sure.19 We have also considered adiabatic processes which occur when the system does not exchange
energy with its surroundings due to a temperature difference. Note that an adiabatic process need
not be isothermal. For example, a chemical reaction that occurs within a container that is well
insulated is not isothermal.

Problem 2.13. Give an example of an isothermal process that is not adiabatic.

We now show that the pressure of an ideal gas changes more rapidly for a given change of
volume in a quasistatic adiabatic process than it does in an isothermal process. For an adiabatic
process the first law reduces to

dE = dW. (adiabatic process) (2.44)

For an ideal gas we have ∂E/∂V = 0, and hence (2.40) reduces to

dE = CV dT = −PdV, (ideal gas only) (2.45)

where we have used (2.44). The easiest way to proceed is to eliminate P in (2.45) using the ideal
gas law PV = NkT :

CV dT = −NkT dV
V

(2.46)

We next eliminate Nk in (2.46) in terms of CP − CV and express (2.46) as

CV
CP − CV

dT

T
=

1
γ − 1

dT

T
= −dV

V
. (2.47)

19These processes are called isothermal, isochoric, and isobaric, respectively.
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The symbol γ is the ratio of the heat capacities:

γ =
CP
CV

. (2.48)

For an ideal gas CV and CP and hence γ are independent of temperature, and we can integrate
(2.47) to obtain

TV γ−1 = constant. (quasistatic adiabatic process) (2.49)

For an ideal monatomic gas, we have from (2.30) and (2.43) that CV = 3Nk/2 and CP =
5Nk/2, and hence

γ = 5/3. (ideal monatomic gas) (2.50)

Problem 2.14. Use (2.49) and the ideal gas pressure equation of state in (2.8) to show that in a
quasistatic adiabatic processes P and V are related as

PV γ = constant. (2.51)

Also show that T and P are related as
TP (1−γ)/γ = constant. (2.52)

The relations (2.49)–(2.52) hold for a quasistatic adiabatic process of an ideal gas; the relation
(2.51) is the easiest relation to derive.20 Because γ > 1, the relation (2.51) implies that for a given
volume change, the pressure changes more for an adiabatic process than it does for a comparable
isothermal process for which PV = constant. We can understand the reason for this difference as
follows. For an isothermal compression the pressure increases and the internal energy of an ideal
gas does not change. For an adiabatic compression the energy increases because we have done
work on the gas and no energy can be transferred to the surroundings. The increase in the energy
causes the temperature to increase. Hence in an adiabatic compression, both the decrease in the
volume and the increase in the temperature cause the pressure to increase faster.

In Figure 2.5 we show the P -V diagram for both isothermal and adiabatic processes. The
adiabatic curve has a steeper slope than the isothermal curves at any point. From (2.51) we see
that the slope of an adiabatic curve for an ideal gas is(∂P

∂V

)
adiabatic

= −γ P
V
, (2.53)

in contrast to the slope of an isothermal curve for an ideal gas:(∂P
∂V

)
T

= −P
V
. (2.54)

How can the ideal gas relations PV γ = constant and PV = NkT both be correct? The answer
is that PV = constant only for an isothermal process. A quasistatic ideal gas process cannot be
both adiabatic and isothermal. During an adiabatic process, the temperature of an ideal gas must
change.

20An easier derivation is suggested in Problem 2.20.



CHAPTER 2. THERMODYNAMIC CONCEPTS 50

V

Ti

Tf

adiabatic

isotherm

isothermP

Figure 2.5: A P -V diagram for adiabatic and isothermal processes. The two processes begin at
the same initial temperature, but the adiabatic process has a steeper slope and ends at a higher
temperature.

Problem 2.15. Although we do work on an ideal gas when we compress it isothermally, why does
the energy of the gas not increase?

Example 2.7. Adiabatic and isothermal expansion
Two identical systems each contain ν = 0.06 mole of an ideal gas at T = 300 K and P = 2.0×105 Pa.
The pressure in the two systems is reduced by a factor of two allowing the systems to expand, one
adiabatically and one isothermally. What are the final temperatures and volumes of each system?
Assume that γ = 5/3.

Solution. The initial volume V1 is given by

V1 =
νRT1

P1
=

0.060 mole× 8.3 J/(K mole)× 300 K
2.0× 105 Pa

= 7.5× 10−4 m3. (2.55)

For the isothermal system, PV remains constant, so the volume doubles as the pressure
decreases by a factor of two and hence V2 = 1.5× 10−3 m3. Because the process is isothermal, the
temperature remains at 300 K.

For adiabatic compression we have

V γ2 =
P1V

γ
1

P2
, (2.56)
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or

V2 =
(P1

P2

)1/γ
V1 = 23/5 × 7.5× 10−4 m3 = 1.14× 10−3 m3. (2.57)

In this case we see that for a given pressure change, the volume change for the adiabatic process
is greater. We leave it as an exercise to show that T2 = 250 K.

Problem 2.16. Air initially at 20◦C is compressed by a factor of 15.

(a) What is the final temperature assuming that the compression is adiabatic and γ = 1.4, the
value of γ for air at the relevant range of temperatures? By what factor does the pressure
increase?

(b) What is the final pressure assuming the compression is isothermal?

(c) In which case does the pressure change more?

How much work is done in a quasistatic adiabatic process? Because Q = 0, ∆E = W . For an
ideal gas, ∆E = CV ∆T for any process. Hence for a quasistatic adiabatic process

W = CV (T2 − T1). (quasistatic adiabatic process for an ideal gas) (2.58)

We leave it to Problem 2.17 to show that (2.58) can be expressed in terms of the pressure and
volume as

W =
P2V2 − P1V1

γ − 1
. (2.59)

Problem 2.17. Another way to derive (2.59), the work done in a quasistatic adiabatic process,
is to use the relation (2.51). Work out the steps.

Example 2.8. Compression in a Diesel engine occurs quickly enough so that very little heating
of the environment occurs and thus the process may be considered adiabatic. If a temperature of
500◦C is required for ignition, what is the compression ratio? Assume that the air can be treated
as an ideal gas with γ = 1.421 and the temperature is 20◦C before compression.

Solution. Equation (2.49) gives the relation between T and V for a quasistatic adiabatic process.
We write T1 and V1 and T2 and V2 for the temperature and volume at the beginning and the end
of the piston stroke. Then (2.51) becomes

T1V
γ−1
1 = T2V

γ−1
2 . (2.60)

Hence the compression ratio V1/V2 is

V1

V2
=
(T2

T1

)1/(γ−1)

=
(773 K

293 K

)1/0.4

= 11. (2.61)

It is only an approximation to assume that the compression is quasistatic.
21The ratio γ equals 5/3 only for an ideal gas of particles with no spatial extent. We will learn in Section 6.3 how

to calculate γ for molecules with rotational and vibrational contributions to the energy.
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2.12 The Second Law of Thermodynamics

The consequences of the first law of thermodynamics can be summarized by the statements that
(a) energy is conserved in thermal processes and (b) heating is a form of energy transfer. We also
noted that the internal energy of a system can be identified with the sum of the potential and
kinetic energies of the particles (in a reference frame in which the center of mass velocity is zero.)

As discussed in Chapter 1, there are many processes that do not occur in nature, but whose
occurrence would be consistent with the first law. For example, the first law does not prohibit
energy from being transferred spontaneously from a cold body to a hot body, yet it has never been
observed. There is another property of systems that must be taken into account, and this property
is called the entropy.22

Entropy is another example of a state function. One of the remarkable achievements of the
nineteenth century was the reasoning that such a state function must exist without any idea of how
to measure its value directly. In Chapter 4 we will learn about the relation between the entropy
and the number of possible microscopic states, but for now we will follow a logic that does not
depend on any knowledge of the microscopic behavior.

It is not uncommon to use heating as a means of doing work. For example, power plants burn
oil or coal to turn water into steam which in turn turns a turbine in a magnetic field creating
electricity which then can do useful work in your home. Can we completely convert all the energy
created by chemical reactions into work? Or more simply can we cool a system and use all the
energy lost by the system to do work? Our everyday experience tells us that we cannot. If it
were possible, we could power a boat to cross the Atlantic by cooling the sea and transferring
energy from the sea to drive the propellers. We would need no fuel and travel would be much
cheaper. Or instead of heating a fluid by doing electrical work on a resistor, we could consider
a process in which a resistor cools the fluid and produces electrical energy at its terminals. The
fact that these processes do not occur is summarized in one of the statements of the second law of
thermodynamics:

It is impossible to construct an engine which, operating in a cycle, will produce no
other effect than the extraction of heat from a reservoir and the performance of an
equivalent amount of work.23

The second law implies that a perpetual motion machine of the second kind does not exist. Such
a machine would convert heat completely into work (see Figure 2.6).

What about the isothermal expansion of an ideal gas? Does this process violate the second
law? When the gas expands, it does work on the piston which causes the gas to lose energy.
Because the process is isothermal, the gas must absorb energy so that its internal energy remains
constant. (The internal energy of an ideal gas depends only on the temperature.) We have

∆E = Q+W = 0. (2.62)
22This thermodynamic variable was named by Rudolf Clausius in 1850 who formed the word entropy (from the

Greek word for transformation) so as to be as similar as possible to the word energy.
23The original statement by Kelvin is “It is impossible by means of inanimate material agency to derive mechanical

effect from any portion of matter by cooling it below the temperature of the coldest of the surrounding objects.”
Planck wrote that “It is impossible to construct an engine, which working in a complete cycle, will produce no effect
other than the raising of a weight and the cooling of a heat reservoir.” See Zemansky and Dittman, p. 147.
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Figure 2.6: A machine that converts energy transferred by heating into work with 100% efficiency
violates the Kelvin statement of the second law of thermodynamics.

We see that W = −Q, that is, the work done on the gas is −W and the work done by the gas
is Q. We conclude that we have completely converted the absorbed energy into work. However,
this conversion does not violate the Kelvin-Planck statement because the macrostate of the gas is
different at the end than at the beginning, that is, the isothermal expansion of an ideal gas is not
a cyclic process. We cannot use the gas to make an engine.

Another statement of the second law based on the empirical observation that energy does not
spontaneously go from a colder to a hotter body can be stated as

No process is possible whose sole result is cooling a colder body and heating a hotter
body (Clausius statement).

The Kelvin and the Clausius statements of the second law look different, but each statement implies
the other so their consequences are identical.

A more abstract version of the second law that is not based directly on experimental obser-
vations, but that is more convenient in many contexts, can be expressed as

There exists an additive function of state known as the entropy S that can never
decrease in an isolated system.

Because the entropy cannot decrease in an isolated system, we conclude that the entropy is a
maximum for an isolated system in equilibrium.24 The term additive means that if the entropy
of two systems is SA and SB , respectively, the total entropy of the combined system is Stotal =
SA + SB . In the following we adopt this version of the second law and show that the Kelvin and
Clausius statements follow from it.

The statement of the second law in terms of the entropy is applicable only to isolated systems
(a system enclosed by insulating, rigid, and impermeable walls). The systems of usual interest
can exchange energy with its surroundings. In many cases the surroundings may be idealized as

24Maximum and minimum principles are ubiquitous in physics. Leonhard Euler wrote that “Nothing whatsoever
takes place in the universe in which some relation of maximum and minimum does not appear.”
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a large body that does not interact with the rest of the universe. For example, we can take the
surroundings of a cup of hot water to be the atmosphere in the room. In this case we can treat
the composite system, system plus surroundings, as isolated. For the composite system, we have
for any process

∆Scomposite ≥ 0, (2.63)

where Scomposite is the entropy of the system plus its surroundings.
If a change is reversible, we cannot have ∆Scomposite > 0, because if we reverse the change we

would have ∆Scomposite < 0, a violation of the Clausius statement. Hence, the only possibility is
that

∆Scomposite = 0. (reversible process) (2.64)

To avoid confusion, we will use the term reversible to be equivalent to a constant entropy process.
The condition for a process to be reversible requires only that the total entropy of a closed system
is constant; the entropies of its parts may either increase or decrease.

2.13 The Thermodynamic Temperature

The Clausius and Kelvin statements of the second law arose from the importance of heat engines
to the development of thermodynamics. A seemingly different purpose of thermodynamics is to
determine the conditions of equilibrium. These two purposes are linked by the fact that whenever
there is a difference of temperature, work can be extracted.

In the following, we derive the properties of the thermodynamic temperature from the sec-
ond law. In Section 2.16 we will show that this temperature is the same as the ideal gas scale
temperature.

Consider an isolated composite system that is partitioned into two subsystems A and B by a
fixed, impermeable, insulating wall. For the composite system we have

E = EA + EB = constant, (2.65)

V = VA + VB = constant, and N = NA +NB = constant. Because the entropy is additive, we can
write the total entropy as

S(EA, VA, NA, EB , VB , NB) = SA(EA, VA, NA) + SB(EB , VB , NB). (2.66)

Most divisions of the energy EA and EB between subsystems A and B do not correspond to thermal
equilibrium.

For thermal equilibrium to be established, we replace the fixed, impermeable, insulating wall
by a fixed, impermeable, conducting wall so that the two subsystems are in thermal contact and
energy transfer by heating or cooling can occur. We say that we have removed an internal con-
straint. According to our statement of the second law, the values of EA and EB will be such that
the entropy of the system becomes a maximum. To find the value of EA that maximizes S as given
by (2.66), we calculate

dS =
( ∂SA
∂EA

)
VA,NA

dEA +
( ∂SB
∂EB

)
VB ,NB

dEB . (2.67)

Because the total energy of the system is conserved, we have dEB = −dEA, and hence
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dS =
[( ∂SA
∂EA

)
VA,NA

−
( ∂SB
∂EB

)
VB ,NB

]
dEA. (2.68)

The condition for equilibrium is that dS = 0 for arbitrary values of dEA, and hence( ∂SA
∂EA

)
VA,NA

=
( ∂SB
∂EB

)
VB ,NB

. (2.69)

Because the temperatures of the two systems are equal in thermal equilibrium, we conclude that
the derivative ∂S/∂E must be associated with the temperature. We will find that it is convenient
to define the thermodynamic temperature T as

1
T

=
( ∂S
∂E

)
V,N

, (thermodynamic definition of temperature) (2.70)

which implies that the condition for thermal equilibrium is

1
TA

=
1
TB

. (2.71)

Of course we can rewrite (2.71) as TA = TB .
We have found that if two systems are separated by a conducting wall, energy will be trans-

ferred until each of the systems reaches the same temperature. We now suppose that the two
subsystems are initially separated by an insulating wall and that the temperatures of the two sub-
systems are almost equal with TA > TB . If this constraint is removed, we know that energy will
be transferred across the conducting wall and the entropy of the composite system will increase.
From (2.68) we can write the change in entropy as

∆S ≈
[ 1
TA
− 1
TB

]
∆EA > 0, (2.72)

where TA and TB are the initial values of the temperatures. The condition that TA > TB , requires
that ∆EA < 0 in order for ∆S > 0 in (2.72) to be satisfied. Hence, we conclude that the definition
(2.70) of the thermodynamic temperature implies that energy is transferred from a system with a
higher value of T to a system with a lower value of T . We can express (2.72) as: No process exists
in which a cold body becomes cooler while a hotter body becomes still hotter and the constraints on
the bodies and the state of its surroundings are unchanged. We recognize this statement as the
Clausius statement of the second law.

The definition (2.70) of T is not unique, and we could have replaced 1/T by other functions
of temperature such as 1/T 2 or 1/

√
T . However, we will find in Section 2.16 that the definition

(2.70) implies that the thermodynamic temperature is identical to the ideal gas scale temperature.
Note that the inverse temperature can be interpreted as the response of the entropy to a

change in the energy of the system. In Section 2.17, we will derive the condition for mechanical
equilibrium, and in Section 4.5 we will derive the condition for chemical equilibrium. These two
conditions complement the condition for thermal equilibrium. All three conditions must be satisfied
for thermodynamic equilibrium to be established.
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2.14 The Second Law and Heat Engines

A body that can change the temperature of another body without changing its own temperature
and without doing work is known as a heat bath. The term is archaic, but we will adopt it because
of its common usage.25 A heat bath can be either a heat source or a heat sink. Examples of a heat
source and a heat sink depending on the circumstances are the earth’s ocean and atmosphere. If
we want to measure the electrical conductivity of a small block of copper at a certain temperature,
we can place it into a large body of water that is at the desired temperature. The temperature of
the copper will become equal to the temperature of the large body of water, whose temperature
will be unaffected by the copper.

For pure heating or cooling the increase in the entropy is given by

dS =
( ∂S
∂E

)
V,N

dE. (2.73)

In this case dE = dQ because no work is done. If we express the partial derivative in (2.73) in
terms of T , we can rewrite (2.73) as

dS =
dQ

T
. (pure heating) (2.74)

We emphasize that the relation (2.74) holds only for quasistatic changes. Note that (2.74) implies
that the entropy does not change in a quasistatic, adiabatic process.

We now use (2.74) to discuss the problem that stimulated the development of thermodynamics
– the efficiency of heat engines. We know that an engine converts energy from a heat source to
work and returns to its initial state. According to (2.74), the transfer of energy from a heat source
lowers the entropy of the source. If the energy transferred is used to do work, the work done
must be done on some other system. Because the process of doing work may be quasistatic (for
example, compressing a gas), the work need not involve a change of entropy. But if all of the
energy transferred is converted into work, the total entropy would decrease, and we would violate
the entropy statement of the second law. Hence, we arrive at the conclusion summarized in Kelvin’s
statement of the second law: no process is possible whose sole result is the complete conversion of
energy into work.

The simplest possible engine works in conjunction with a heat source at temperature Thigh and
a heat sink at temperature Tlow. In a cycle the heat source transfers energy Qhigh to the engine,
and the engine does work W and transfers energy Qlow to the heat sink (see Figure 2.7). At the
end of one cycle, the energy and entropy of the engine are unchanged because they return to their
original values. An engine of this type is known as a Carnot engine.

By energy conservation, we have Qhigh = W + Qlow, or W = Qhigh − Qlow, where in this
context Qhigh and Qlow are positive quantities. From the second law we have that

∆Stotal = ∆Shigh + ∆Slow = −Qhigh

Thigh
+
Qlow

Tlow
≥ 0. (2.75)

We rewrite (2.75) as
Qlow

Qhigh
≥ Tlow

Thigh
. (2.76)
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Figure 2.7: Schematic energy transfer diagram for an ideal heat engine. By convention, the
quantities Qhigh, Qlow, and W are taken to be positive.

The thermal efficiency η of the engine is defined as

η =
what you obtain
what you pay for

(2.77)

=
W

Qhigh
=
Qhigh −Qlow

Qhigh
= 1− Qlow

Qhigh
. (2.78)

From (2.78) we see that the engine is most efficient when the ratio Qlow/Qhigh is as small as
possible. Equation (2.76) shows that Qlow/Qhigh is a minimum when the cycle is reversible so that

∆Stotal = 0, (2.79)

and
Qlow

Qhigh
=

Tlow

Thigh
. (2.80)

For these conditions we find that the maximum thermal efficiency is

η = 1− Tlow

Thigh
. (maximum thermal efficiency) (2.81)

Note that the temperature in (2.81) is the thermodynamic temperature.
The result (2.81) illustrates the remarkable power of thermodynamics. We have concluded

that all reversible engines operating between a heat source and a heat sink with the same pair of
temperatures have the same efficiency and that no irreversible engine working between the same
pair of temperatures can have a greater efficiency. This statement is known as Carnot’s principle.

25The term thermal bath is also sometimes used.
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Based on general principles, we have been able to determine the maximum efficiency of a reversible
engine without knowing anything about the details of the engine.

Real engines never reach the maximum thermodynamic efficiency because of the presence of
mechanical friction and because the processes cannot really be quasistatic. For these reasons, real
engines seldom attain more than 30–40% of the maximum thermodynamic efficiency. Nevertheless,
the basic principles of thermodynamics are an important factor in their design. We will discuss
other factors that are important in the design of heat engines in Chapter 7.

Example 2.9. A Carnot engine
A Carnot engine extracts 240 J from a heat source and rejects 100 J to a heat sink at 15◦C in
one cycle. How much work does the engine do in one cycle? What is its efficiency? What is the
temperature of the heat source?

Solution. From the first law we have

W = 240 J− 100 J = 140 J.

The efficiency is given by

η =
W

Qhigh
=

140
240

= 0.583 = 58.3%. (2.82)

We can use this result for η and the general relation (2.81) to solve for Thigh:

Thigh =
Tlow

1− η
=

288 K
1− 0.583

= 691 K.

Note that to calculate the efficiency, we must use the thermodynamic temperature.

Example 2.10. The cycle of a hypothetical engine is illustrated in Figure 2.8. Let P1 = 1×106 Pa,
P2 = 2× 106 Pa, V1 = 5× 10−3 m3, and V2 = 25× 10−3 m3. If the energy absorbed by heating the
engine is 5× 104 J, what is the efficiency of the engine?

Solution. The work done by the engine equals the area enclosed:

W =
1
2

(P2 − P1)(V2 − V1). (2.83)

Confirm that W = 1× 104 J. The efficiency is given by

η =
W

Qabsorbed
=

1× 104

5× 104
= 0.20. (2.84)

The maximum efficiency of a heat engine depends on the temperatures Thigh and Tlow in
a simple way and not on the details of the cycle or working substance. The Carnot cycle is a
particular sequence of idealized processes of an ideal gas that yields the maximum thermodynamic
efficiency given in (2.81). The four steps of the Carnot cycle (two adiabatic and two isothermal
steps) are illustrated in Figure 2.9. The initial state is at the point A. The gas is in contact with a
hot heat bath at temperature Thigh so that the temperature of the gas also is Thigh. The piston is
pushed in as far as possible so the volume is reduced. As a result of the relatively high temperature
and small volume, the pressure of the gas is high.
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P

P2

P1

V1 V2 V

Figure 2.8: The cycle of the hypothetical engine considered in Example 2.10.

1. A → B, isothermal expansion. The gas expands while it is in contact with the heat source.
During the expansion the high pressure gas pushes on the piston and the piston turns a
crank. This step is a power stroke of the engine and the engine does work. To keep the gas
at the same temperature, the engine must absorb energy by being heated by the heat source.

We could compress the gas isothermally and return the gas to its initial state. Although
this step would complete the cycle, exactly the same amount of work would be needed to
push the piston back to its original position and hence no net work would be done. To make
the cycle useful, we have to choose a cycle so that not all the work of the power stroke is lost
in restoring the gas to its initial pressure, temperature, and volume. The idea is to reduce
the pressure of the gas so that during the compression step less work has to be done. One
way of reducing the pressure is to lower the temperature of the gas by doing an adiabatic
expansion.

2. B → C, adiabatic expansion. We remove the thermal contact of the gas with the hot bath
and allow the volume to continue to increase so that the gas expands adiabatically. Both
the pressure and the temperature of the gas decrease. The step from B → C is still a power
stroke, but now we are cashing in on the energy stored in the gas, because it can no longer
take energy from the heat source.

3. C → D, isothermal compression. We now begin to restore the gas to its initial condition.
At C the gas is placed in contact with the heat sink at temperature Tlow, to ensure that the
pressure remains low. We now do work on the gas by pushing on the piston and compressing
the gas. As the gas is compressed, the temperature of the gas tends to rise, but the thermal
contact with the cold bath ensures that the temperature remains at the same temperature
Tlow. The extra energy is dumped to the heat sink.

4. D → A, adiabatic compression. At D the volume is almost what it was initially, but the
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Figure 2.9: The four steps of the Carnot cycle.

temperature of the gas is too low. Before the piston returns to its initial state, we remove
the contact with the heat sink and allow the work of adiabatic compression to raise the
temperature of the gas to Thigh.

These four steps represent a complete cycle and the idealized engine is ready to go through
another cycle. Note that a net amount of work has been done, because more work was done by
the gas during its power strokes than was done on the gas while it was compressed. The reason is
that the work done during the compression steps was against a lower pressure. The result is that
we have extracted useful work. But some of the energy of the gas was discarded into the heat sink
while the gas was being compressed. Hence, the price we have had to pay to do work by having
the gas heated by the heat source is to throw away some of the energy to the heat sink.

Example 2.11. The Carnot cycle for an ideal gas
Determine the changes in the various thermodynamic quantities of interest during each step of the
Carnot cycle and show that the efficiency of a Carnot cycle whose working substance is an ideal
gas is given by η = 1− Thigh/Tlow.

Solution. We will use the PV diagram for the engine shown in Figure 2.9. During the isothermal
expansion from A to B, energy Qhigh is absorbed by the gas by heating at temperature Thigh. The
expanding gas does a positive amount of work against its environment. Because ∆E = 0 for an
ideal gas along an isotherm,

Qhigh = −WA→B = NkThigh ln
VB
VA

, (2.85)

where WAB is the (negative) work done on the gas.
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During the adiabatic expansion from B → C, QB→C = 0 and WB→C = CV (TC − TB).
Similarly, WC→D = −NkTlow lnVD/VC , and

Qlow = −NkTlow ln
VD
VC

= NkTlow ln
VC
VD

. (2.86)

(By convention Qhigh and Qlow are both positive.) Finally, during the adiabatic compression from
D → A, QD→A = 0 and WD→A = CV (TD − TA). We also have Wnet = Qhigh −Qlow.

Because the product TV γ−1 is a constant in a quasistatic adiabatic process, we have

ThighV
γ−1
B = TlowV

γ−1
C (2.87a)

TlowV
γ−1
D = ThighV

γ−1
A , (2.87b)

which implies that
VB
VA

=
VC
VD

. (2.88)

The net work is given by

Wnet = Qhigh −Qlow = Nk(Thigh − Tlow) ln
VC
VD

. (2.89)

The efficiency is given by

η =
Wnet

Qhigh
=
Thigh − Tlow

Thigh
= 1− Tlow

Thigh
, (2.90)

as was found earlier by general arguments.

2.15 Entropy Changes

As we have mentioned, the impetus for developing thermodynamics was the industrial revolution
and the efficiency of engines. However, similar reasoning can be applied to other macroscopic
systems to calculate the change in entropy.

Example 2.12. Change in entropy of a solid
A solid with constant heat capacity C is taken from an initial temperature T1 to a final temperature
T2. What is its change in entropy? (Ignore the small difference in the heat capacities at constant
volume and constant pressure.)

Solution. We assume that the temperature of the solid is increased by putting the solid in contact
with a succession of heat baths at temperatures separated by a small amount ∆T . Then the
entropy change is given by

S2 − S1 =
∫ T2

T1

dQ

T
=
∫ T2

T1

C(T )
dT

T
. (2.91)
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Because the heat capacity C is a constant, we find

∆S = S2 − S1 = C

∫ T2

T1

dT

T
= C ln

T2

T1
. (2.92)

Note that if T2 > T1, the entropy has increased.

How can we determine the entropy of a solid? We know how to measure the temperature and
the energy, but we have no entropy meter. Instead we have to determine the entropy indirectly.
If the volume is held constant, we can determine the temperature dependence of the entropy by
doing many successive measurements of the heat capacity and by doing the integral in (2.91). Note
that such a determination gives only the entropy difference. We will discuss how to determine the
absolute value of the entropy in Section 2.20.

Entropy changes due to thermal contact. A solid with heat capacity CA at temperature TA is
placed in contact with another solid with heat capacity CB at a lower temperature TB . What
is the change in entropy of the system after the two bodies have reached thermal equilibrium?
Assume that the heat capacities are independent of temperature and the two solids are isolated
from their surroundings.

From Example 2.4 we know that the final equilibrium temperature is given by

T =
CATA + CBTB
CA + CB

. (2.93)

Although the process is irreversible, we can calculate the entropy change by considering any process
that takes a body from one temperature to another. For example, we can imagine that a body is
brought from its initial temperature TB to the temperature T in many successive infinitesimal steps
by placing it in successive contact with a series of reservoirs at infinitesimally greater temperatures.
At each contact the body is arbitrarily close to equilibrium and has a well defined temperature.
For this reason, we can apply the result (2.92) which yields ∆SA = CA lnT/TA. The total change
in the entropy of the system is given by

∆S = ∆SA + ∆SB = CA ln
T

TA
+ CB ln

T

TB
, (2.94)

where T is given by (2.93). Substitute real numbers for TA, TB , CA, and CB and convince yourself
that ∆S ≥ 0. Does the sign of ∆S depend on whether TA > TB or TA < TB?

Example 2.13. Entropy change of water in contact with a heat bath
One kilogram of water at 0◦C is brought into contact with a heat bath at 50◦C. What is the change
of entropy of the water, the bath, and the combined system consisting of both the water and the
heat bath?

Solution. The change in entropy of the water is given by

∆SH20 = C ln
T2

T1
= 4184 ln

273 + 50
273 + 0

= 703.67 J/K. (2.95)
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Why does the factor of 273 enter in (2.95)? The amount of energy transferred to the water from
the heat bath is

Q = C(T2 − T1) = 4184× 50 = 209, 200 J. (2.96)

The change in entropy of the heat bath is

∆SB =
−Q
T2

= −209200
323

= −647.68 J/K. (2.97)

Hence the total change in the entropy is

∆S = ∆SH20 + ∆SB = 703.67− 647.68 = 56 J/K. (2.98)

Problem 2.18. Water in contact with two heat baths
The temperature of one kilogram of water at 0◦C is increased to 50◦C by first bringing it into
contact with a heat bath at 25◦C and then with a heat bath at 50◦C. What is the change in
entropy of the entire system? How does this change in entropy compare with the change that was
found in Example 2.13?

Example 2.14. More on the nature of a heat bath
A heat bath is a much larger system whose temperature remains unchanged when energy is added
or subtracted from it. As an example consider two systems with constant volume heat capacities
CA and CB that are initially at different temperatures TA and TB . What happens when the two
systems are placed in thermal contact (and are isolated from their surroundings)? The volume of
the two systems is fixed and the heat capacities are independent of temperature.

From the first law of thermodynamics we have

CATA + CBTB = (CA + CB)T, (2.99)

and
T =

CA
CA + CB

TA +
CB

CA + CB
TB . (2.100)

The total change in the entropy is given by

∆S = ∆SA + ∆SB = CA ln
T

TA
+ CB ln

T

TB
. (2.101)

We write
λ =

CA
CB

, (2.102)

express ∆S in terms of λ, and then take the limit λ→ 0. We have

T

TA
=

CA
CB(1 + CA/CB)

+
1

(1 + CA/CB)
TB
TA

(2.103a)

=
1

1 + λ

(
1 +

TB
TA

)
. (2.103b)

In the limit λ→ 0 (an infinite heat bath) we see from (2.103b) that T = TB .
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We next calculate the change in the entropy in the limit of an infinite heat bath. The first
term in (2.101) gives

∆SA = CA ln
T

TA
→ CA ln

TB
TA

. (2.104)

To evaluate the second term in (2.101) we write

T

TB
=

1
1 + λ

(
1 + λ

TA
TB

)
≈ (1− λ)

(
1 + λ

TA
TB

)
(2.105a)

= 1 + λ
(TA
TB
− 1
)
, (2.105b)

where we have used the approximation (1 + x)−1 ≈ 1− x. We have

∆SB = CB ln
T

TB
→ CA

1
λ

ln
[
1 + λ

(TA
TB
− 1
)]
→ CA

(TA
TB
− 1
)
. (2.106)

where we have used the approximation ln(1 + x) ≈ x. Hence, the total change in the entropy of
the system is given by

∆S = CA

[
ln
TB
TA

+
TA
TB
− 1
]
. (2.107)

In Problem 2.55 you will be asked to show that ∆S in (2.107) is always greater than zero for
TA 6= TB .

Example 2.15. Melting of ice
A beaker contains a mixture of 0.1 kg of ice and 0.1 kg of water. Suppose that we place the beaker
over a low flame and melt 0.02 kg of the ice. What is the change of entropy of the ice-water
mixture? (It takes 334 kJ to melt 1 kg of ice.)

Solution. If we add energy to ice at its melting temperature T = 273.15 K at atmospheric pressure,
the effect is to melt the ice rather than to raise its temperature.

The addition of energy to the ice-water mixture is generally not a reversible process, but we
can find the entropy change by considering a reversible process between the initial and final states.
We melt 0.02 kg of ice in a reversible process by supplying 0.02 kg×334 kJ/kg = 6680 J from a heat
bath at 273.15 K, assuming that the ice-water mixture is in equilibrium with the heat bath. (We
also implicitly assume that the mixture and the heat bath form an isolated composite system.)
Hence, the entropy increase is given by ∆S = 6680/273.15 = 24.46 J/K.

Entropy change in a free expansion. Consider an ideal gas of N particles in a closed, insulated
container that is divided into two chambers by an impermeable partition (see Figure 2.10). The
gas is initially confined to one chamber of volume VA at a temperature T . The gas is then allowed
to expand freely into a vacuum to fill the entire container of volume VB . What is the change in
entropy for this process?

Because the expansion is into a vacuum, no work is done by the gas. The expansion also is
adiabatic because the container is thermally insulated. Hence, there is no change in the internal
energy of the gas. It might be argued that ∆S = Q/T = 0 because Q = 0. However, this conclusion
would be incorrect because the relation dS = dQ/T holds only for a quasistatic process.



CHAPTER 2. THERMODYNAMIC CONCEPTS 65

VA VB - VA

partition

Figure 2.10: The free expansion of an isolated ideal gas. The second chamber is initially a vacuum
and the total volume of the two chambers is VB .

The expansion from VA to VB is an irreversible process. Left to itself, the system will not
return spontaneously to its original state with all the particles in the left container. To calculate
the change in the entropy, we may consider a quasistatic process that takes the system to the same
final state. Because the gas is ideal, the internal energy depends only on the temperature, and
hence the temperature of the ideal gas is unchanged. So we will calculate the energy added during
an isothermal process to take the gas from volume VA to VB ,

Q = NkT ln
VB
VA

, (2.108)

where we have used (2.27). Hence, from (2.91), the entropy change is given by

∆S =
Q

T
= Nk ln

VB
VA

. (2.109)

Note that VB > VA and the entropy change is positive as expected.
Alternatively, we can argue that the work needed to restore the gas to its original macrostate

is given by

W = −
∫ VA

VB

P dV = NkT ln
VB
VA

, (2.110)

where we have used the fact that the process is isothermal. Hence, in this case W = T∆S, and
the entropy increase of the universe requires work on the gas to restore it to its original state.

The discussion of the free expansion of an ideal gas illustrates two initially confusing aspects
of thermodynamics. As mentioned, the name thermodynamics is a misnomer because thermody-
namics treats only equilibrium states and not dynamics. Nevertheless, thermodynamics discusses
processes that must happen over some interval of time. Also confusing is that we can consider
processes that did not actually happen. In this case no energy by heating was transferred to the
gas and the process was adiabatic. The value of Q calculated in (2.108) is the energy transferred
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in an isothermal process. No energy is transferred by heating in an adiabatic process, but the
entropy change is the same. For this reason we calculated the entropy change as if an isothermal
process had occurred.

Quasistatic adiabatic processes. We have already discussed that quasistatic adiabatic processes
have the special property that the entropy does not change, but we repeat this statement here to
emphasize its importance. Because the process is adiabatic, Q = 0, and because the process is
quasistatic, ∆S = Q/T = 0, and there is no change in the entropy.

Maximum work. When two bodies are placed in thermal contact, no work is done, that is, ∆W = 0
and ∆E = QA + QB = 0. What can we do to extract the maximum work possible from the two
bodies? From our discussion of heat engines, we know that we should not place them in thermal
contact. Instead we run a Carnot (reversible) engine between the two bodies. However, unlike the
reservoirs considered in the Carnot engine, the heat capacities of the two bodies are finite, and
hence the temperature of each body changes as energy is transferred from one body to the other.

To extract the maximum work, we assume that the process is reversible, and we have

∆S = ∆SA + ∆SB = 0, (2.111)

from which it follows using (2.91) that

CA ln
T

TA
+ CB ln

T

TB
= 0. (2.112)

If we solve (2.112) for T , we find that

T = T
CA/(CA+CB)
A T

CB/(CA+CB)
B . (2.113)

We see that the final temperature for a reversible process is the geometrical average of TA and TB
weighted by their respective heat capacities.

Problem 2.19.

(a) Suppose TA = 256 K and TB = 144 K. What are the relative values of the final temperatures
in (2.93) and (2.113) assuming that the heat capacities of the two bodies are equal?

(b) Show that the work performed by the heat engine in the reversible case is given by

W = ∆E = CA(T − TA) + CB(T − TB). (2.114)

Are all forms of energy equivalent? If you were offered 100 J of energy, would you choose to
have it delivered as compressed gas at room temperature or as a hot brick at 400 K? The answer
might depend on what you want to do with the energy. If you want to lift a block of ice, the best
choice would be to take the energy in the compressed gas. If you want to keep warm, the 400 K
object would be acceptable.

If you are not sure what you want to do with the energy, it is clear from the second law of
thermodynamics that we should take the form of the energy that can be most directly converted
into work, because there is no restriction on using stored energy for heating. What is different is
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the quality of the energy, which we take to be a measure of its ability to do a variety of tasks. We
can readily convert energy from higher to lower quality, but the second law of thermodynamics
prevents us from going in the opposite direction with 100% efficiency.

We found in our discussion of the adiabatic free expansion of a gas that the entropy increases.
Because the system has lost ability to do work, we can say that there has been a loss of the quality
of energy. Suppose that we had let the gas undergo a quasistatic isothermal expansion instead of
an adiabatic free expansion. Then the work done by the gas would have been (see (2.27)):

W = NkT ln
VB
VA

. (2.115)

After the adiabatic free expansion, the gas can no longer do this work, even though its energy is
unchanged. If we compare (2.115) with (2.109), we see that the energy that becomes unavailable
to do work in an adiabatic free expansion is

Eunavailable = T∆S. (2.116)

Equation (2.116) indicates that entropy is a measure of the quality of energy. Given two systems
with the same energy, the one with the lower entropy has the higher quality energy. An increase
in entropy implies that some energy has become unavailable to do work.

2.16 Equivalence of Thermodynamic and Ideal Gas Scale
Temperatures

So far we have assumed that the ideal gas scale temperature which we introduced in Section 2.4
is the same as the thermodynamic temperature defined by (2.70). We now show that the two
temperatures are proportional and can be made equal if we choose the units of S appropriately.

The ideal gas temperature scale, which we denote as θ in this section to distinguish it from
the thermodynamic temperature T , is defined by the relation

θ = PV/Nk. (2.117)

That is, θ is proportional to the pressure of a gas at a fixed low density and is equal to 273.16 K
at the triple point of water. The fact that θ ∝ P is a matter of definition. Another important
property of ideal gases is that the internal energy depends only on θ and is independent of the
volume.

One way to show that T is proportional to θ is to consider a Carnot cycle (see Figure 2.9)
with an ideal gas as the working substance. At every stage of the cycle we have

dQ

θ
=
dE − dW

θ
=
dE + PdV

θ
, (2.118)

or
dQ

θ
=
dE

θ
+Nk

dV

V
. (2.119)
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The first term on the right-hand side of (2.119) depends only on θ and the second term depends
only on the volume. If we integrate (2.119) around one cycle, both θ and V return to their starting
values, and hence the loop integral of the right-hand side of (2.119) is zero. We conclude that∮

dQ

θ
=
Qcold

θcold
− Qhot

θhot
= 0. (2.120)

In Section 2.14 we showed that Qcold/Qhot = Tcold/Thot for a Carnot engine (see (2.80)). If we
combine this result with (2.120), we find that

Tcold

Thot
=
θcold
θhot

. (2.121)

It follows that the thermodynamic temperature T is proportional to the ideal gas scale temperature
θ. From now on we shall assume that we have chosen suitable units for S so that T = θ.

2.17 The Thermodynamic Pressure

In Section 2.13 we showed that the thermodynamic definition of temperature follows by considering
the condition for the thermal equilibrium of two subsystems. In the following, we show that the
pressure can be defined in an analogous way and that the pressure can be interpreted as a response
of the entropy to a change in the volume.

As before, consider an isolated composite system that is partitioned into two subsystems. The
subsystems are separated by a movable, insulating wall so that the energies and volumes of the
subsystems can adjust themselves, but NA and NB are fixed. For simplicity, we assume that EA
and EB have already changed so that thermal equilibrium has been established. For fixed total
volume V, we have one independent variable which we take to be VA; VB is given by VB = V −VA.
The value of VA that maximizes Stotal is given by

dStotal =
∂SA
∂VA

dVA +
∂SB
∂VB

dVB = 0. (2.122)

Because dVA = −dVB , we can use (2.122) to write the condition for mechanical equilibrium as

∂SA
∂VA

=
∂SB
∂VB

. (2.123)

We define the thermodynamic pressure P as

P

T
=
( ∂S
∂V

)
E,N

. (thermodynamic definition of the pressure) (2.124)

For completeness, we define the chemical potential as the response of the entropy to a change
in the number of particles:

µ

T
= −

( ∂S
∂N

)
E,V

. (thermodynamic definition of the chemical potential) (2.125)

We will discuss the interpretation of µ in Section 4.12. You probably won’t be surprised to learn
that if two systems can exchange particles, then µ1 = µ2 is the condition for chemical equilibrium.
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We will sometimes distinguish between thermal equilibrium, mechanical equilibrium, and
chemical equilibrium for which the temperatures, pressures, and chemical potentials are equal,
respectively.

2.18 The Fundamental Thermodynamic Relation

The first law of thermodynamics implies that the internal energy E is a function of state. For any
change of state, the change in E is given by (2.187):

∆E = Q+W. (any process) (2.126)

To separate the contributions to E due to heating and work, the constraints on the system have
to be known. If the change is quasistatic, then the infinitesimal work done is

dW = −PdV, (quasistatic process) (2.127)

and
dQ = TdS. (quasistatic process) (2.128)

Thus, for an infinitesimal change in energy, we obtain

dE = TdS − PdV. (2.129)

There are two ways of thinking about (2.129). As our derivation suggests this equation tells us
the relation between changes in energy, entropy, and volume in a quasistatic process. However,
because S, V, and E are functions of state, we can view (2.129) as the differential form (for fixed
N) of the fundamental equation E = E(S, V,N) that describes the relation between E, S, V, and
N for all equilibrium states. We can also understand (2.129) by considering S as a function of
E, V, and N and writing dS as

dS =
∂S

∂E
dE +

∂S

∂V
dV +

∂S

∂N
dN. (2.130)

If we use the definitions (2.70), (2.124), and (2.125) of the various partial derivatives of S(E, V,N),
we can write

dS =
1
T
dE +

P

T
dV − µ

T
dN, (2.131)

which is equivalent to (2.129) for a fixed number of particles.
If we know the entropy S as a function of E, V, and N , we can determine the corresponding

responses T, P , and µ. For this reason we shall refer to E, V, and N as the natural variables in
which S should be expressed. In this context S can be interpreted as a thermodynamic potential
because its various partial derivatives yield the equations of state of the system. In Section 2.21
we shall discuss thermodynamic potentials that have different sets of natural variables.

We can alternatively consider E as a function of S, V, and N and rewrite (2.131) as

dE = TdS − PdV + µdN . (fundamental thermodynamic relation) (2.132)
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Equation (2.132) is a mathematical statement of the combined first and second laws of thermody-
namics. Although there are very few equations in thermodynamics that are necessary to memorize,
(2.132) is one of the few equations that you should know without thinking.

Many useful thermodynamic relations can be derived using (2.132). For example, if we regard
E as a function of S, V, and N , we can write

dE =
∂E

∂S
dS +

∂E

∂V
dV +

∂E

∂N
dN. (2.133)

If we compare (2.132) and (2.133), we see that

T =
(∂E
∂S

)
V,N

P = −
(∂E
∂V

)
S,N

µ =
( ∂E
∂N

)
S,V

. (2.134)

Note that E(S, V,N) also can be interpreted as a thermodynamic potential. Or we can start with
(2.132) and obtain (2.131) and the thermodynamic definitions of T , P , and µ.

2.19 The Entropy of an Ideal Gas

Because we know two equations of state of an ideal gas, (2.8) and (2.25), we can find the entropy of
an ideal gas as a function of various combinations of E, T , P , and V (for fixed N). If we substitute
1/T = 3Nk/(2E) and P/T = Nk/V into (2.131), we obtain

dS =
3
2
Nk

dE

E
+Nk

dV

V
. (2.135)

We can integrate (2.135) to obtain the change in the entropy from state E1, V1 to state E2, V2:

∆S =
3
2
Nk ln

E2

E1
+Nk ln

V2

V1
. (2.136)

We see that S is an additive quantity as we assumed; that is, S is proportional to N ,
Frequently it is more convenient to express S in terms of T and V or T and P . To obtain

S(T, V ) we substitute E = 3NkT/2 into (2.136) and obtain

∆S =
3
2
Nk ln

T2

T1
+Nk ln

V2

V1
. (2.137)

Problem 2.20. Relation of T and P for a quasistatic adiabatic process

(a) Find ∆S(T, P ) for an ideal gas.

(b) Use (2.137) to derive the relation (2.51) for a quasistatic adiabatic process.
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2.20 The Third Law of Thermodynamics

We can calculate only differences in the entropy using purely thermodynamic relations as we did
in Section 2.19. We can determine the absolute value of the entropy by using the third law of
thermodynamics which states that

lim
T→0

S = 0. (third law of thermodynamics) (2.138)

A statement equivalent to (2.138) was first proposed by Nernst in 1906 on the basis of empirical
observations.26 The statistical basis of this law is discussed in Section 4.6. In the context of
thermodynamics, the third law can be understood only as a consequence of empirical observations.

The most important consequence of the third law is that all heat capacities must go to zero
as the temperature approaches zero. For changes at constant volume, we know that

S(T2, V )− S(T1, V ) =
∫ T2

T1

CV (T )
T

dT. (2.139)

The condition (2.138) implies that in the limit T1 → 0, the integral in (2.139) must go to a
finite limit, and hence we require that CV (T ) → 0 as T → 0. Similarly, we can argue that
CP → 0 as T → 0. Note that these conclusions about the low temperature behavior of CV and
CP are independent of the nature of the system. Such is the power of thermodynamics. This low
temperature behavior of the heat capacity was first established experimentally in 1910–1912.

As we will find in Section 4.6, the third law is a consequence of the fact that the most
fundamental description of nature at the microscopic level is quantum mechanical. We have already
seen that the heat capacity is a constant for an ideal classical gas. Hence, the thermal equation
of state, E = 3NkT/2, as well as the pressure equation of state, PV = NkT , must cease to be
applicable at sufficiently low temperatures.

Example 2.16. At very low temperature T , the heat capacity C of an insulating solid is pro-
portional to T 3. If we take C = AT 3 for a particular solid, what is the entropy of the solid at
temperature T?

Solution. As before, the entropy is given by (see (2.91)):

S(T ) =
∫ T

0

CV (T )
T

dT, (2.140)

where we have used the fact that S(T = 0) = 0. We can integrate the right-hand side of (2.140)
from T = 0 to the desired value of T to find the absolute value of S. The result in this case is
S = AT 3/3.

2.21 Free Energies

We know that the entropy of an isolated system can never decrease. However, an isolated system
is of little experimental interest, and we wish to consider the more typical case where the system

26Walther Nernst (1864–1943) was awarded the 1920 Nobel prize in chemistry for his discovery of the third law
and related work.
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of interest is connected to a much larger system whose properties do not change significantly. As
we have discussed, this larger system is called a heat bath. In the following we will consider a
generalization of a heat bath; that is, a large system whose temperature and pressure are unchanged
by interactions. For simplicity, we will still refer to such a system as a heat bath.

If a system is connected to a heat bath, then the entropy of the system may increase or
decrease. The only thing we can say for sure is that the entropy of the system plus the heat bath
must increase or remain unchanged. Because the entropy is additive, we have27

Scomposite = S + Sbath, (2.141)

and
∆Scomposite = ∆S + ∆Sbath ≥ 0, (2.142)

where the properties of the system of interest are denoted by the absence of a subscript. Our goal
is to determine if there is a property of the system alone (not the composite system) that is a
maximum or a minimum. We begin by writing the change ∆Sbath in terms of the properties of
the system. Because energy can be transferred between the system and heat bath, we have

∆Sbath =
−Q
Tbath

, (2.143)

where Q is the amount of energy transferred by heating the system, and −Q is the amount of energy
transferred to the heat bath. If we use (2.143) and the fundamental thermodynamic relation,
(2.132), we can rewrite (2.142) as

∆Scomposite = ∆S − Q

Tbath
. (2.144)

The application of the first law to the system gives

∆E = Q+W, (2.145)

where ∆E is the change in the energy of the system and W is the work done on it. If the work
done on the system is due to the heat bath, then W = −Pbath∆V, where ∆V is the change in
volume of the system. Then we can write

∆Scomposite = ∆S − ∆E −W
Tbath

= ∆S − ∆E + Pbath∆V
Tbath

≥ 0. (2.146)

A little algebra leads to
∆E + Pbath∆V − Tbath∆S ≤ 0. (2.147)

This result suggests that we define the availability by

A = E + PbathV − TbathS, (2.148)

so that (2.147) becomes
∆A = ∆E + Pbath∆V − Tbath∆S ≤ 0. (2.149)

27The following discussion is adapted from Mandl, pp. 89–92.
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The availability includes properties of both the system and the heat bath. The significance of the
availability will be discussed in the following.

We now look at some typical experimental situations and introduce a quantity that depends
only on the properties of the system. As before, we assume that its volume and number of particles
is fixed, and that its temperature equals the temperature of the heat bath, that is, we set Tbath = T
and ∆V = 0. In this case we have

∆A = ∆E − T∆S ≡ ∆F ≤ 0. (2.150)

We have defined the Helmholtz free energy as

F = E − TS. (2.151)

The inequality in (2.150) implies that if a constraint within the system is removed, then the system’s
Helmholtz free energy will decrease. At equilibrium the left-hand side of (2.150) will vanish, and
F will be a minimum. Thus, F plays the analogous role for systems at constant T and V that was
played by the entropy for an isolated system (constant E and V ). We see that the Helmholtz free
energy is a minimum for a given T , V, and N .

The entropy of an isolated system is a function of E, V, and N . What are the natural variables
for F? From our discussion it should be clear that these variables are T , V, and N . The answer
can be found by taking the differential of (2.151) and using (2.132). The result is

dF = dE − SdT − TdS (2.152a)
= (TdS − PdV + µdN)− SdT − TdS (2.152b)
= −SdT − PdV + µdN. (2.152c)

We substituted dE = TdS − PdV + µdN to go from (2.152a) to (2.152c).
From (2.152) we see that F = F (T, V,N) and that S, P , and µ can be obtained by taking

appropriate partial derivatives of F . For example,

S = −
(∂F
∂T

)
V,N

, (2.153)

P = −
(∂F
∂V

)
T,N

(2.154)

and

µ =
( ∂F
∂N

)
T,V

. (2.155)

The Helmholtz free energy is an example of a free energy or thermodynamic potential.28 We
can relax the condition of a fixed volume by requiring that the pressure be specified. In this case
mechanical equilibrium requires that the pressure of the system equal the pressure of the bath.
This case is common in experiments with fluids where the pressure is fixed at atmospheric pressure.
We write Pbath = P and express (2.147) as

∆A = ∆E + P∆V − T∆S ≡ ∆G ≤ 0, (2.156)
28A more formal way of obtaining the various thermodynamic potentials is given in Section 2.26.2.
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where we have defined the Gibbs free energy as

G = E − TS + PV = F + PV. (2.157)

The natural variables of G can be found in the same way as we did for F . We find that G =
G(T, P,N) and

dG = dE − SdT − TdS + PdV + V dP (2.158a)
= (TdS − PdV + µdN)− SdT − TdS + PdV + V dP (2.158b)
= −SdT + V dP + µdN. (2.158c)

We can use similar reasoning to conclude that G is a minimum at fixed temperature, pressure, and
number of particles.

We can also relate G to the chemical potential using the following argument. Note that G
and N are extensive variables, but T and P are not. Thus, G must be proportional to N :

G = Ng(T, P ), (2.159)

where g(T, P ) is the Gibb’s free energy per particle. This function must be the chemical potential
because ∂G/∂N = g(T, P ) from (2.159) and ∂G/∂N = µ from (2.158). Thus, the chemical
potential is the Gibbs free energy per particle:

µ(T, P ) =
G

N
= g(T, p). (2.160)

Because g depends only on T and P , we have

dg = dµ =
( ∂g
∂P

)
T
dP +

( ∂g
∂T

)
P
dT (2.161)

= vdP − sdT, (2.162)

where v = V/N and s = S/N . Equation (2.162) is called the Gibbs-Duhem relation. The properties
of G and the relation (2.162) will be important when we discuss processes involving a change of
phase (see Section 7.2).

Another common thermodynamic potential is the enthalpy H which we defined in (2.31). This
potential is similar to E(S, V,N) except for the requirement of fixed P rather than fixed V .

Problem 2.21. Derivatives of the enthalpy
Show that

dH = TdS + V dP + µdN, (2.163)

and

T =
(∂H
∂S

)
P,N

(2.164)

V =
(∂H
∂P

)
S,N

(2.165)

µ =
(∂H
∂N

)
S,P

. (2.166)
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potential natural variables partial derivatives
E S, V , N T , −P , µ
S E, V , N 1/T , P/T , −µ/T
F = E − TS T , V , N −S, −P , µ
G = F + PV T , P , N −S, V , µ
Ω = F − µN T , V , µ −S, −P , −N

Table 2.2: The natural variables for the common thermodynamic potentials and their partial
derivatives.

Problem 2.22. Show that H is a minimum for an equilibrium system at fixed entropy.

Landau potential. We have seen that we can define many thermodynamic potentials depending
on which variables we constrain. A very useful thermodynamic potential is the thermodynamic
potential for which the variables T, V, and µ are specified. This potential has no generally recog-
nized name or symbol, but is sometimes called the Landau potential and is usually, but not always,
denoted by Ω. Another common name is simply the grand potential. We will adopt the notation
Ω and refer to Ω as the Landau potential in honor of Lev Landau. The Landau potential is the
thermodynamic potential for which the variables T, V, and µ are specified and is given by

Ω(T, V, µ) = F − µN. (2.167)

If we take the derivative of Ω and use the fact that dF = −SdT − PdV + µdN (see (2.152)), we
find that

dΩ = dF − µdN −Ndµ (2.168a)
= −SdT − PdV −Ndµ. (2.168b)

From (2.168b) we have

S = −
(∂Ω
∂T

)
V,µ

. (2.169)

P = −
( ∂Ω
∂V

)
T,µ

. (2.170)

N = −
(∂Ω
∂µ

)
T,V

. (2.171)

Because G = Nµ, we can write Ω = F −G. Hence, if we use the definition G = F +PV, we obtain

Ω(T, V, µ) = F − µN = F −G = −PV. (2.172)

The relation (2.172) will be very useful for obtaining the equation of state of various systems (see
Section 6.10).

Table 2.2 summarizes the important thermodynamic potentials and their natural variables.

*Useful work and availability. The free energies that we have introduced are useful for under-
standing the maximum amount of useful work, Wuseful, that can be done by a system when it is
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connected to a heat bath. The system is not necessarily in thermal or mechanical equilibrium with
its surroundings. In addition to the system of interest and its surroundings (the bath), we include
a third body, namely, the body on which the system does useful work. The third body is thermally
insulated. The total work Wby done by the system is the work done against its surroundings,
Pbath∆V plus the work done on the body, Wuseful:

Wby = Pbath∆V +Wuseful. (2.173)

Because Wby is the work done by the system when its volume changes by ∆V, the first term in
(2.173) does not contain a negative sign. This term is the work that is necessarily and uselessly
performed by the system in changing its volume and thus also the volume of its surroundings. The
second term is the useful work done by the system. In (2.147) we replace the work done on the
heat bath, Pbath∆V, by the total work done by the system Pbath∆V +Wuseful to obtain

∆E + Pbath∆V +Wuseful − Tbath∆S ≤ 0, (2.174)

or the useful work done is

Wuseful ≤ −(∆E + Pbath∆V − Tbath∆S) = −∆A, (2.175)

Note that the maximum amount of useful work that can be done by the system is equal to −∆A.
This relation explains the meaning of the terminology availability because only −∆A is available
for useful work. The rest of the work is wasted on the surroundings.

Problem 2.23. Maximum useful work

(a) Show that if the change in volume of the system is zero, ∆V = 0, and the initial and final
temperature are that of the heat bath, then the maximum useful work is −∆F .

(b) Show that if the initial and final temperature and pressure are that of the bath, then the
maximum useful work is −∆G.

2.22 Thermodynamic Measurements

All thermodynamic measurements can be expressed in terms of partial derivatives. For example,
the pressure P can be expressed as P = −∂F/∂V . Let us suppose that we make several thermo-
dynamic measurements, for example, CV , CP , and KT , the isothermal compressibility. The latter
is defined as

KT = − 1
V

(∂V
∂P

)
T
. (isothermal compressibility) (2.176)

Suppose that we wish to know the (isobaric) thermal expansion coefficient α, which is defined as

α =
1
V

(∂V
∂T

)
P
. (thermal expansion coefficient) (2.177)

(The number of particles N is assumed to be held constant in the above derivatives.) Do we need
to make an independent measurement of α or can we determine α by knowing the values of CV , CP ,
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and KT ? To answer this question and related ones, we first need to know how to manipulate partial
derivatives. This aspect of thermodynamics can be confusing when first encountered.

Thermodynamic systems normally have two or more independent variables. For example, we
can choose the combination E, V, N or T, P, N . Because there are many choices of combinations
of independent variables, it is important to be explicit about which variables are independent
and which variables are being held constant in any partial derivative. We suggest that you read
Section 2.26.1 to review of some of the properties of partial derivatives. The following example
illustrates the power of purely thermodynamic arguments based on the manipulation of thermo-
dynamic derivatives.

Example 2.17. Thermodynamics of blackbody radiation
In Section 6.9 we show from first principles some of the basic results of blackbody radiation. In
particular, we show that u, the energy per unit volume, is proportional to T 4 (see (6.137a)). In the
following we obtain this result using thermodynamic arguments and two reasonable assumptions.
The derivation is a bit abstract if you do not have a good background in blackbody radiation. The
point of the example here is that the formalism of thermodynamics plus a few assumptions can
lead to new results.

Solution. The two assumptions are that u depends only on T and the radiation exerts a pressure
on the walls of the cavity given by

P =
1
3
u(T ). (2.178)

Equation (2.178) follows directly from Maxwell’s electromagnetic theory and is obtained in Sec-
tion 6.9 from first principles (see Problem 6.28).

We start from the fundamental thermodynamic relation dE = TdS − PdV , and write it as

dS =
dE

T
+
P

T
dV. (2.179)

We let E = V u, substitute dE = V du+ udV and the relation (2.178) into (2.179), and write

dS =
V

T
du+

u

T
dV +

1
3
u

T
dV =

V

T

du

dT
dT +

4
3
u

T
dV. (2.180)

From (2.180) we have ( ∂S
∂V

)
T

=
4
3
u

T
(2.181a)(∂S

∂T

)
V

=
V

T

du

dT
. (2.181b)

Because the order of the derivatives is irrelevant, ∂2S/∂V ∂T and ∂2S/∂T∂V are equal. Hence, we
obtain:

4
3
∂

∂T

( u
T

)
=

∂

∂V

(V
T

) du
dT

. (2.182)

Next we assume that u depends only on T and perform the derivatives in (2.182) to find

4
3

[ 1
T

du

dT
− u

T 2

]
=

1
T

du

dT
, (2.183)
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which reduces to
du

dT
= 4

u

T
. (2.184)

If we assume the form u(T ) = aTn and substitute it in (2.184), we find that this form is a solution
for n = 4:

u(T ) = aT 4. (2.185)

The constant a in (2.185) cannot be determined by thermodynamic arguments.

We can obtain the entropy by using the first partial derivative in (2.181). The result is

S =
4

3T
V u(T ) + constant. (2.186)

The constant of integration in (2.186) must be set equal to zero to make S proportional to V . Hence,
we conclude that S = 4aV T 3/3. This thermodynamic argument was first given by Boltzmann in
1884.

2.23 Maxwell Relations

Example 2.17 illustrates the power of thermodynamic arguments and indicates that it would be
useful to relate various thermodynamic derivatives to one another. The Maxwell relations, which
we derive in the following, relate the various thermodynamic derivatives of E, F , G, and H to
one another and are useful for eliminating quantities that are difficult to measure in terms of
quantities that can be measured directly. We will see that the Maxwell relations can be used to
show that the internal energy and enthalpy of an ideal gas depend only on the temperature. More
importantly, we also will answer the question posed in Section 2.22 and relate the coefficient of
thermal expansion to other thermodynamic derivatives.

We start with the thermodynamic potential E(S, V,N) and write

dE = TdS − PdV + µdN. (2.187)

In the following we will assume that N is a constant. From (2.187) we have that

T =
(∂E
∂S

)
V
. (2.188)

and

P = −
(∂E
∂V

)
S
. (2.189)

Because the order of differentiation should be irrelevant, we obtain from (2.188) and (2.189)

∂2E

∂V ∂S
=

∂2E

∂S∂V
, (2.190)

or ( ∂T
∂V

)
S

= −
(∂P
∂S

)
V
. (2.191)

Equation (2.191) is of the Maxwell relations. The remaining Maxwell relations are obtained in
Problem 2.24.
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Problem 2.24. Maxwell relations
From the differentials of the thermodynamic potentials:

dF = −SdT − PdV (2.192)
dG = −SdT + V dP (2.193)
dH = TdS + V dP, (2.194)

derive the Maxwell relations: ( ∂S
∂V

)
T

=
(∂P
∂T

)
V

(2.195)( ∂S
∂P

)
T

= −
(∂V
∂T

)
P

(2.196)(∂T
∂P

)
S

=
(∂V
∂S

)
P
. (2.197)

Also consider a variable number of particles to derive the Maxwell relations( ∂V
∂N

)
P

=
( ∂µ
∂P

)
N
, (2.198)

and ( ∂µ
∂V

)
N

= −
( ∂P
∂N

)
V
. (2.199)

2.24 Applications of the Maxwell Relations

The Maxwell relations depend on our identification of (∂E/∂S)V with the temperature, a relation
that follows from the second law of thermodynamics. The Maxwell relations are not purely math-
ematical in content, but are different expressions of the second law. In the following, we use these
relations to derive some useful relations between various thermodynamic quantities.

2.24.1 Internal energy of an ideal gas

We first show that the internal energy E of an ideal gas is a function only of T given the pressure
equation of state, PV = NkT . That is, if we consider E as a function of T and V , we want to
show that (∂E/∂V )T = 0. From the fundamental thermodynamic relation, dE = TdS − PdV , we
see that (∂E/∂V )T can be expressed as(∂E

∂V

)
T

= T
( ∂S
∂V

)
T
− P. (2.200)

To show that E is a function of T only, we need to show that the right-hand side of (2.200) is zero.
The term involving the entropy in (2.200) can be rewritten using the Maxwell relation (2.195):(∂E

∂V

)
T

= T
(∂P
∂T

)
V
− P. (2.201)

Because (∂P/∂T )V = P/T for an ideal gas, we see that the right-hand side of (2.201) is zero.

Problem 2.25. Show that the enthalpy of an ideal gas is a function of T only.
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2.24.2 Relation between heat capacities

As we have seen, it is much easier to calculate the heat capacity at constant volume than at
constant pressure. However, it is usually easier to measure the heat capacity at constant pressure.
For example, most solids expand when heated, and hence it is easier to make measurements at
constant pressure. In the following, we derive a thermodynamic relation that relates CV and CP .
Recall that

CV =
(∂E
∂T

)
V

= T
(∂S
∂T

)
V
, (2.202a)

and

CP =
(∂H
∂T

)
P

= T
(∂S
∂T

)
P
. (2.202b)

We consider S as a function of T and P and write

dS =
∂S

∂T
dT +

∂S

∂P
dP, (2.203)

and take the partial derivative with respect to temperature at constant volume of both sides of
(2.203): (∂S

∂T

)
V

=
(∂S
∂T

)
P

+
( ∂S
∂P

)
T

(∂P
∂T

)
V
. (2.204)

We then use (2.202) to rewrite (2.204) as

CV
T

=
( ∂S
∂P

)
T

(∂P
∂T

)
V

+
CP
T
. (2.205)

Because we would like to express CP −CV in terms of measurable quantities, we use the Maxwell
relation (2.196) to eliminate (∂S/∂P ) and rewrite (2.205) as:

CP − CV = T
(∂V
∂T

)
P

(∂P
∂T

)
V
. (2.206)

We next use the identity (see (2.241)),(∂V
∂T

)
P

(∂T
∂P

)
V

(∂P
∂V

)
T

= −1, (2.207)

to eliminate (∂P/∂T )V and write:

CP − CV = −T
(∂P
∂V

)
T

(∂V
∂T

)
P

2

. (2.208)

If we substitute the definitions (2.176) of the isothermal compressibility KT and (2.177) for the
thermal expansion coefficient α, we obtain the desired general relation:

CP − CV = V
T

KT
α2. (2.209)

Note that (2.209) is more general that the relation (2.42) which depends on only the first law.
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(a) (b)

Figure 2.11: (a) A gas is kept in the left half of a box by a partition. The right half is evacuated.
(b) The partition is removed and the gas expands irreversibly to fill the entire box.

For an ideal gas we have KT = 1/P and α = 1/T and (2.209) reduces to the familiar result
(see (2.43))

CP − CV = Nk. (2.210)

Although we will not derive these conditions here, it is plausible that the heat capacity and
compressibility of equilibrium thermodynamic systems must be positive. Given these assumptions,
we see from (2.209) that CP > CV in general.

2.25 Applications to Irreversible Processes

Although the thermodynamic quantities of a system can be defined only when the system is in
equilibrium, we have found that it is possible to obtain useful results for systems that pass through
nonequilibrium states if the initial and final states are in equilibrium. In the following, we will
consider some well known thermodynamic processes.

2.25.1 The Joule or free expansion process

In a Joule or free expansion the system expands into a vacuum while the entire system is thermally
isolated (see Figure 2.11). The quantity of interest is the temperature change that is produced.
Although this process is irreversible, we have learned that it can be treated by thermodynamics.
Because dQ = 0 and dW = 0, the energy is a constant so that dE(T, V ) = 0. This condition can
be written as

dE =
(∂E
∂T

)
V
dT +

(∂E
∂V

)
T
dV = 0. (2.211)
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Hence, we obtain ( ∂T
∂V

)
E

= − (∂E/∂V )T
(∂E/∂T )V

, (2.212)

= − 1
CV

[
T
(∂P
∂T

)
V
− P

]
. (2.213)

Equation (2.213) follows from the definition of CV and from (2.201). The partial derivative
(∂T/∂V )E is known as the Joule coefficient. For a finite change in volume, the total tempera-
ture change is found by integrating (2.213):

∆T = −
∫ V2

V1

1
CV

[
T
(∂P
∂T

)
V
− P

]
dV. (2.214)

Because (∂P/∂T )V = P/T for an ideal gas, we conclude that the temperature of an ideal
gas is unchanged in a free expansion. If the gas is not dilute, we expect that the intermolecular
interactions are important and that the temperature will change in a free expansion. In Chapter 8
we will discuss several ways of including the effects of the intermolecular interactions. For now we
will be satisfied with a simple modification of the ideal gas equation of state due to van der Waals
(see (2.12)).

Problem 2.26. Free expansion
Calculate (∂T/∂V )E for the van der Waals equation of state (2.12) and show that a free expansion
results in cooling.

The reason for the cooling of a real gas during a free expansion can be understood as follows.
The derivative (∂E/∂V )T depends only on the potential energy of the particles because the tem-
perature is held constant. As shown in Figure 1.1, the intermolecular potential is repulsive for
small separations r and is attractive for large r. For a dilute gas the mean separation between the
particles is greater than r0 = 21/6σ, the distance at which the potential is a minimum. As the
volume increases, the mean separation between the molecules increases and hence the energy of
interaction becomes less negative, that is, increases. Hence we conclude that (∂E/∂V )T is positive.
Because the heat capacity is always positive, we find that (∂T/∂V )E is negative and that real gases
always cool in a free expansion.

2.25.2 Joule-Thomson process

The Joule-Thomson (or Joule-Kelvin29 or porous plug) process is a steady state flow process in
which a gas is forced through a porous plug or expansion valve from a region of high pressure P1 to
a region of lower pressure P2 (see Figure 2.12). The gas is thermally isolated from its surroundings.
The process is irreversible because the gas is not in equilibrium. We will see that a real gas is
either cooled or heated in passing through the plug.

Consider a given amount (for example, one mole) of a gas that occupies a volume V1 at pressure
P1 on the left-hand side of the valve and a volume V2 at pressure P2 on the right-hand side. The

29William Thomson was later awarded a peerage and became Lord Kelvin.
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P1 P2

Figure 2.12: Schematic representation of the Joule-Thomson process. The two pistons ensure
constant pressures on each side of the porous plug. The porous plug can be made by packing glass
wool into a pipe. The process can be made continuous by using a pump to return the gas from the
region of low pressure to the region of high pressure.

work done on the gas is given by

W = −
∫ 0

V1

PdV −
∫ V2

0

PdV. (2.215)

The pressure on each side of the porous plug is constant, and hence we obtain

W = P1V1 − P2V2. (2.216)

Because the process takes place in an isolated cylinder, there is no energy transfer due to heating,
and the change in the internal energy is given by

∆E = E2 − E1 = W = P1V1 − P2V2. (2.217)

Hence, we obtain

E2 + P2V2 = E1 + P1V1, (2.218)

which can be written as
H2 = H1. (2.219)

That is, the Joule-Thomson process occurs at constant enthalpy. All we can say is that the final
enthalpy equals the initial enthalpy; the intermediate states of the gas are nonequilibrium states
for which the enthalpy is not defined.

The calculation of the temperature change in the Joule-Thomson effect is similar to our treat-
ment of the Joule effect. Because the process occurs at constant enthalpy, it is useful to write

dH(T, P ) =
(∂H
∂T

)
P
dT +

(∂H
∂P

)
T
dP = 0. (2.220)

As before, we assume that the number of particles is a constant. From (2.220) we have

dT = − (∂H/∂P )T
(∂H/∂T )P

. (2.221)

From the relation, dH = TdS + V dP , we have (∂H/∂P )T = T (∂S/∂P )T + V . If we substitute
this relation in (2.221), use the Maxwell relation (2.196), and the definition CP = (∂H/∂T )P , we
obtain (∂T

∂P

)
H

=
V

CP
(Tα− 1), (2.222)
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where the thermal expansion coefficient α is defined by (2.177). Note that the change in pressure
dP is negative, that is, the gas goes from a region of high pressure to a region of low pressure. To
find the temperature change produced in a finite pressure drop, we integrate (2.222) and find

∆T = T2 − T1 =
∫ P2

P1

V

CP
(Tα− 1) dP. (2.223)

For an ideal gas, α = 1/T and ∆T = 0 as expected.
To understand the nature of the temperature change in a real gas, we calculate α for the van

der Waals equation of state (2.12). We write the latter in the form

P + aρ2 =
ρkT

1− bρ
, (2.224)

and take the derivative with respect to T at constant P :

2aρ
( ∂ρ
∂T

)
P

=
ρk

1− bρ
+
( ∂ρ
∂T

)
P

kT

(1− bρ)2
. (2.225)

If we express α as

α = −1
ρ

( ∂ρ
∂T

)
P
, (2.226)

we can write (2.225) in the form:

[ kT

(1− bρ)2
− 2aρ

]
α =

k

(1− bρ)
. (2.227)

For simplicity, we consider only low densities in the following. In this limit we can write α as

α =
k(1− bρ)

kT − 2aρ(1− bρ)2
, (2.228a)

≈ 1
T

(1− bρ)
[
1 + 2aβρ(1− bρ)2

]
, (2.228b)

≈ 1
T

[1− ρ(b− 2aβ)]. (2.228c)

From (2.228c) we obtain (Tα− 1) = ρ(2aβ − b) at low densities.
We can define an inversion temperature Ti at which the derivative (∂T/∂P )H changes sign.

From (2.228) and (2.222), we see that kTi = 2a/b for a low density gas. For T > Ti, the gas warms
as the pressure falls in the Joule-Thomson expansion. However, for T < Ti, the gas cools as the
pressure falls.

For most gases Ti is well above room temperatures. Although the cooling effect is small, the
effect can be made cumulative by using the cooled expanded gas in a heat exchanger to precool
the incoming gas.
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2.26 Supplementary Notes

2.26.1 The mathematics of thermodynamics

Because the notation of thermodynamics can be cumbersome, we have tried to simplify it whenever
possible. However, one common simplification can lead to initial confusion.

Consider the functional relations:

y = f(x) = x2, (2.229)

and
x = g(z) = z1/2. (2.230)

If we write x in terms of z, we can write y as

y = h(z) = f(g(z)) = z. (2.231)

We have given the composite function a different symbol h because this function is different from
both f and g. But we would soon exhaust the letters of the alphabet, and we frequently write
y = f(z) = z. Note that f(z) is a different function than f(x).

The notation is even more confusing in thermodynamics. Consider for example, the entropy
S as a function of E, V, and N , which we write as S(E, V,N). However, we frequently consider E
as a function of T from which we would obtain another functional relation: S(E(T, V,N), V,N). A
mathematician would write the latter function with a different symbol, but we don’t. In so doing
we confuse the name of a function with that of a variable and use the same name (symbol) for the
same physical quantity. This sloppiness can cause problems when we take partial derivatives. If
we write ∂S/∂V, is E or T to be held fixed? One way to avoid confusion is to write (∂S/∂V )E or
(∂S/∂V )T , but this notation can become cumbersome.

Another confusing aspect of the mathematics of thermodynamics is the use of differentials.
Many authors, including Bohren and Albrecht,30 have criticized their use. These authors and
others argue for example that the first law should be written as

dE

dt
=
dQ

dt
+
dW

dt
, (2.232)

rather than
dE = ∆Q+ ∆W, (2.233)

An argument for writing the first law in the form (2.232) is that the first law applies to a process,
which must occur over an interval of time. Here, dE/dt represents the rate of energy change,
dW/dt is the rate of doing work and dQ/dt is the rate of heating. In contrast, dE in (2.233)
is the infinitesimal change in internal energy, ∆W is the infinitesimal work done on the system,
and ∆Q is the infinitesimal heat added. However, the meaning of an infinitesimal in this context
is vague. For example, for the process shown in Figure 2.13, the energy difference E2 − E1 is
arbitrarily small and hence could be represented by a differential dE, but the work and heating are
not infinitesimal. However, the use of infinitesimals should not cause confusion if you understand
that dy in the context dy/dx = f(x) has a different meaning than in the context, dy = f(x) dx.
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Figure 2.13: The change in internal energy can be made arbitrarily small by making the initial (1)
and final (2) states arbitrarily close, but the total work done, which is the area enclosed by the
nearly closed curve, is not vanishingly small. Adapted from Bohren and Albrecht.

If the use of infinitesimals is confusing to you, we encourage you to replace infinitesimals by rate
equations as in (2.232).

Example 2.18. Exact and inexact differentials
Suppose that a system is descibed by two parameters, x and y and f(x, y) = xy (see page 42).31

Then
df = d(xy) = ydx+ xdy. (2.234)

If f(x, y) changes from (0, 0) to (1, 1), the change in f is given by

∆f =
∫ 1,1

0,0

= xy]1,1)0,0 − (1× 1)− (0× 0) = 1. (2.235)

This result is independent of the path because df is an exact differential.
Now consider dg = ydx. The change in g when (x, y) changes from (0, 0) to (1, 1) along the

path shown in Figure 2.14(a) is

∆g =
∫ 1,1

0,0

ydx =
∫ 1

0

xdx = 1/2. (2.236)

Show that when the integral is along the path shown in Figure 2.14(b), the result is ∆g = 0.
Hence the value of ∆g depends on the path and dg is an inexact differential. (Many textbooks
write inexact differentials as d̄g.)

30See Bohren and Albrecht, pp. 93–99.
31This example is taken from Stephen J. Blundell and Katherine M. Blundell, Thermal Physics, Oxford University

Press (2006), page 105.
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Figure 2.14: Two among many possible paths between the points x, y) = (0, 0) and (1, 1).

Review of partial derivatives. The basic theorem of partial differentiation states that if z is a
function of two independent variables x and y, then the total change in z(x, y) due to changes in
x and y can be expressed as

dz =
(∂z
∂x

)
y
dx+

(∂z
∂y

)
x
dy. (2.237)

The cross derivatives ∂2z/∂x ∂y and ∂2z/∂y ∂x are equal, that is, the order of the two derivatives
does not matter. We will use this property to derive what are known as the Maxwell relations in
Section 2.23.

The chain rule for differentiation holds in the usual way if the same variables are held constant
in each derivative. For example, we can write(∂z

∂x

)
y

=
( ∂z
∂w

)
y

(∂w
∂x

)
y
. (2.238)

We also can derive a relation whose form is superficially similar to (2.238) when different variables
are held constant in each term. From (2.237) we set dz = 0 and obtain

dz = 0 =
(∂z
∂x

)
y
dx+

(∂z
∂y

)
x
dy. (2.239)

We divide both sides of (2.239) by dx:

0 =
(∂z
∂x

)
y

+
(∂z
∂y

)
x

(∂y
∂x

)
z
, (2.240)

and rewrite (2.240) as (∂z
∂x

)
y

= −
(∂z
∂y

)
x

(∂y
∂x

)
z
. (2.241)

Note that (2.241) involves a relation between the three possible partial derivatives which involve
x, y, and z.

Problem 2.27. Consider the function

z(x, y) = x2y + 2x4y6. (2.242)

Calculate ∂z/∂x, ∂z/∂y, ∂2z/∂x ∂y, and ∂2z/∂y ∂x and show that ∂2z/∂x ∂y = ∂2z/∂y ∂x.
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Figure 2.15: (a) The intercepts of the three curves differ. (b) Geometrical interpretation of the
Legendre transformation.

2.26.2 Thermodynamic potentials and Legendre transforms

Consider a function f(x) of one variable. The Legendre transform allows us to replace the indepen-
dent variable x by the derivative f ′(x) = df/dx without sacrificing any of the information in the
original relation. In the following we will consider functions of only one variable, but the results
can be easily generalized to functions of several variables.

The derivative
m(x) ≡ f ′(x) (2.243)

is the slope of f(x) at x. To treat m as the independent variable instead of x, we might be
tempted to solve (2.243) for x in terms of m and then simply find f(m). (Note that although f(m)
is a different function than f(x), we still use the same symbol. That is, the symbol f names a
quantity not a functional relationship, and the symbol f plus the argument tells us the functional
relationship.) However, this procedure would lead to a loss of some of the mathematical content of
the orginal function f(x). That is, given f as a function of m, we would not be able to reconstruct
f(x).

Example 2.19. Suppose that32 f(x) = (1/2)e2x. Hence m = e2x and f(m) = m/2. We now
try to reconstruct f(x) from f(m) to determine if we still have the same information. Because
m = f ′(x), we have f(m) = f(m(x)) = f ′(x)/2 or f ′ = 2f . The solution of the latter differential
equation gives f(x) = Ae2x, where A is not specified. So this procedure loses information. The
problem is that knowing only the slope does not tell us the value of the intercept at x = 0.

The goal of the Legendre transformation is to find the function g(m) such that g(m) contains
the same information as the function f(x). From Figure 2.15 we see that we need to know the
value of the intersection of the tangent to f at the point (x0, f(x0)) with the y-axis at x = 0.

Consider the tangent line that passes through the point (x0, f(x0)) with slope m and intercept

32This example is adapted from Debashish Chowdhury and Dietrich Stauffer, Principles of Equilibrium Statistical
Mechanics, Wiley-VCH (2000).
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b at y = 0. Because the general equation for a straight line is y = mx+ b, we can write

b = y −mx (2.244a)

or
g(x0) = f(x0)− f ′(x0)x0. (2.244b)

The slope depends on the particular point x0. The function g(x) for an arbitrary point x is given
by

g(x) = f(x)− xf ′(x) = f(x)− xm. (2.245)

The Legendre transform of f(x) can be determined by first calculating m(x) and then determining
the relation g(m) using (2.245). It turns out that the right-hand side of (2.245) will not depend
on x. The function g(m) is called the Legendre transform of f(x).

To show that g depends only on the slope m, we differentiate g as given by (2.245)

dg = df −mdx− xdm. (2.246)

Because df = mdx (see (2.243)) we have

dg = −xdm. (2.247)

Hence, g depends only on m, just as df = mdx indicates that f depends only on x.
To calculate g(m) explicitly we have to eliminate x in (2.245) using m = f ′(x). We can solve

the latter for x only if there is a one-to-one relation between x and m, which holds if the function
f ′(x) is monotonic.

Example 2.20. We again consider f(x) = 1
2e

2x for which m(x) = e2x. Then g(x) becomes

g(x) = f(x)− xm =
1
2
e2x − xe2x. (2.248)

We next invert the relation m = e2x to solve for x in terms of m: x = 1
2 lnm. Hence the Legendre

transform of f(x) is

g(m) =
1
2
m(1− lnm). (2.249)

Now suppose that g(m) is given. Can we construct f(x)? From (2.247) we have x = −dg/dm,
which leads to x = 1

2 lnm and hence m = e2x for our example. Hence

f(m) = g(m) + xm =
1
2
m(1− lnm) + xm (2.250a)

and

f(x) =
1
2
e2x(1− 2x) + xe2x =

1
2
e2x, (2.250b)

which is our original function.

Problem 2.28. Some practice examples
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(a) Calculate the Legendre transform of f(x) = x3.

(b) Calculate the legendre transforms of the functions f(x) = x and f(x) = sinx if they exist.

Problem 2.29. The Helmholtz free energy
Start from the function E(S, V,N) and use the Legendre transform to find the function F (T, V,N).

Vocabulary

thermodynamics, system, boundary, surroundings, macrostate

insulator, conductor, adiabatic wall

thermal contact, thermal equilibrium, temperature, thermodynamic equilibrium

thermometer, Celsius temperature scale, ideal gas temperature scale, thermodynamic tem-
perature

heating, work

internal energy E, entropy S, state function, laws of thermodynamics

ideal gas, ideal gas equation of state, van der Waals equation of state

Boltzmann’s constant, universal gas constant

intensive and extensive variables

heat capacity, specific heat

quasistatic, reversible, irreversible, isothermal, constant volume, adiabatic, quasistatic, and
cyclic processes

heat bath, heat source, heat sink

Carnot engine, refrigerator, heat pump efficiency, coefficient of performance

thermodynamic potential, Helmholtz free energy F , Gibbs free energy G, enthalpy H, Landau
potential Ω, availability A

Notation

volume V, number of particles N , thermodynamic temperature T , pressure P , chemical
potential µ

total work W , total energy transferred due to a temperature difference alone Q

kelvin K, Celsius ◦C, Fahrenheit ◦F

heat capacity C, specific heat c

thermal efficiency η

Boltzmann’s constant k, gas constant R
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Additional Problems

Problems page
2.1, 2.2, 2.3 34
2.4, 2.5 35
2.6 38
2.7 40
2.8, 2.9 42
2.10, 2.11 43
2.12 46
2.13, 2.14, 2.15 50
2.16, 2.17 51
2.18 63
2.19 66
2.20 70
2.21, 2.22 75
2.23 76
2.27 87

Listing of inline problems.

Problem 2.30. Compare the notion of mechanical equilibrium and thermodynamic equilibrium.

Problem 2.31. Explain how a barometer works to measure pressure.

Problem 2.32. Is a diamond forever?
What does it mean to say that diamond is a metastable form of carbon? What is the stable form
of carbon? Is it possible to apply the laws of thermodynamics to diamond?

Problem 2.33. A question of degree
Although you were probably taught how to convert between Fahrenheit and Celsius temperatures,
you might not remember the details. The fact that 1◦C equals 9

5

◦F is not too difficult to remember,
but where does the factor of 32 go? An alternative procedure is to add 40 to the temperature in
◦C or ◦F and multiply by 5

9 if going from ◦F to ◦C or by 9
5 if going from ◦C to ◦F. Then subtract

40 from the calculated temperature to obtain the desired conversion. Explain why this procedure
works.

Problem 2.34. Hot and cold
It is common in everyday language to refer to temperatures as “hot” and “cold.” Why is this use
of language misleading? Does it make sense to say that one body is “twice as hot” as another?
Does it matter whether the Celsius or kelvin temperature scale is used?

Problem 2.35. Does it make sense to talk about the amount of heat in a room?

Problem 2.36. Heat as a fluid
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In what context can energy transferred by heating be treated as a fluid? Give some examples
where this concept of “heat” is used in everyday life. In what context does the concept of “heat”
as a fluid break down? Is it possible to isolate “heat” in a bottle or pour it from one object to
another?

Problem 2.37. Why should we check the pressure in a tire when the tire is cold?

Problem 2.38. Suppose that we measure the temperature of a body and then place the body on
a moving conveyer belt. Does the temperature of the body change?

Problem 2.39. Why do we use the triple point of water to calibrate thermometers? Why not use
the melting point or the boiling point?

Problem 2.40. Money in the bank
In the text we discussed the analogy of the internal energy to the amount of water in a pond.
The following analogy due to Dugdale might also be helpful.33 Suppose that a student has a bank
account with a certain amount of money. The student can add to this amount by either depositing
or withdrawing cash and by writing or depositing checks from the accounts of others. Does the
total amount of money in his account distinguish between cash and check transfers? Discuss the
analogies to internal energy, work, and heating.

Problem 2.41. Common misconceptions
The following excerpt is taken from a text used by one of the author’s children in the sixth grade.
The title and the author of the text will remain anonymous. Find the conceptual errors in the
text.
A. What is heat?

You have learned that all matter is made up of atoms. Most of these atoms combine to form molecules.
These molecules are always moving—they have kinetic energy. Heat is the energy of motion (kinetic energy)
of the particles that make up any piece of matter.

The amount of heat a material has depends on how many molecules it has and how fast the molecules
are moving. The greater the number of molecules and the faster they move, the greater the number of
collisions between them. These collisions produce a large amount of heat.

How is heat measured? Scientists measure heat by using a unit called a calorie. A calorie is the
amount of heat needed to raise the temperature of 1 gram of 1 water 1 degree centigrade (Celsius).

A gram is a unit used for measuring mass. There are about 454 grams in 1 pound.

Scientists use a small calorie and a large Calorie. The unit used to measure the amount of heat needed
to raise the temperature of 1 gram of water 1 degree centigrade is the small calorie. The large calorie is
used to measure units of heat in food. For example, a glass of milk when burned in your body produces
about 125 Calories.

Questions:

1. What is heat?

2. What two things does the amount of heat a substance has depend on?

3. What is a calorie?

4. Explain the following: small calorie; large calorie.

33See Dugdale, pp. 21–22.
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B. What is temperature?

The amount of hotness in an object is called its temperature. A thermometer is used to measure
temperature in units called degrees. Most thermometers contain a liquid.

C. Expansion and Contraction

Most solids, liquids and gases expand when heated and contract when cooled. When matter is heated,
its molecules move faster. As they move, they collide with their neighbors very rapidly. The collisions
force the molecules to spread farther apart. The farther apart they spread, the more the matter expands.

Air, which is a mixture of gases, expands and becomes lighter when its temperature rises. Warm air
rises because the cold, heavier air sinks and pushes up the lighter warm air.

What happens when solids or gases are cooled? The molecules slow down and collide less. The

molecules move closer together, causing the material to contract.

Problem 2.42. Why are the terms heat capacity and specific heat poor choices of names? Suggest
more appropriate names. Comment on the statement: “The heat capacity of a body is a measure
of how much heat the body can hold.”

Problem 2.43. The atmosphere of Mars has a pressure that is only 0.007 times that of the Earth
and an average temperature of 218 K. What is the volume of 1 mole of the Martian atmosphere?

Problem 2.44. Discuss the meaning of the statement that one of the most important contributions
of 19th century thermodynamics was the development of the understanding that heat (and work)
are names of methods not names of things.

Problem 2.45. Gasoline burns in an automobile engine and releases energy at the rate of 160 kW.
Energy is exhausted through the car’s radiator at the rate of 51 kW and out the exhaust at 50 kW.
An additional 23 kW goes to frictional heating within the machinery of the car. What fraction of
the fuel energy is available for moving the car?

Problem 2.46. Two moles of an ideal gas at 300 K occupying a volume of 0.10 m3 is compressed
isothermally by a motor driven piston to a volume of 0.010 m3. If this process takes places in 120 s,
how powerful a motor is needed?

Problem 2.47. Give an example of a process in which a system is not heated, but its temperature
increases. Also give an example of a process in which a system is heated, but its temperature is
unchanged.

Problem 2.48. Expansion of gas into vacuum

(a) Suppose that a gas expands adiabatically into a vacuum. What is the work done by the gas?

(b) Suppose that the total energy of the gas is given by (see (2.26))

E =
3
2
NkT −NN

V
a, (2.251)

where a is a positive constant. Initially the gas occupies a volume VA at a temperature TA.
The gas then expands adiabatically into a vacuum so that it occupies a total volume VB . What
is the final temperature of the gas?
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Problem 2.49. Entropy as a state function

(a) Suppose that an ideal gas expands in a quasistatic adiabatic process from P = 1 Pa and
VA = 1 m3 to VB = 8 m3. What is the change in the pressure and the entropy of the gas?

(b) Assume that one mole of the gas is present. What are the initial and final temperatures of the
gas?

(c) Show that you obtain the same answer for the change in the entropy that you found in part (a)
for another path that starts at the same initial state. Consider a process at constant volume
that brings the system to the temperature TB which you found in part (b). What is the change
in entropy of this process?

(d) Next increase the volume at constant temperature TB . What is the change in the entropy in
this isothermal process?

(e) Compare the total change in the entropy to the result that you found in part (a).

Problem 2.50. Calculate the work done on one mole of an ideal gas in an adiabatic quasistatic
compression from volume VA to volume VB . The initial pressure is PA.

Problem 2.51. Consider the following processes and calculate W , the total work done on the
system and Q, the total energy absorbed by heating the system when it is brought quasistatically
from A to C (see Figure 2.16). Assume that the system is an ideal gas. (This problem is adapted
from Reif, p. 215.)

(a) The volume is changed quasistatically from A→ C while the gas is kept thermally isolated.

(b) The system is compressed from its original volume of VA = 8 m3 to its final volume VC = 1 m3

along the path A→ B and B → C. The pressure is kept constant at PA = 1 Pa and the system
is cooled to maintain constant pressure. The volume is then kept constant and the system is
heated to increase the pressure to PB = 32 Pa.

(c) A→ D and D → C. The two steps of the preceding process are performed in opposite order.

(d) A→ C. The volume is decreased and the system is heated so that the pressure is proportional
to the volume.

Problem 2.52. A 0.5 kg copper block at 80◦C is dropped into 1 kg of water at 10◦C. What is the
final temperature? What is the change in entropy of the system? The specific heat of copper is
386 J/(kg K).

Problem 2.53. Carnot efficiencies

(a) Surface temperatures in the tropical oceans are approximately 25◦C, while hundreds of meters
below the surface the temperature is approximately 5◦C. What would be the efficiency of a
Carnot engine operating between these temperatures?

(b) What is the efficiency of a Carnot engine operating between the normal freezing and boiling
points of water?
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Figure 2.16: Illustration of various thermodynamic processes discussed in Problem 2.51. The units
of the pressure P and the volume V are Pa and m3, respectively.

Problem 2.54. A small sample of material is taken through a Carnot cycle between a heat source
of boiling helium at 1.76 K and a heat sink at an unknown lower temperature. During the process,
7.5 mJ of energy is absorbed by heating from the helium and 0.55 mJ is rejected at the lower
temperature. What is the lower temperature?

Problem 2.55. Positive change in total entropy

(a) Show that the total entropy change in Example 2.13 can be written as

∆S = Cf
(T2

T1

)
, (2.252)

where
f(x) = lnx+

1
x
− 1. (2.253)

and x > 1 corresponds to heating. Calculate f(x = 1) and df/dx and show that the entropy
of the universe increases for a heating process.

(b) If the total entropy increases in a heating process, does the total entropy decrease in a cooling
process? Use similar considerations to show that the total entropy increases in both cases.

(c) Plot f(x) as a function of x and confirm that its minimum value is at x = 1 and that f > 0
for x < 1 and x > 1.
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Problem 2.56. Enthalpy
Show that the enthalpy H ≡ E+PV is the appropriate free energy for the case where the entropy
and number of particles is fixed, but the volume can change. In this case we consider a system
connected to a larger body such that the pressure of the system equals that of the large body with
the constraint that the larger body and the system do not exchange energy. An example of this
situation would be a gas confined to a glass container with a movable piston.

Problem 2.57. Landau potential
Find the Landau potential for the case where the temperature is fixed by a heat bath, the volume
is fixed, and particles can move between the systems and the heat bath. You will need to extend
the definition of the availability to allow for the number of particles to vary within the system.
Use the same argument about extensive variables to show that the Landau potential equals −PV .

Problem 2.58. One kilogram of water at 50◦C is brought into contact with a heat bath at 0◦C.
What is the change of entropy of the water, the bath, and the combined system consisting of both
the water and the heat bath? Given that the total entropy increased in Example 2.13, should the
entropy increase or decrease in this case?

Problem 2.59. Changes in entropy
Calculate the changes in entropy due to various methods of heating:

(a) One kilogram of water at 0◦C is brought into contact with a heat bath at 90◦C. What is the
change in entropy of the water? What is the change in entropy of the bath? What is the
change in entropy of the entire system consisting of both water and heat bath? (The specific
heat of water is approximately 4184 J/kg K.)

(b) The water is heated from 0◦C to 90◦C by first bringing it into contact with a heat bath at
45◦C and then with a heat bath at 90◦C. What is the change in entropy of the entire system?

(c) Discuss how the water can be heated from 0◦C to 90◦C without any change in entropy of the
entire system.

Problem 2.60. If S is expressed as a function of T, V or T, P , then it is no longer a thermodynamic
potential. That is, the maximum thermodynamic information is contained in S as a function of E
and V (for fixed N). Why?

Problem 2.61. Refrigerators
A refrigerator cools a body by heating the hotter room surrounding the body. According to the
second law of thermodynamics, work must be done by an external body. Suppose that we cool
the cold body by the amount Qcold at temperature Tcold and heat the room by the amount Qhot

at temperature Thot. The external work supplied is W (see Figure 2.17). The work W supplied
is frequently electrical work, the refrigerator interior is cooled (Qcold extracted), and Qhot is given
to the room. We define the coefficient of performance (COP) as

COP =
what you get

what you pay for
=
Qcold

W
. (2.254)
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Show that the maximum value of the COP corresponds to a reversible refrigerator and is given by

COP =
Tcold

Thot − Tcold
. (2.255)

Note that a refrigerator is more efficient for smaller temperature differences.

room

refrigerator

Qcold

Qhot

W

Tcold

Thot

engine

Figure 2.17: The transfer of energy in an idealized refrigerator.

Problem 2.62. Heat pumps
A heat pump works on the same principle as a refrigerator, but the object is to heat a room by
cooling its cooler surroundings. For example, we could heat a building by cooling a nearby body
of water. If we extract energy Qcold from the surroundings at Tcold, do work W , and deliver Qhot

to the room at Thot, the coefficient of performance is given by

COP =
what you get

what you pay for
=
Qhot

W
. (2.256)

What is the maximum value of COP for a heat pump in terms of Tcold and Thot? What is the COP
when the outside temperature is 0◦C and the interior temperature is 23◦C? Is it more effective
to operate a heat pump during the winters in New England where the winters are cold or in the
Pacific Northwest where the winters are relatively mild? (It is too bad that the maximum efficiency
of a heat pump occurs when it is needed least.)

Problem 2.63. Use (2.137) to derive the relation (2.49) between V and T for an ideal gas in a
quasistatic adiabatic process.

Problem 2.64. The Otto cycle
The Otto cycle is the idealized prototype of most present-day internal combustion engines. The
cycle was first described by Beau de Rochas in 1862. Nicholas Otto independently conceived of
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the same cycle in 1876 and then constructed an engine to implement it. The idealization makes
two basic assumptions. One is that the working substance is taken to be air rather than a mixture
of gases and vapor whose composition changes during the cycle. For simplicity, we assume that
CV and CP are constant and that γ = CP /CV = 1.4, the value for air. The more important
approximation is that the changes are assumed to be quasistatic. An idealized cycle that represents
the six parts of this cycle is known as the air standard Otto cycle and is illustrated in Figure 2.18.

5→ 1. Intake stroke. The mixture of gasoline and air is drawn into the cylinder through the
intake valve by the movement of the piston. Idealization: A quasistatic isobaric intake of air
at pressure P0 to a volume V1.

1 → 2. Compression stroke. The intake valve closes and air-fuel mixture is rapidly com-
pressed in the cylinder. The compression is nearly adiabatic and the temperature rises.
Idealization: A quasistatic adiabatic compression from V1 to V2; the temperature rises from
T1 to T2.

2→ 3. Explosion. The mixture explodes such that the volume remains unchanged and a very
high temperature and pressure is reached. Idealization: A quasistatic and constant volume
increase of temperature and pressure due to the absorption of energy from a series of heat
baths between T2 and T3.

3 → 4. Power stroke. The hot combustion products expand and do work on the piston.
The pressure and temperature decrease considerably. Idealization: A quasistatic adiabatic
expansion produces a decrease in temperature.

4→ 1. Valve exhaust. At the end of the power stroke the exhaust valve opens and the com-
bustion products are exhausted to the atmosphere. There is a sudden decrease in pressure.
Idealization: A quasistatic constant volume decrease in temperature to T1 and pressure P0

due to a exchange of energy with a series of heat baths between T4 and T1.

1 → 5. Exhaust stroke. The piston forces the remaining gases into the atmosphere. The
exhaust valve then closes and the intake valve opens for the next intake stroke. Idealization:
A quasistatic isobaric expulsion of the air.

Show that the efficiency of the Otto cycle is

η = 1−
(V2

V1

)γ−1
. (2.257)

A compression ratio of about ten can be used without causing knocking. Estimate the theoretical
maximum efficiency. In a real engine, the efficiency is about half of this value.
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Figure 2.18: The air standard Otto cycle.
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We introduce the basic concepts of probability and apply them to simple physical systems and
everyday life. We will discover the universal nature of the central limit theorem and the Gaussian
distribution for the sum of a large number of random variables and discuss its relation to why
thermodynamics is possible. Because of the importance of probability in many contexts and the
relatively little time it will take us to consider more advanced topics, our discussion goes beyond
what we will need for the applications of statistical mechanics in these notes.

3.1 Probability in Everyday Life

One of our goals, which we will consider in Chapter 4 and subsequent chapters, is to relate the
behavior of various macroscopic quantities to the underlying microscopic behavior of the individual
atoms or other constituents. To do so, we will need to introduce some ideas from probability.

We all use the ideas of probability in everyday life. For example, every morning many of us
decide what to wear based on the probability of rain. We cross streets knowing that the probability
of being hit by a car is small. We can even make a rough estimate of the probability of being hit
by a car. It must be less that one in a thousand, because you have crossed streets thousands of
times and hopefully you have not been hit. You might be hit tomorrow, or you might have been
hit the first time you tried to cross a street. These comments illustrate that we have some intuitive
sense of probability, and because it is a useful concept for survival, we know how to estimate it.
As expressed by Laplace (1819),

Probability theory is nothing but common sense reduced to calculation.

Another interesting thought is due to Maxwell (1850): The true logic of this world is the calculus
of probabilities . . . That is, probability is a natural language for describing real world phenomena.

However, our intuition only takes us so far. Consider airplane travel. Is it safe to fly? Suppose
that there is a one chance in 100,000 of a plane crashing on a given flight and that there are a 1000
flights a day. Then every 100 days or so there would be a reasonable likelihood of a plane crash.

101
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This estimate is in rough accord with what we read. For a given flight, your chances of crashing
are approximately one part in 105, and if you fly five times a year for 100 years, it seems that flying
is not too much of a risk. Suppose that instead of living 100 years, you could live 20,000 years. In
this case you would take 100,000 flights, and it would be much more risky to fly if you wished to
live your full 20,000 years. Although this last statement seems reasonable, can you explain why?

Much of the motivation for the mathematical formulation of probability arose from the pro-
ficiency of professional gamblers in estimating betting odds and their desire to have more quanti-
tative measures. Although games of chance have been played since history has been recorded, the
first steps toward a mathematical formulation of games of chance began in the middle of the 17th
century. Some of the important contributors over the following 150 years include Pascal, Fermat,
Descartes, Leibnitz, Newton, Bernoulli, and Laplace, names that are probably familiar to you.

Given the long history of games of chance and the interest in estimating probability in a variety
of contexts, it is remarkable that the theory of probability took so long to develop. One reason
is that the idea of probability is subtle and is capable of many interpretations. An understanding
of probability is elusive due in part to the fact that the probably depends on the status of the
information that we have (a fact well known to poker players). Although the rules of probability are
defined by simple mathematical rules, an understanding of probability is greatly aided by experience
with real data and concrete problems. To test your current understanding of probability, try to
solve Problems 3.1–3.6 before reading the rest of this chapter. Then in Problem 3.7 formulate the
laws of probability as best as you can based on your solutions to these problems.

Problem 3.1. Marbles in a jar
A jar contains 2 orange, 5 blue, 3 red, and 4 yellow marbles. A marble is drawn at random from
the jar. Find the probability that

(a) the marble is orange;

(b) the marble is red;

(c) the marble is orange or blue.

Problem 3.2. Piggy bank
A piggy bank contains one penny, one nickel, one dime, and one quarter. It is shaken until two
coins fall out at random. What is the probability that at least $0.30 falls out?

Problem 3.3. Two dice
A girl tosses a pair of dice at the same time. Find the probability that

(a) both dice show the same number;

(b) both dice show a number less than 5;

(c) both dice show an even number;

(d) the product of the numbers is 12.
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Problem 3.4. Free throws
A boy hits 16 free throws out of 25 attempts. What is the probability that he will make a free
throw on his next attempt?

Problem 3.5. Toss of a die
Consider an experiment in which a die is tossed 150 times and the number of times each face is
observed is counted. The value of A, the number of dots on the face of the die and the number of
times that it appeared is shown in Table 3.1.

(a) What is the predicted average value of A assuming a fair die?

(b) What is the average value of A observed in this experiment?

value of A frequency
1 23
2 28
3 30
4 21
5 23
6 25

Table 3.1: The number of times face A appeared in 150 tosses.

Problem 3.6. What’s in your purse?
A coin is taken at random from a purse that contains one penny, two nickels, four dimes, and three
quarters. If x equals the value of the coin, find the average value of x.

Problem 3.7. Rules of probability
Based on your solutions to the above problems, state the rules of probability as you understand
them at this time.

The following problems are related to the use of probability in everyday life.

Problem 3.8. Choices
Suppose that you are offered the following choice:

(a) A certain prize of $50.

(b) You flip a (fair) coin and win $100 if you get a head, but $0 if you get a tail. Which choice
would you make? Explain your reasoning. Would your choice change if the certain prize was
$40?

Problem 3.9. More choices
Suppose that you are offered the following choices:

(a) A prize of $100 is awarded for each head found in ten flips of a coin, or



CHAPTER 3. CONCEPTS OF PROBABILITY 104

(b) a certain prize of $400. What choice would you make? Explain your reasoning.

Problem 3.10. Thinking about probability

(a) Suppose that you were to judge an event to be 99.9999% probable. Would you be willing to bet
$999 999 against $1 that the event would occur? Discuss why probability assessments should
be kept separate from decision issues.

(b) Suppose that someone gives you a dollar to play the lottery. What sequence of six numbers
between 1 and 36 would you choose?

(c) Suppose you toss a coin 8 times and obtain heads each time. Estimate the probability that
you will obtain heads on your ninth toss.

(d) What is the probability that it will rain tomorrow? What is the probability that the Dow
Jones industrial average will increase tomorrow?

(e) Give several examples of the use of probability in everyday life. Distinguish between various
types of probability.

3.2 The Rules of Probability

We now summarize the basic rules and ideas of probability.1 Suppose that there is an operation or
a process that has several distinct possible outcomes. The process might be the flip of a coin or the
roll of a six-sided die.2 We call each flip a trial. The list of all the possible events or outcomes is
called the sample space. We assume that the events are mutually exclusive, that is, the occurrence
of one event implies that the others cannot happen at the same time. We let n represent the
number of events, and label the events by the index i which varies from 1 to n. For now we assume
that the sample space is finite and discrete. For example, the flip of a coin results in one of two
events that we refer to as heads and tails and the role of a die yields one of six possible events.

For each event i, we assign a probability P (i) that satisfies the conditions

P (i) ≥ 0, (3.1)

and ∑
i

P (i) = 1. (3.2)

P (i) = 0 implies that the event cannot occur, and P (i) = 1 implies that the event must occur.
The normalization condition (3.2) says that the sum of the probabilities of all possible mutually
exclusive outcomes is unity.

1In 1933 the Russian mathematician A. N. Kolmogorov formulated a complete set of axioms for the mathematical
definition of probability.

2The earliest known six-sided dice have been found in the Middle East. A die made of baked clay was found
in excavations of ancient Mesopotamia. The history of games of chance is discussed by Deborah J. Bennett,
Randomness, Harvard University Press (1998).
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Example 3.1. Let x be the number of points on the face of a die. What is the sample space of x?

Solution. The sample space or set of possible events is xi = {1, 2, 3, 4, 5, 6}. These six outcomes
are mutually exclusive.

The rules of probability will be summarized further in (3.3) and (3.5). These abstract rules
must be supplemented by an interpretation of the term probability. As we will see, there are
many different interpretations of probability because any interpretation that satisfies the rules of
probability may be regarded as a kind of probability.

An interpretation of probability that is relatively easy to understand is based on symmetry.
Suppose that we have a two-sided coin that shows heads and tails. Then there are two possible
mutually exclusive outcomes, and if the coin is perfect, each outcome is equally likely.3 If a die
with six distinct faces (see Figure 3.1) is perfect, we can use symmetry arguments to argue that
each outcome should be counted equally and P (i) = 1/6 for each of the six faces. For an actual
die, we can estimate the probability a posteriori, that is, by the observation of the outcome of
many throws. As is usual in physics, our intuition will lead us to the concepts.

Figure 3.1: The six possible outcomes of the toss of a die.

Suppose that we know that the probability of rolling any face of a die in one throw is equal
to 1/6, and we want to find the probability of finding face 3 or face 6 in one throw. In this case
we wish to know the probability of a trial that is a combination of more elementary operations
for which the probabilities are already known. That is, we want to know the probability of the
outcome, i or j, where i is distinct from j. According to the rules of probability, the probability
of event i or j is given by

P (i or j) = P (i) + P (j). (addition rule) (3.3)

The relation (3.3) is generalizable to more than two events. An important consequence of (3.3) is
that if P (i) is the probability of event i, then the probability of event i not occurring is 1− P (i).

Example 3.2. What is the probability of throwing a three or a six with one throw of a die?

Solution. The probability that the face exhibits either 3 or 6 is 1
6 + 1

6 = 1
3 .

Example 3.3. What is the probability of not throwing a six with one throw of die?

Solution. The answer is the probability of either “1 or 2 or 3 or 4 or 5.” The addition rule gives
that the probability P (not six) is

P (not six) = P (1) + P (2) + P (3) + P (4) + P (5) (3.4a)

= 1− P (6) =
5
6
, (3.4b)

3Is the outcome of a coin toss really random? It appears that the randomness in a coin toss is introduced by
sloppy humans. Each human-generated flip has a different height and speed and is caught at a different angle, giving
different outcomes. See the references at the end of the chapter.
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where the last relation follows from the fact that the sum of the probabilities for all outcomes
sums to unity. It is very useful to take advantage of this property when solving many probability
problems.

Another simple rule is for the probability of the joint occurrence of independent events. These
events might be the probability of throwing a 3 on one die and the probability of throwing a 4 on
a second die. If two events are independent, then the probability of both events occurring is the
product of their probabilities

P (i and j) = P (j)P (j). (multiplication rule) (3.5)

Events are independent if the occurrence of one event does not change the probability for the
occurrence of the other.

To understand the applicability of (3.5) and the meaning of the independence of events,
consider the problem of determining the probability that a person chosen at random is a female
over six feet tall. Suppose that we know that the probability of a person to be over six feet tall
is P (6+) = 1

5 , and the probability of being female is P (female) = 1
2 . We might conclude that

the probability of being a tall female is P (female)P (6+) = 1
2 ×

1
5 = 1

10 . The same probability
would hold for a tall male. However, this reasoning is incorrect, because the probability of being
a tall female differs from the probability of being a tall male. The problem is that the two events
– being over six feet tall and being female – are not independent. On the other hand, consider
the probability that a person chosen at random is female and was born on September 6. We
can reasonably assume equal likelihood of birthdays for all days of the year, and it is correct to
conclude that this probability is 1

2 ×
1

365 (not counting leap years). Being a woman and being born
on September 6 are independent events.

Problem 3.11. Give an example from your solutions to Problems 3.1–3.6 where you used the
addition rule or the multiplication rule or both.

Example 3.4. What is the probability of throwing an even number with one throw of a die?

Solution. We can use the addition rule to find that

P (even) = P (2) + P (4) + P (6) =
1
6

+
1
6

+
1
6

=
1
2
. (3.6)

Example 3.5. What is the probability of the same face appearing on two successive throws of a
die?

Solution. We know that the probability of any specific combination of outcomes, for example,
(1,1), (2,2), . . . (6,6) is 1

6 ×
1
6 = 1

36 . Hence, by the addition rule

P (same face) = P (1, 1) + P (2, 2) + . . .+ P (6, 6) = 6× 1
36

=
1
6
. (3.7)

Example 3.6. What is the probability that in two throws of a die at least one six appears?

Solution. We have already established that

P (6) =
1
6

P (not 6) =
5
6
. (3.8)
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There are four possible outcomes (6, 6), (6,not 6), (not 6, 6), (not 6,not 6) with the probabilities

P (6, 6) =
1
6
× 1

6
=

1
36

(3.9a)

P (6,not 6) = P (not 6, 6) =
1
6
× 5

6
=

5
36

(3.9b)

P (not 6,not 6) =
5
6
× 5

6
=

25
36
. (3.9c)

All outcomes except the last have at least one six. Hence, the probability of obtaining at least one
six is

P (at least one 6) = P (6, 6) + P (6,not 6) + P (not 6, 6) (3.10a)

=
1
36

+
5
36

+
5
36

=
11
36
. (3.10b)

A more direct way of obtaining this result is to use the normalization condition. That is,

P (at least one six) = 1− P (not 6,not 6) = 1− 25
36

=
11
36
. (3.10c)

Example 3.7. What is the probability of obtaining at least one six in four throws of a die?

Solution. We know that in one throw of a die, there are two outcomes with P (6) = 1
6 and

P (not 6) = 5
6 . Hence, in four throws of a die there are sixteen possible outcomes, only one of

which has no six. That is, in the fifteen mutually exclusive outcomes, there is at least one six. We
can use the multiplication rule (3.3) to find that

P (not 6,not 6,not 6,not 6) = P (not 6)4 =
(5

6

)4
, (3.11)

and hence

P (at least one six) = 1− P (not 6,not 6,not 6,not 6) (3.12a)

= 1−
(5

6

)4
=

671
1296

≈ 0.517. (3.12b)

Frequently we know the probabilities only up to a constant factor. For example, we might know
P (1) = 2P (2), but not P (1) or P (2) separately. Suppose we know that P (i) is proportional to f(i),
where f(i) is a known function. To obtain the normalized probabilities, we divide each function
f(i) by the sum of all the unnormalized probabilities. That is, if P (i) ∝ f(i) and Z =

∑
f(i),

then P (i) = f(i)/Z. This procedure is called normalization.

Example 3.8. Suppose that in a given class it is three times as likely to receive a C as an A,
twice as likely to obtain a B as an A, one-fourth as likely to be assigned a D as an A, and nobody
fails the class. What are the probabilities of getting each grade?

Solution. We first assign the unnormalized probability of receiving an A as f(A) = 1. Then
f(B) = 2, f(C) = 3, and f(D) = 0.25. Then Z =

∑
i f(i) = 1 + 2 + 3 + 0.25 = 6.25. Hence,

P (A) = f(A)/Z = 1/6.25 = 0.16, P (B) = 2/6.25 = 0.32, P (C) = 3/6.25 = 0.48, and P (D) =
0.25/6.25 = 0.04.
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The normalization procedure arises again and again in different contexts. We will see that
much of the mathematics of statistical mechanics can be formulated in terms of the calculation of
normalization constants.

Problem 3.12. Find the probability distribution P (n) for throwing a sum n with two dice and
plot P (n) as a function of n.

Problem 3.13. What is the probability of obtaining at least one double six in twenty-four throws
of a pair of dice?

Problem 3.14. Suppose that three dice are thrown at the same time. What is the probability
that the sum of the three faces is 10 compared to 9?

Problem 3.15. What is the probability that the total number of spots shown on three dice thrown
at the same time is 11? What is the probability that the total is 12? What is the fallacy in the
following argument? The number 11 occurs in six ways: (1,4,6), (2,3,6), (1,5,5), (2,4,5), (3,3,5),
(3,4,4). The number 12 also occurs in six ways: (1,5,6), (2,4,6), (3,3,6), (2,5,5), (3,4,5), (4,4,4) and
hence the two numbers should be equally probable.

3.3 Mean Values

The specification of the probability distribution P (1), P (2), . . . P (n) for the n possible values of the
variable x constitutes the most complete statistical description of the system. However, in many
cases it is more convenient to describe the distribution of the possible values of x in a less detailed
way. The most familiar way is to specify the average or mean value of x, which we will denote as
x. The definition of the mean value of x is

x ≡ x1P (1) + x2P (2) + . . .+ xnP (n) (3.13a)

=
n∑
i=1

xiP (i), (3.13b)

where P (i) is the probability of xi. If f(x) is a function of x, then the mean value of f(x) is defined
by

f(x) =
n∑
i=1

f(xi)P (i). (3.14)

Example 3.9. Expected value
Lets reconsider the choices in Problem 3.8: A certain $50 or $100 if you flip a coin and get a head
and $0 if you get a tail. The expected value is

expected value =
∑
i

Pi × (value of i), (3.15)

where the sum is over the expected outcomes and Pi is the probability of outcome i. In this case
the expected value is 1/2× $100 + 1/2× $0 = $50. We see that the two choices are equivalent, and
that the expected value is the same as the mean or average value. (Most people prefer the first
choice because the outcome is “certain.”)
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If f(x) and g(x) are any two functions of x, then

f(x) + g(x) =
n∑
i=1

[f(xi) + g(xi)]P (i) (3.16a)

=
n∑
i=1

f(xi)P (i) +
n∑
i=1

g(xi)P (i), (3.16b)

or
f(x) + g(x) = f(x) + g(x). (3.16c)

Problem 3.16. Show that if c is a constant, then

cf(x) = cf(x). (3.17)

In general, we can define the mth moment of the probability distribution P as

xm ≡
n∑
i=1

xi
mP (i), (3.18)

where we have let f(x) = xm. The mean of x is the first moment of the probability distribution.

Problem 3.17. Suppose that the variable x takes on the values −2, −1, 0, 1, and 2 with proba-
bilities 1/16, 4/16, 6/16, 4/16, and 1/16, respectively. Calculate the first two moments of x.

The mean value of x is a measure of the central value of x about which the various values of
xi are distributed. If we measure x from its mean, we have that

∆x ≡ x− x, (3.19)

and
∆x = (x− x) = x− x = 0. (3.20)

That is, the average value of the deviation of x from its mean vanishes.
If only one outcome j were possible, we would have P (i) = 1 for i = j and zero otherwise, that

is, the probability distribution would have zero width. In general, there is more than one outcome
and a possible measure of the width of the probability distribution is given by

∆x2 ≡
(
x− x

)2
. (3.21)

The quantity ∆x2 is known as the dispersion or variance and its square root is called the standard
deviation. It is easy to see that the larger the spread of values of x about x, the larger the variance.
The use of the square of x−x ensures that the contribution of x values that are smaller and larger
than x enter with the same sign. A useful form for the variance can be found by letting(

x− x
)2 =

(
x2 − 2xx+ x2

)
(3.22a)

= x2 − 2x x+ x2, (3.22b)
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or (
x− x

)2 = x2 − x2. (3.23)

Because ∆x2 is always nonnegative, it follows that x2 ≥ x2.
The variance is the mean value of (x − x)2 and represents the square of a width. We will

find that it is useful to interpret the width of the probability distribution in terms of the standard
deviation σ, which is defined as the square root of the variance. The standard deviation of the
probability distribution P (x) is given by

σx =
√

∆x2 =
√(

x2 − x2
)
. (3.24)

Example 3.10. Find the mean value x, the variance ∆x2, and the standard deviation σx for the
value of a single throw of a die.

Solution. Because P (i) = 1
6 for i = 1, . . . , 6, we have that

x =
1
6

(1 + 2 + 3 + 4 + 5 + 6) =
7
2

= 3.5 (3.25a)

x2 =
1
6

(1 + 4 + 9 + 16 + 25 + 36) =
46
3

(3.25b)

∆x2 = x2 − x2 =
46
3
− 49

4
=

37
12
≈ 3.08 (3.25c)

σx ≈
√

3.08 = 1.76 (3.25d)

Example 3.11. On the average, how many times must a die be thrown until a 6 appears?

Solution. Although it might seem obvious that the answer is six, it is instructive to confirm this
answer. Let p be the probability of a six on a given throw. The probability of success for the first
time on trial i is given in Table 3.2.

trial probability of
success on trial i

1 p
2 qp
3 q2p
4 q3p

Table 3.2: Probability of a head for the first time on trial i (q = 1− p).

The sum of the probabilities is p+ qp+ q2p+ · · · = p(1 + q+ q2 + · · · ) = p/(1− q) = p/p = 1.
The mean number of trials m is

m = p+ 2pq + 3pq2 + 4pq3 + · · · (3.26a)

= p(1 + 2q + 3q2 + · · · ) (3.26b)

= p
d

dq

(
1 + q + q2 + q3 + · · ·

)
(3.26c)

= p
d

dq

1
1− q

=
p

(1− q)2
=

1
p

(3.26d)
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Another way to obtain this result is to note that if the first toss is a failure, then the mean
number of tosses required is 1 +m, and if the first toss is a success, the mean number is 1. Hence,
m = q(1 +m) + p(1) or m = 1/p.

3.4 The Meaning of Probability

How can we assign the probabilities of the various events? If we say that event E1 is more probable
than event E2 (P (E1) > P (E2)), we mean that E1 is more likely to occur than E2. This statement
of our intuitive understanding of probability illustrates that probability is a way of classifying the
plausibility of events under conditions of uncertainty. Probability is related to our degree of belief
in the occurrence of an event.

This definition of probability is not bound to a single evaluation rule and there are many
ways to obtain P (Ei). For example, we could use symmetry considerations as we have done, past
frequencies, simulations, theoretical calculations, or as we will learn in Section 3.4.2, Bayesian
inference. Probability assessments depend on who does the evaluation and the status of the
information the evaluator has at the moment of the assessment. We always evaluate the conditional
probability, that is, the probability of an event E given the information I, P (E|I). Consequently,
several people can have simultaneously different degrees of belief about the same event, as is well
known to investors in the stock market.

If rational people have access to the same information, they should come to the same conclu-
sion about the probability of an event. The idea of a coherent bet forces us to make probability
assessments that correspond to our belief in the occurrence of an event. If we consider an event to
be 50% probable, then we should be ready to place an even bet on the occurrence of the event or
on its opposite. However, if someone wishes to place the bet in one direction but not in the other,
it means that this person thinks that the preferred event is more probable than the other. In this
case the 50% probability assessment is incoherent and this person’s wish does not correspond to
his or her belief.

A coherent bet has to be considered virtual. For example, a person might judge an event
to be 99.9999% probable, but nevertheless refuse to bet $999999 against $1, if $999999 is much
more than the person’s resources. Nevertheless, the person might be convinced that this bet
would be fair if he/she had an infinite budget. Probability assessments should be kept separate
from decision issues. Decisions depend not only on the probability of the event, but also on the
subjective importance of a given amount of money (see for example, Problems 3.10 and 3.92).

Our discussion of probability as the degree of belief that an event will occur shows the in-
adequacy of the frequency definition of probability, which defines probability as the ratio of the
number of desired outcomes to the total number of possible outcomes. This definition is inadequate
because we would have to specify that each outcome has equal probability. Thus we would have to
use the term probability in its own definition. If we do an experiment to measure the frequencies of
various outcomes, then we need to make an additional assumption that the measured frequencies
will be the same in the future as they were in the past. Also we have to make a large number of
measurements to insure accuracy, and we have no way of knowing a priori how many measurements
are sufficient. Thus, the definition of probability as a frequency really turns out to be a method
for estimating probabilities with some hidden assumptions.
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Our definition of probability as a measure of the degree of belief in the occurrence of an
outcome implies that probability depends on our prior knowledge, because belief depends on prior
knowledge. For example, if we toss a coin and obtain 100 tails in a row, we might use this
knowledge as evidence that the coin or toss is biased, and thus estimate that the probability of
throwing another tail is very high. However, if a careful physical analysis shows that there is no
bias, then we would stick to our estimate of 1/2. The probability depends on what knowledge
we bring to the problem. If we have no knowledge other than the possible outcomes, then the
best estimate is to assume equal probability for all events. However, this assumption is not a
definition, but an example of belief. As an example of the importance of prior knowledge, consider
the following problem.

Problem 3.18. A couple with two children

(a) A couple has two children. What is the probability that at least one child is a girl?

(b) Suppose that you know that at least one child is a girl. What is the probability that the other
child is a girl?

(c) Instead suppose that we know that the oldest child is a girl. What is the probability that the
youngest is a girl?

We know that we can estimate probabilities empirically by sampling, that is, by making
repeated measurements of the outcome of independent events. Intuitively we believe that if we
perform more and more measurements, the calculated average will approach the exact mean of the
quantity of interest. This idea is called the law of large numbers.

As an example, suppose that we flip a single coin M times and count the number of heads. Our
result for the number of heads is shown in Table 3.3. We see that the fraction of heads approaches
1/2 as the number of measurements becomes larger.

Problem 3.19. Use the applet/application at <stp.clarku.edu/simulations/cointoss> to
simulate multiple tosses of a single coin. What is the correspondence between this simulation
of a coin being tossed many times and the actual physical tossing of a coin? If the coin is “fair,”
what do you think the ratio of the number of heads to the total number of tosses will be? Do you
obtain this number after 100 tosses? 10,000 tosses?

Another way of estimating the probability is to perform a single measurement on many copies
or replicas of the system of interest. For example, instead of flipping a single coin 100 times in
succession, we collect 100 coins and flip all of them at the same time. The fraction of coins that
show heads is an estimate of the probability of that event. The collection of identically prepared
systems is called an ensemble and the probability of occurrence of a single event is estimated with
respect to this ensemble. The ensemble consists of a large number M of identical systems, that is,
systems that satisfy the same known conditions.

If the system of interest is not changing in time, it is reasonable to assume that an estimate of
the probability by either a series of measurements on a single system at different times or similar
measurements on many identical systems at the same time would give consistent results.

Note that we have estimated various probabilities by a frequency, but have not defined proba-
bility in terms of a frequency. As emphasized by D’Agostini, past frequency is experimental data.

http://stp.clarku.edu/simulations/cointoss
<stp.clarku.edu/simulations/cointoss>
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heads tosses fraction of heads
4 10 0.4

29 50 0.58
49 100 0.49

101 200 0.505
235 500 0.470
518 1,000 0.518

4997 10,000 0.4997
50021 100,000 0.50021

249946 500,000 0.49999
500416 1,000,000 0.50042

Table 3.3: The number and fraction of heads in M tosses of a coin. We did not really toss a coin
in the air 106 times. Instead we used a computer to generate a sequence of random numbers to
simulate the tossing of a coin. Because you might not be familiar with such sequences, imagine a
robot that can write the positive integers between 1 and 231 on pieces of paper. Place these pieces
in a hat, shake the hat, and then chose the pieces at random. If the number chosen is less than
1
2 × 231, then we say that we found a head. Each piece is placed back in the hat after it is read.

This data happened with certainty so the concept of probability no longer applies. Probability is
how much we believe that an event will occur taking into account all available information includ-
ing past frequencies. Because probability quantifies the degree of belief at a given time, it is not
measurable. If we make further measurements, they can only influence future assessments of the
probability.

3.4.1 Information and uncertainty

Consider an experiment that has two outcomes E1 and E2 with probabilities P1 and P2. For
example, the experiment could correspond to the toss of a coin. For one coin the probabilities are
P1 = P2 = 1/2 and for the other (a bent coin) P1 = 1/5 and P2 = 4/5. Intuitively, we would say
that the result of the first experiment is more uncertain.

Consider two additional experiments. In the third experiment there are four outcomes with
P1 = P2 = P3 = P4 = 1/4 and in the fourth experiment there are six outcomes with P1 = P2 =
P3 = P4 = P5 = P6 = 1/6. Intuitively the fourth experiment is the most uncertain because there
are more outcomes and the first experiment is the least uncertain. You are probably not clear
about how to rank the second and third experiments.

We will now introduce a mathematical measure that is consistent with our intuitive sense of
uncertainty. Let us define the uncertainty function S(P1, P2, . . . , Pi, . . .) where Pi is the probability
of event i. We first consider the case where all the probabilities Pi are equal. Then P1 = P2 = . . . =
Pi = 1/Ω, where Ω is the total number of outcomes. In this case we have S = S(1/Ω, 1/Ω, . . .) or
simply S(Ω).

It is easy to see that S(Ω) has to satisfy some simple conditions. For only one outcome, Ω = 1
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and there is no uncertainty. Hence we must have

S(Ω = 1) = 0. (3.27)

We also have that
S(Ω1) > S(Ω2) if Ω1 > Ω2. (3.28)

That is, S(Ω) is a increasing function of Ω.
We next consider multiple events. For example, suppose that we throw a die with Ω1 outcomes

and flip a coin with Ω2 equally probable outcomes. The total number of outcomes is Ω = Ω1Ω2. If
the result of the die is known, the uncertainty associated with the die is reduced to zero, but there
still is uncertainty associated with the toss of the coin. Similarly, we can reduce the uncertainty
in the reverse order, but the total uncertainty is still nonzero. These considerations suggest that

S(Ω1Ω2) = S(Ω1) + S(Ω2). (3.29)

It is remarkable that there is an unique functional form that satisfies the three conditions
(3.27)–(3.29). We can find this form by writing (3.29) in the form

S(xy) = S(x) + S(y), (3.30)

and taking the variables x and y to be continuous. (The analysis can be done assuming that x
and y are discrete variables, but the analysis is simpler if we assume that x and y are continuous.
Given this assumption the functional form of S might already be clear.) This generalization is
consistent with S(Ω) being a increasing function of Ω. First we take the partial derivative of S(xy)
with respect to x and then with respect to y. We let z = xy and obtain

∂S(z)
∂x

=
∂z

∂x

dS(z)
dz

= y
dS(z)
dz

(3.31a)

∂S(z)
∂y

=
∂z

∂y

dS(z)
dz

= x
dS(z)
dz

. (3.31b)

From (3.30) we have

∂S(z)
∂x

=
dS(x)
dx

(3.32a)

∂S(z)
∂y

=
dS(y)
dy

. (3.32b)

By comparing the right-hand side of (3.31) and (3.32), we have

dS

dx
= y

dS

dz
(3.33a)

dS

dy
= x

dS

dz
. (3.33b)

If we multiply (3.33a) by x and (3.33b) by y, we obtain

x
dS(x)
dx

= y
dS(y)
dy

= z
dS(z)
dz

. (3.34)
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Note that the first term in (3.34) depends only on x and the second term depends only on y.
Because x and y are independent variables, the three terms in (3.34) must be equal to a constant.
Hence we have the desired condition

x
dS(x)
dx

= y
dS(y)
dy

= A, (3.35)

where A is a constant. The differential equation in (3.35) can be integrated to give

S(x) = A lnx+B. (3.36)

The integration constant B must be equal to zero to satisfy the condition (3.27). The constant A
is arbitrary so we choose A = 1. Hence for equal probabilities we have that

S(Ω) = ln Ω. (3.37)

What about the case where the probabilities for the various events are unequal? We will show
in Section 3.12.1 that the general form of the uncertainty S is

S = −
∑
i

Pi lnPi. (3.38)

Note that if all the probabilities are equal, then

Pi =
1
Ω

(3.39)

for all i. In this case
S = −

∑
i

1
Ω

ln
1
Ω

= Ω
1
Ω

ln Ω = ln Ω, (3.40)

because there are Ω equal terms in the sum. Hence (3.38) reduces to (3.37) as required. We also
see that if outcome j is certain, Pj = 1 and Pi = 0 if i 6= j and S = −1 ln 1 = 0. That is, if the
outcome is certain, the uncertainty is zero and there is no missing information.

We have shown that if the Pi are known, then the uncertainty or missing information S
can be calculated. Usually the problem is the other way around, and we want to determine
the probabilities. Suppose we flip a perfect coin for which there are two possibilities. We know
intuitively that P1(heads) = P2(tails) = 1/2. That is, we would not assign a different probability
to each outcome unless we had information to justify it. Intuitively we have adopted the principle
of least bias or maximum uncertainty. Lets reconsider the toss of a coin. In this case S is given by

S = −
∑
i

Pi lnPi = −(P1 lnP1 + P2 lnP2) (3.41a)

= −(P1 lnP1 + (1− P1) ln(1− P1), (3.41b)

where we have used the fact that P1 +P2 = 1. To maximize S we take the derivative with respect
to P1:4

dS

dP1
= −[lnP1 + 1− ln(1− P1)− 1] = − ln

P1

1− P1
= 0. (3.42)

4We have used the fact that d(ln x)/dx = 1/x.
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The solution of (3.42) satisfies
P1

1− P1
= 1, (3.43)

which is satisfied by P1 = 1/2. We can check that this solution is a maximum by calculating the
second derivative.

∂2S

∂P 2
1

= −
[ 1
P1

+
1

1− P1

]
= −4 < 0, (3.44)

which is less then zero.

Problem 3.20. Uncertainty

(a) Consider the toss of a coin for which P1 = P2 = 1/2 for the two outcomes. What is the
uncertainty in this case?

(b) What is the uncertainty for P1 = 1/3 and P2 = 2/3? How does the uncertainty in this case
compare to that in part (a)?

(c) On page 113 we discussed four experiments with various outcomes. Compare the uncertainty
S of the third and fourth experiments.

Example 3.12. The toss of a three-sided die yields events E1, E2, and E3 with a face of one,
two, and three points. As a result of tossing many dice, we learn that the mean number of points
is f = 1.9, but we do not know the individual probabilities. What are the values of P1, P2, and
P3 that maximize the uncertainty?

Solution. We have
S = −

[
P1 lnP1 + P2 lnP2 + P3 lnP3

]
. (3.45)

We also know that
f = 1P1 + 2P2 + 3P3, (3.46)

and P1 + P2 + P3 = 1. We use the latter condition to eliminate P3 using P3 = 1 − P1 − P2, and
rewrite (3.46) as

f = P1 + 2P2 + 3(1− P1 − P2) = 3− 2P1 − P2. (3.47)
We then use (3.47) to eliminate P2 and P3 from (3.45) using P2 = 3−f −2P1 and P3 = f −2+P1:

S = −[P1 lnP1 + (3− f − 2P1) ln(3− f − 2P1) + (f − 2 + P1) ln(f − 2 + P1)]. (3.48)

Because S in (3.48) depends on only P1, we can differentiate S with respect P1 to find its maximum
value:

dS

dP1
= −

[
lnP1 − 1− 2[ln(3− f − 2P1)− 1] + [ln(f − 2 + P1)− 1]

]
(3.49a)

= ln
P1(f − 2 + P1)
(3− f − 2P1)2

= 0. (3.49b)

We see that for dS/dP1 to be equal to zero, the argument of the logarithm must be one. The result
is a quadratic equation for P1 (see Problem 3.21).

Problem 3.21. Fill in the missing steps in Example 3.12 and solve for P1, P2, and P3.

In Section 3.12.2 we maximize the uncertainty for a case for which there are more than three
outcomes.
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3.4.2 *Bayesian inference

Conditional probabilities are not especially important for the development of equilibrium statistical
mechanics, so this section may be omitted for now. However, conditional probability and Bayes’
theorem are very important for the analysis of data including spam filters for email, and in the
more general context of statistical physics. Bayes’ theorem gives us a way of understanding how
the probability that a hypothesis is true is affected by new evidence.

Let us define P (A|B) as the probability of A occurring given that we know that B has occurred.
We know that

P (A) = P (A|B) + P (A|−B), (3.50)

where −B means that B did not occur. We also know that

P (A and B) = P (A|B)P (B) = P (B|A)P (A). (3.51)

Equation (3.51) means that the probability that A and B occur equals the probability that A occurs
given B times the probability that B occurs, which is the same as the probability that B occurs
given A times the probability A that occurs. Note that P (A and B) is the same as P (B and A),
but P (A|B) does not have the same meaning as P (B|A).

We can rearrange (3.51) to obtain Bayes’ theorem

P (A|B) =
P (B|A)P (A)

P (B)
. (Bayes’ theorem) (3.52)

We can generalize (3.52) for the case of multiple possible outcomes Ai for the same B. We rewrite
(3.52) as

P (Ai|B) =
P (B|Ai)P (Ai)

P (B)
. (3.53)

If all the Ai are mutually exclusive and if at least one of the Ai must occur, then we can also write

P (B) =
∑
i

P (B|Ai)P (Ai). (3.54)

If we substitute (3.54) for P (B) into (3.53), we obtain

P (Ai|B) =
P (B|Ai)P (Ai)∑
i P (B|Ai)P (Ai)

. (3.55)

Bayes’ theorem is very useful for finding the most probable explanation of a given data set. In this
context Ai represents the possible explanation and B represents the data. As more data becomes
available, the probabilities P (B|Ai)P (Ai) change.

Example 3.13. A chess program has two modes, expert (E) and novice (N). The expert mode
beats you 75% of the time and the novice mode wins 50% of the time. You close your eyes and
randomly choose one of the modes and play two games. The computer wins (W) both times. What
is the probability that you chose the novice mode?
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Solution. The probability of interest is P (N|WW), which is difficult to calculate directly. Bayes
theorem lets you use the easy to calculate probability P (WW|N) to determine P (N|WW). We use
(3.52) to write

P (N|WW) =
P (WW|N)P (N)

P (WW)
. (3.56)

We know that P (N) = 1/2 and P (WW|N) = (1/2)2 = 1/4.
We next have to calculate P (WW). There are two ways that the program won the two games:

(1) You chose the novice mode and it won twice, or (2) you chose the expert mode and it won twice.
Because N and E are mutually exculsive, we have P (WW) = P (N and WW) + P (E and WW).
From (3.51) we have

P (WW) = P (WW|N)P (N) + P (WW|E)P (E) (3.57a)

= (1/2× 1/2× 1/2) + (3/4× 3/4× 1/2) =
13
32
. (3.57b)

Hence

P (N|WW) =
P (WW|N)P (N)

P (WW)
=

(1/4× 1/2)
13
32

=
4
13
≈ 0.31. (3.58)

Note that the probability of choosing the novice mode has decreased from 50% to about 31%
because you have the additional information that you lost twice and thus are more likely to have
chosen the expert mode.

Example 3.14. Alice plants two types of flowers in her garden: 30% of type A and 70% of type
B. Both types yield either red or yellow flowers, with P (red|A) = 0.4 and P (red|B) = 0.3.

(a) What is the percentage of red flowers that Alice will obtain?

Solution. We can use the total probability law (3.51) to write

P (red) = P (red|A)P (A) + P (red|B)P (B) (3.59a)
= (0.4× 0.3) + (0.3× 0.7) = 33/100. (3.59b)

So Alice will find that one of three flowers will be red.

(b) Suppose a red flower is picked at random from Alice’s garden. What is the probability of the
flower being type A?

Solution. We apply Bayes’ theorem and obtain

P (A|red) =
P (red|A)P (A)

P (red|A)P (A) + P (red|B)P (B)
(3.60a)

=
0.4× 0.3

(0.4× 0.3) + (0.3× 0.7)
=

12
33

=
4
11
≈ 0.36. (3.60b)

We find that given that the flower is red, its probability of being type A increases to 0.36
because type A has a higher probability than type B of yielding red flowers.
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Example 3.15. Do you have a fair coin?
Suppose that there are four coins of the same type in a bag. Three of them are fair, but the

fourth is double-headed. You choose one coin at random from the bag and toss it five times. It
comes up heads each time. What is the probability that you have chosen the double-headed coin?

Solution. If the coin were fair, the probability of five heads in a row (5H) would be (1/2)5 = 1/32 ≈
0.03. This probability is small, so you would probably decide that you have not chosen a fair coin.
But because you have more information, you can determine a better estimate of the probability.

We have

P (H5) = P (5H|fair)P (fair) + P (5H|not fair)P (not fair) (3.61a)

= [(1/2)5 × 3/4] + [1× 1/4] = 35/128 ≈ 0.27. (3.61b)
P (fair coin|5H) = P (5H|fair coin)P (fair coin)/P (5H) (3.61c)

=
[(1/2)5 × 3/4]

35/128
= 3/35 = 0.12. (3.61d)

Thus the probability that the coin was fair is about a factor of four greater given that you tossed
a coin five times.

Problem 3.22. More on choosing a fair coin
Suppose that you have two coins that look and feel identical, but one is double-headed and one is
fair. The two coins are placed in a box and you choose one at random.

(a) What is the probability that you have chosen the fair coin?

(b) Suppose that you toss the chosen coin twice and obtain heads both times. What is the
probability that you have chosen the fair coin? Why is this probability different than in
part (a)?

(c) Suppose that you toss the chosen coin four times and obtain four heads. What is the probability
that you have chosen the fair coin?

(d) Suppose that there are ten coins in the box with nine fair and one double-headed. You toss
the chosen twice and obtain two heads. What is the probability that you have chosen the fair
coin?

(e) Now suppose that the biased coin is not double-headed, but has a probability of 0.98 of coming
up heads. Also suppose that the probability of choosing the biased coin is 1 in 104. What is
the probability of choosing the biased coin given that the first toss yields heads?

Example 3.16. Monty Hall problem
Consider the quandary known as the Monty Hall problem. In this former television show a con-
testant is shown three doors. Behind one door is an expensive prize such as a car and behind the
other two doors are inexpensive gifts such as a tie. The contestant chooses a door. Suppose she
chooses door 1. Then the host opens door 2 containing the tie knowing that the car is not behind
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door 2. The contestant now has a choice – should she stay with her original choice or switch to
door 3? What would you do?5

Let us use Bayes’ theorem to determine her best course of action. We want to calculate

P (A1|B) = P (car behind door 1|door 2 open after door 1 chosen), (3.62a)

and
P (A3|B) = P (car behind door 3|door 2 open after door 1 chosen), (3.62b)

where Ai denotes car behind door i. We know that all the P (Ai) equal 1/3, because with no
information we assume that the probability that the car is behind each door is the same. Because
the host can open door 2 or 3 if the car is behind door 1, but can only open door 2 if the car is
behind door 3 we have

P (door 2 open after door 1 chosen|car behind 1) =
1
2

(3.63a)

P (door 2 open after door 1 chosen|car behind 2) = 0 (3.63b)
P (door 2 open after door 1 chosen|car behind 3) = 1. (3.63c)

From Bayes’ theorem we have

P (car behind 1|door 2 open after door 1 chosen) =
1
2 ×

1
3

( 1
2 ×

1
3 ) + (0× 1

3 ) + (1× 1
3 )

=
1
3

(3.64a)

P (car behind 3|door 2 open after door 1 chosen) =
1× 1

3

( 1
2 ×

1
3 ) + (0× 1

3 ) + (1× 1
3 )

=
2
3
. (3.64b)

The results in (3.64) suggest the contestant has a higher probability of winning the car if she
switches doors and chooses door 3. The same logic suggests that she should always switch doors
independently of which door she originally chose.6

Problem 3.23. What does the host know?
The point of Bayesian statistics is that it approaches a given data set with a particular model in
mind. In the Monte Hall problem the model we have used is that the host knows where the car is.

(a) Suppose that the host doesn’t know where the car is, but chooses door 2 at random and there
is no car. What is the probability that the car is behind door 1?

(b) Is the probability that you found in part (a) the same as found in Example 3.16? Why or
why not? Discuss why the probability that the car is behind door 1 depends on what the host
knows.

Example 3.17. Bayes theorem and the problem of false positives
Even though you have no symptoms, your doctor wishes to test you for a rare disease that only 1
in 10,000 people of your age contract. The test is 98% accurate, which means that if you have the

5This question was posed on the TV game show, “Let’s Make A Deal,” hosted by Monty Hall.
6A search for Monty Hall will bring many sites, including <en.wikipedia.org/wiki/Monty_Hall_problem>, that

discuss the problem in detail.

http://en.wikipedia.org/wiki/Monty_Hall_problem
<en.wikipedia.org/wiki/Monty_Hall_problem>
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disease, 98% of the times the test will come out positive, and 2% negative. We also assume that
if you do not have the disease, the test will come out negative 98% of the time and positive 2% of
the time. You take the test and it comes out positive. What is the probability that you have the
disease?

Solution. Let P (p|D) = 0.98 represent the probability of testing positive and having the disease,
−D represent the probability of not having the disease, and n represent testing negative. Then
we are given that P (n|D) = 0.02, P (n|−D) = 0.98, P (p|−D) = 0.02, P (D) = 0.0001, and
P (−D) = 0.9999. From Bayes’ theorem we have

P (D|p) =
P (p|D)P (D)

P (p|D)P (D) + P (p|−D)P (−D)
(3.65a)

=
(0.98)(0.0001)

(0.98)(0.0001) + (0.02)(0.9999)
(3.65b)

= 0.0047 = 0.47%. (3.65c)

Is this test useful?

Because of the problem of false positives, some tests might actually reduce your life span and
thus are not recommended. Suppose that a certain type of cancer occurs in 1 in 1000 people who
are less than 50 years old. The death rate from this cancer is 25% in 10 years. The probability of
having cancer if the test is positive is 1 in 20. Because people who test positive become worried,
90% of the patients who test positive have surgery to remove the cancer. As a result of surgery,
2% die due to complications, and the rest are cured.

We have that

P (death rate due to cancer) = P (death|cancer)P (cancer) (3.66a)
= 0.25× 0.001 = 0.00025 (3.66b)

P (death due to test) = P (die|surgery)P (surgery|positive)P (test|posiive) (3.66c)
= 0.02× 0.90× 0.02 = 0.00036. (3.66d)

Hence, the probability of dring from surgery is greater than dying from the cancer.

Problem 3.24. Imagine that you have a sack of 3 balls that can be either red or green. There
are four hypotheses for the distribution of colors for the balls: (1) all are red, (2) 2 are red, (3) 1
is red, and (4) all are green. Initially, you have no information about which hypothesis is correct,
and thus you assume that they are equally probable. Suppose that you pick one ball out of the
sack and it is green. Use Bayes’ theorem to determine the new probabilities for each hypothesis.

Problem 3.25. Make a table that determines the accuracy necessary for a test to give the prob-
ability of having a disease if tested positive equal to at least 50% for diseases that occur in 1 in
100, 1 in 1000, 1 in 10,000, and 1 in 100,000 people.

We have emphasized that the definition of probability as a frequency is inadequate. If you are
interesting in learning more about Bayesian inference, see in particular the paper by D’Agostini.
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3.5 Bernoulli Processes and the Binomial Distribution

Because most physicists spend little time gambling,7 we will have to develop our intuitive under-
standing of probability in other ways. Our strategy will be to first consider some physical systems
for which we can calculate the probability distribution by analytical methods. Then we will use
the computer to generate more data to analyze.

Noninteracting magnetic moments

Consider a system of N noninteracting magnetic moments of spin 1
2 , each having a magnetic

moment µ in an external magnetic field B. The field B is in the up (+z) direction. Spin 1
2

implies that a spin can point either up (parallel to B) or down (antiparallel to B). The energy
of interaction of each spin with the magnetic field is E = ∓µB, according to the orientation of
the magnetic moment. As discussed in Section 1.10, this model is a simplification of more realistic
magnetic systems.

We will take p to be the probability that the spin (magnetic moment) is up and q the probability
that the spin is down. Because there are no other possible outcomes,we have p+q = 1 or q = 1−p.
If B = 0, there is no preferred spatial direction and p = q = 1/2. For B 6= 0 we do not yet know
how to calculate p and for now we will assume that p is a known parameter. In Section 4.8 we will
learn how to calculate p and q when the system is in equilibrium at temperature T .

We associate with each spin a random variable si which has the values ±1 with probability
p and q, respectively. One of the quantities of interest is the magnetization M , which is the net
magnetic moment of the system. For a system of N spins the magnetization is given by

M = µ(s1 + s2 + . . .+ sN ) = µ

N∑
i=1

si. (3.67)

In the following, we will take µ = 1 for convenience whenever it will not cause confusion. Alterna-
tively, we can interpret M as the net number of up spins.

We will first calculate the mean value of M , then its variance, and finally the probability
distribution P (M) that the system has magnetization M . To compute the mean value of M , we
need to take the mean values of both sides of (3.67). If we use (3.16c), we can interchange the sum
and the average and write

M =
( N∑
i=1

si

)
=

N∑
i=1

si. (3.68)

Because the probability that any spin has the value ±1 is the same for each spin, the mean value
of each spin is the same, that is, s1 = s2 = . . . = sN ≡ s. Therefore the sum in (3.68) consists of
N equal terms and can be written as

M = Ns. (3.69)

The meaning of (3.69) is that the mean magnetization is N times the mean magnetization of a
single spin. Because s = (1× p) + (−1× q) = p− q, we have that

M = N(p− q). (3.70)
7After a Las Vegas hotel hosted a meeting of the American Physical Society in March, 1986, the physicists were

asked never to return.
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Now let us calculate the variance of M , that is, (M −M)2. We write

∆M = M −M =
N∑
i=1

∆si, (3.71)

where
∆si ≡ si − s. (3.72)

As an example, let us calculate (∆M)2 for N = 3 spins. In this case (∆M)2 is given by

(∆M)2 = (∆s1 + ∆s2 + ∆s3)(∆s1 + ∆s2 + ∆s3) (3.73a)

=
[
(∆s1)2 + (∆s2)2 + (∆s3)2

]
+ 2
[
∆s1∆s2 + ∆s1∆s3 + ∆s2∆s3

]
. (3.73b)

We take the mean value of (3.73b), interchange the order of the sums and averages, and write

(∆M)2 =
[
(∆s1)2 + (∆s2)2 + (∆s3)2

]
+ 2
[
∆s1∆s2 + ∆s1∆s3 + ∆s2∆s3

]
. (3.74)

The first term on the right of (3.74) represents the three terms in the sum that are multiplied
by themselves. The second term represents all the cross terms arising from different terms in the
sum, that is, the products in the second sum refer to different spins. Because different spins are
statistically independent (the spins do not interact), we have that

∆si ∆sj = ∆si ∆sj = 0, (i 6= j) (3.75)

because ∆si = 0. That is, each cross term vanishes on the average. Hence (3.75) reduces to a sum
of squared terms

(∆M)2 =
[
(∆s1)2 + (∆s2)2 + (∆s3)2

]
. (3.76)

Because each spin is equivalent on the average, each term in (3.76) is equal. Hence, we obtain the
desired result

(∆M)2 = 3(∆s)2. (3.77)

The variance of M is 3 times the variance of a single spin, that is, the variance is additive.
We can evaluate (∆M)2 further by finding an explicit expression for (∆s)2. We have that

s2 = [12 × p] + [(−1)2 × q] = p+ q = 1. Hence, we have

(∆s)2 = s2 − s2 = 1− (p− q)2 = 1− (2p− 1)2 (3.78a)

= 1− 4p2 + 4p− 1 = 4p(1− p) = 4pq, (3.78b)

and our desired result for (∆M)2 is

(∆M)2 = 3(4pq). (3.79)

Problem 3.26. Use similar considerations to show that for N = 3 that

n = 3p (3.80)

and
(n− n)2 = 3pq, (3.81)

where n is the number of up spins. Explain the difference between (3.70) and (3.80) for N = 3,
and the difference between (3.79) and (3.81).



CHAPTER 3. CONCEPTS OF PROBABILITY 124

p3 p2q p2q p2q

pq2 pq2 pq2 q3

Figure 3.2: An ensemble of N = 3 spins. The arrow indicates the direction of the magnetic moment
of a spin. The probability of each member of the ensemble is shown.

Problem 3.27. In the text we showed that (∆M)2 = 3(∆s)2 for N = 3 spins (see (3.77) and
(3.79)). Use similar considerations for N noninteracting spins to show that

(∆M)2 = N(4pq). (3.82)

Because of the simplicity of a system of noninteracting spins, we can calculate the probability
distribution itself and not just the first few moments. As an example, let us consider the statistical
properties of a system of N = 3 noninteracting spins. Because each spin can be in one of two
states, there are 2N=3 = 8 distinct outcomes (see Figure 3.2). Because each spin is independent
of the other spins, we can use the multiplication rule (3.5) to calculate the probabilities of each
outcome as shown in Figure 3.2. Although each outcome is distinct, several of the configurations
have the same number of up spins. One quantity of interest is the probability PN (n) that n spins
are up out a total of N spins. For example, there are three states with n = 2, each with probability
p2q so the probability that two spins are up is equal to 3p2q. For N = 3 we see from Figure 3.2
that

P3(n = 3) = p3 (3.83a)

P3(n = 2) = 3p2q (3.83b)

P3(n = 1) = 3pq2 (3.83c)

P3(n = 0) = q3. (3.83d)

Example 3.18. Find the first two moments of P3(n).

Solution. The first moment n of the distribution is given by

n = 0× q3 + 1× 3pq2 + 2× 3p2q + 3× p3 (3.84a)

= 3p (q2 + 2pq + p2) = 3p (q + p)2 = 3p. (3.84b)

Similarly, the second moment n2 of the distribution is given by
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n2 = 0× q3 + 1× 3pq2 + 4× 3p2q + 9× p3 (3.84c)

= 3p (q2 + 4pq + 3p2) = 3p(q + 3p)(q + p) (3.84d)

= 3p (q + 3p) = (3p)2 + 3pq. (3.84e)

Hence
(n− n)2 = n2 − n2 = 3pq. (3.84f)

The mean magnetization M or the mean of the net number of up spins is given by the difference
between the mean number of spins pointing up minus the mean number of spins pointing down:
M = [n− (3− n], or M = 3(2p− 1) = 3(p− q).

Problem 3.28. Coins and random walks
The outcome of N coins is identical to N noninteracting spins, if we associate the number of coins
with N , the number of heads with n, and the number of tails with N − n. For a fair coin the
probability p of a head is p = 1

2 and the probability of a tail is q = 1 − p = 1
2 . What is the

probability that in three tosses of a coin, there will be two heads?

Problem 3.29. One-dimensional random walk
The original statement of the random walk problem was posed by Pearson in 1905. If a drunkard
begins at a lamp post and takes N steps of equal length in random directions, how far will the
drunkard be from the lamp post? We will consider an idealized example of a random walk for
which the steps of the walker are restricted to a line (a one-dimensional random walk). Each
step is of equal length a, and at each interval of time, the walker either takes a step to the right
with probability p or a step to the left with probability q = 1 − p. The direction of each step is
independent of the preceding one. Let n be the number of steps to the right, and n′ the number
of steps to the left. The total number of steps N = n+n′. What is the probability that a random
walker in one dimension has taken three steps to the right out of four steps?

From the above examples and problems, we see that the probability distributions of nonin-
teracting magnetic moments, the flip of a coin, and a random walk are identical. These examples
have two characteristics in common. First, in each trial there are only two outcomes, for example,
up or down, heads or tails, and right or left. Second, the result of each trial is independent of all
previous trials, for example, the drunken sailor has no memory of his or her previous steps. This
type of process is called a Bernoulli process (after the mathematician Jacob Bernoulli, 1654–1705).

Because of the importance of magnetic systems, we will cast our discussion of Bernoulli pro-
cesses in terms of the noninteracting magnetic moments of spin 1

2 . The main quantity of interest is
the probability PN (n) which we now calculate for arbitrary N and n. We know that a particular
outcome with n up spins and n′ down spins occurs with probability pnqn

′
. We write the probability

PN (n) as
PN (n) = WN (n, n′)s pnqn

′
, (3.85)

where n′ = N − n and WN (n, n′) is the number of distinct configurations of N spins with n up
spins and n′ down spins. From our discussion of N = 3 noninteracting spins, we already know the
first several values of WN (n, n′).

We can determine the general form of WN (n, n′) by obtaining a recursion relation between
WN and WN−1. A total of n up spins and n′ down spins out of N total spins can be found by
adding one spin to N − 1 spins. The additional spin is either



CHAPTER 3. CONCEPTS OF PROBABILITY 126

1

1

1 1

11

1 1

2

3 3

4 46 1

Figure 3.3: The values of the first few coefficients WN (n, n′). Each number is the sum of the two
numbers to the left and right above it. This construction is called a Pascal triangle.

(a) up if there are (n− 1) up spins and n′ down spins, or

(b) down if there are n up spins and n′ down spins.

Because there are WN (n − 1, n′) ways of reaching the first case and WN (n, n′ − 1) ways in the
second case, we obtain the recursion relation

WN (n, n′) = WN−1(n− 1, n′) +WN−1(n, n′ − 1). (3.86)

If we begin with the known values W0(0, 0) = 1, W1(1, 0) = W1(0, 1) = 1, we can use the recursion
relation (3.86) to construct WN (n, n′) for any desired N . For example,

W2(2, 0) = W1(1, 0) +W1(2,−1) = 1 + 0 = 1. (3.87a)
W2(1, 1) = W1(0, 1) +W1(1, 0) = 1 + 1 = 2. (3.87b)
W2(0, 2) = W1(−1, 2) +W1(0, 1) = 0 + 1. (3.87c)

In Figure 3.3 we show that WN (n, n′) forms a pyramid or (a Pascal) triangle.
It is straightforward to show by induction that the expression

WN (n, n′) =
N !
n!n′!

=
N !

n!(N − n)!
(3.88)

satisfies the relation (3.86). Note the convention 0! = 1. We can combine (3.85) and (3.88) to find
the desired result

PN (n) =
N !

n! (N − n)!
pnqN−n . (binomial distribution) (3.89)

The form (3.89) is called the binomial distribution. Note that for p = q = 1/2, PN (n) reduces to

PN (n) =
N !

n! (N − n)!
2−N . (3.90)
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Figure 3.4: The binomial distribution P16(n) for p = q = 1/2 and N = 16. What is your visual
estimate for the width of the distribution?

The probability PN (n) is shown in Figure 3.4 for N = 16.

Problem 3.30. Binomial distribution

(a) Calculate the distribution PN (n) that n spins are up out of a total of N for N = 4 and N = 16
and put your results in the form of a table. Calculate the mean values of n and n2 using your
tabulated values of PN (n). It is possible to do the calculation for general p and q, but choose
p = q = 1/2 if necessary. Although it is better to first do the calculation of PN (n) by hand,
you can use the applet/application at <stp.clarku.edu/simulations/binomial>.

(b) Plot your tabulated results for PN (n) (see Figure 3.4) or use the applet mentioned in part (a).
Assume that p = q = 1/2. Visually estimate the width of the distribution for each value of N .
Then use the applet/application for larger values of N . What is the qualitative dependence of
the width on N? Also compare the relative heights of the maximum of PN .

(c) Plot PN (n) as a function of n/n for N = 4 and N = 16 on the same graph as in part (b).
Visually estimate the relative width of the distribution for each value of N .

(d) The applet/application plots PN (n) for various values of N in the same size window. Does the
width of the distribution appear to become larger or smaller as N is increased?

(e) Plot lnPN (n) versus n/n for N = 16. (Choose Log Axes under the Views menu.) Describe
the behavior of lnPN (n). Can lnPN (n) be fitted to a parabola of the form A + B(n − n)2,
where A and B are fit parameters?

http://stp.clarku.edu/simulations/binomial
<stp.clarku.edu/simulations/binomial>
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Problem 3.31. Asymmetrical distribution

(a) Plot PN (n) versus n for N = 16 and p = 2/3. For what value of n is PN (n) a maximum? How
does the width of the distribution compare to what you found in Problem 3.30?

(b) For what value of p and q do you think the width is a maximum for a given N?

Example 3.19. Show that the expression (3.89) for PN (n) satisfies the normalization condition
(3.2).

Solution. The reason that (3.89) is called the binomial distribution is that its form represents a
typical term in the expansion of (p+ q)N . By the binomial theorem we have

(p+ q)N =
N∑
n=0

N !
n! (N − n)!

pn qN−n. (3.91)

We use (3.89) and write

N∑
n=0

PN (n) =
N∑
n=0

N !
n! (N − n)!

pnqN−n = (p+ q)N = 1N = 1, (3.92)

where we have used (3.91) and the fact that p+ q = 1.

Problem 3.32. Monte Carlo simulation of a one-dimensional random walk
The applet/application at <stp.clarku.edu/simulations/randomwalks/fixedlength1d.html>
simulates a random walk in one dimension. As described in the text, a walker starts at the origin
and takes N steps. At each step the walker goes to the right with probability p or to the left with
probability (1− p). Each step is the same length and independent of the previous steps. What is
the displacement of the walker after N steps? Are some displacements more likely than others?

We can simulate a N -step walk by the following pseudocode:

do istep = 1,N
if (rnd <= p) then
x = x + 1

else
x = x - 1

end if
end do

The function rnd generates a random number between zero and one. The quantity x is the net
displacement assuming that the steps are of unit length.

We average over many walkers (trials), where each trial consists of a N step walk and construct
a histogram for the number of times that the displacement x is found for a given number of walkers.
The probability that the walker is a distance x from the origin after N steps is proportional to the
corresponding value of the histogram. This procedure is called Monte Carlo sampling.8

8The name “Monte Carlo” was coined by Nicolas Metropolis in 1949.

http://stp.clarku.edu/simulations/randomwalks/fixedlength1d.html
<stp.clarku.edu/simulations/randomwalks/fixedlength1d.html>


CHAPTER 3. CONCEPTS OF PROBABILITY 129

(a) Is the value of x for one trial of any interest? Why do we have to average over many trials?

(b) Will we obtain the exact answer for the probability distribution?

(c) Choose N = 4 and p = 1/2. How does the histogram change, if at all, as the number of walk
increases for fixed N?

(d) Describe the qualitative changes of the histogram for larger values of N and p = 1/2.

(e) What is the most probable value of x for p = 1/2 and N = 16 and N = 32? What is the
approximate width of the distribution? Define the width visually. One way to do so is to
determine the value of x at which the value of the histogram is one-half of its maximum value.
How does the width change as a function of N for fixed p?

Calculation of the mean value

We now find an analytical expression for the dependence of n on N and p. From the definition
(3.13) and (3.89) we have

n =
N∑
n=0

nPN (n) =
N∑
n=0

n
N !

n! (N − n)!
pnqN−n. (3.93)

We evaluate the sum in (3.93) by using a technique that is useful in a variety of contexts.9 The
technique is based on the fact that

p
d

dp
pn = npn. (3.94)

We use (3.94) to rewrite (3.93) as

n =
N∑
n=0

n
N !

n! (N − n)!
pnqN−n (3.95a)

=
N∑
n=0

N !
n! (N − n)!

(
p
∂

∂p
pn
)
qN−n. (3.95b)

We have used a partial derivative in (3.95b) to remind us that the derivative operator does not act
on q. We interchange the order of summation and differentiation in (3.95b) and write

n = p
∂

∂p

[ N∑
n=0

N !
n! (N − n)!

pnqN−n
]

(3.96a)

= p
∂

∂p
(p+ q)N , (3.96b)

where we have temporarily assumed that p and q are independent variables. Because the operator
acts only on p, we have

n = pN(p+ q)N−1. (3.97)

9The integral
R∞
0 xn e−ax2

for a > 0 is evaluated in Appendix A using a similar technique.
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The result (3.97) is valid for arbitrary p and q, and hence it is applicable for p+ q = 1. Thus our
desired result is

n = pN. (3.98)

The dependence of n on N and p should be intuitively clear. Compare the general result (3.98) to
the result (3.84b) for N = 3. What is the dependence of n′ on N and p?

Calculation of the relative fluctuations

To determine ∆n2 we need to know n2 (see the relation (3.23)). The average value of n2 can be
calculated in a manner similar to that for n. We write

n2 =
N∑
n=0

n2 N !
n! (N − n)!

pnqN−n (3.99a)

=
N∑
n=0

N !
n! (N − n)!

(
p
∂

∂p

)2
pnqN−n (3.99b)

=
(
p
∂

∂p

)2 N∑
n=0

N !
n! (N − n)!

pnqN−n =
(
p
∂

∂p

)2 (p+ q)N (3.99c)

=
(
p
∂

∂p

)[
pN(p+ q)N−1

]
(3.99d)

= p
[
N(p+ q)N−1 + pN(N − 1)(p+ q)N−2

]
. (3.99e)

Because we are interested in the case p+ q = 1, we have

n2 = p [N + pN(N − 1)] (3.100a)

= p [pN2 +N(1− p)] = (pN)2 + p (1− p)N (3.100b)

= n2 + pqN, (3.100c)

where we have used (3.98) and let q = 1− p. Hence, from (3.100c) we find that the variance of n
is given by

σn
2 = (∆n)2 = n2 − n2 = pqN. (3.101)

Problem 3.33. Compare the calculated values of σn from (3.101) with your estimates in Prob-
lem 3.30 and to the exact result (3.84f) for N = 3.

The relative width of the probability distribution of n is given by (3.98) and (3.101)

σn
n

=
√
pqN

pN
=
(q
p

)1/2 1√
N
. (3.102)

We see that the relative width goes to zero as 1/
√
N .

Frequently we need to evaluate lnN ! for N � 1. A simple approximation for lnN ! known as
Stirling’s approximation is

lnN ! ≈ N lnN −N. (Stirling’s approximation) (3.103)
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A more accurate approximation is given by

lnN ! ≈ N lnN −N +
1
2

ln(2πN). (3.104)

A simple derivation of Stirling’s approximation is given in Appendix A.

Problem 3.34. Applicability of Stirling’s approximation

(a) What is the largest value of lnN ! that you can calculate exactly using a typical hand calculator?

(b) Compare the approximations (3.103) and (3.104) to each other and to the exact value of lnN !
for N = 5, 10, 20, and 50. If necessary, compute lnN ! directly using the relation

lnN ! =
N∑
m=1

lnm. (3.105)

(c) Use the simple form of Stirling’s approximation to show that

d

dx
lnx! = lnx for x� 1. (3.106)

Problem 3.35. Consider the binomial distribution PN (n) for N = 16 and p = q = 1/2. What is
the value of PN (n) for n = σn/2? What is the value of the product PN (n = n)σn?

Problem 3.36. Density fluctuations
A container of volume V contains N molecules of a gas. We assume that the gas is dilute so that
the position of any one molecule is independent of all other molecules. Although the density will
be uniform on the average, there are fluctuations in the density. Divide the volume V into two
parts V1 and V2, where V = V1 + V2.

(a) What is the probability p that a particular molecule is in each part?

(b) What is the probability that N1 molecules are in V1 and N2 molecules are in V2?

(c) What is the average number of molecules in each part?

(d) What are the relative fluctuations of the number of particles in each part?

Problem 3.37. Random walk
Suppose that a random walker takes n steps to the right and n′ steps to the left. Each step is of
equal length a and the probability of a step to the right is p. Denote x as the net displacement of
a walker. What is the mean value x for a N -step random walk? What is the analogous expression
for the variance (∆x)2?
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θ

Figure 3.5: The angle θ is an example of a continuous random variable.

3.6 Continuous Probability Distributions

In many cases of physical interest the random variables have continuous values. Examples of
continuous variables are the position of the holes in a dart board, the position and velocity of a
classical particle, and the angle of a compass needle.

As an example, consider a spinner, the equivalent of a wheel of fortune,10 with an arrow that
spins around and stops at some angle at random (see Figure 3.5). In this case the variable θ is a
continuous random variable that takes all values in the interval [0, 2π]. What is the probability
that θ has a particular value? Because there are an infinite number of possible values of θ in the
interval [0, 2π], the probability of obtaining any particular value of θ is zero. We say that the values
of θ are not countable. Instead, we have to reformulate the question and ask for the probability
that the value of θ is between θ and θ+ ∆theta. In other words, we have to ask for the probability
that θ is in a particular bin of width dθ. For example, the probability that θ is between 0 and π
is 1/2 and the probability that θ is between 0 and π/2 is 1/4.

Another example of a continuous random variable is the displacement from the origin of a
one-dimensional random walker that steps at random to the right with probability p, but with a
step length that is chosen at random between zero and the maximum step length a. The continuous
nature of the step length means that the displacement x of the walker is a continuous variable.
If we do a simulation of this random walk, we can record the number of times H(x) that the
displacement of the walker from the origin after N steps is in a bin of width ∆x between x and
x+ ∆x. A plot of H(x) as a function of x for a given bin width ∆x is shown in Figure 3.6). If the
number of walkers that is sampled is sufficiently large, we would find that H(x) is proportional to
the estimated probability that a walker is in a bin of width ∆x a distance x from the origin after
N steps. To obtain the probability, we divide H(x) by the total number of walkers.

In practice, the choice of the bin width is a compromise. If ∆x is too big, the features of the
histogram would be lost. If ∆x is too small, many of the bins would be empty for a given number
of walkers, and our estimate of the number of walkers in each bin would be less accurate.

10The Wheel of Fortune is an American television game show that involves three contestants. The name of the
show comes from the large spinning wheel that determines the dollar amounts and prizes won by the contestants.
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Figure 3.6: Histogram of the number of times that the displacement of a one-dimensional random
walker is between x and x + ∆x after N = 16 steps. The data was generated by simulating 565
walkers, a relatively small number in this case. The length of each step was chosen at random
between zero and unity and the bin width is ∆x = 1.

a b

p(x)

Figure 3.7: The probability that x is between a and b is equal to the shaded area.

Because we expect the number of walkers in a particular bin to be proportional to the width
of the bin, we can write H(x) = p(x)∆x. The quantity p(x) is called the probability density. In
the limit that ∆x→ 0, H(x) becomes a continuous function of x, and we can write the probability
that the displacement of the walker is between a and b as (see Figure 3.7).

P (a to b) =
∫ b

a

p(x) dx. (3.107)

Note that the probability density p(x) is nonnegative and has units of one over the dimension of
x.
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The formal properties of the probability density p(x) can be generalized from the discrete
case. For example, the normalization condition is given by∫ ∞

−∞
p(x) dx = 1. (3.108)

The mean value of the function f(x) in the interval a to b is given by

f =
∫ b

a

f(x) p(x) dx. (3.109)

Problem 3.38. Simulation of a one-dimensional random walk with variable step length
The applet/application at <stp.clarku.edu/simulations/randomwalks/continuous1d.html>
simulates a random walk in one dimension with a variable jump length.

(a) The simulation uses a step length with a uniform probability between 0 and 1. Calculate the
mean step length and its variance.

(b) How does the variance found in the simulation depend on the variance of the step length that
you calculated in part (a)?

(c) Does the qualitative features of the histogram change as the number of walkers increases?

(d) Explore how the histogram changes with the bin width. What is a reasonable choice of the
bin width for N = 100?

Problem 3.39. Exponential probability density
The random variable x has the probability density

p(x) =

{
Ae−λx if 0 ≤ x ≤ ∞
0 x < 0.

(3.110)

(a) Determine the normalization constant A in terms of λ.

(b) What is the mean value of x? What is the most probable value of x?

(c) What is the mean value of x2?

(d) Choose λ = 1 and determine the probability that a measurement of x yields a value between
1 and 2.

(e) Choose λ = 1 and determine the probability that a measurement of x yields a value less than
0.3.

Problem 3.40. Probability density for velocity
Consider the probability density function p(v) = (a/π)3/2 e−av

2
for the velocity v of a particle,

where v = |v| and v2 = v2
x + v2

y + v2
z . Each of the three velocity components can range from −∞

to +∞ and a is a constant.

http://stp.clarku.edu/simulations/randomwalks/continuous1d.html
<stp.clarku.edu/simulations/randomwalks/continuous1d.html>
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(a) What is the probability that a particle has a velocity between vx and vx+dvx, vy and vy+dvy,
and vz and vz + dvz?

(b) Show that p(v) is normalized to unity. Use the fact that∫ ∞
0

e−au
2
du =

1
2

√
π

a
. (3.111)

Note that this calculation involves doing three similar integrals that can be evaluated sepa-
rately.

(c) What is the probability that vx ≥ 0, vy ≥ 0, vz ≥ 0 simultaneously?

Problem 3.41. Gaussian probability density

(a) Find the first four moments of the Gaussian probability density

p(x) = (2π)−
1
2 e−x

2/2. (−∞ < x <∞) (3.112)

Guess the dependence of the kth moment on k for k even. What are the odd moments of p(x)?

(b) Calculate the value of C4, the fourth-order cumulant, defined by

C4 = x4 − 4x3 x− 3x2
2

+ 12x2 x2 − 6x4. (3.113)

Problem 3.42. Uniform probability distribution
Consider the probability density given by

p(x) =

{
(2a)−1 for |x| ≤ a
0 for |x| > a

(3.114)

(a) Sketch the dependence of p(x) on x.

(b) Find the first four moments of p(x).

(c) Calculate the value of the fourth-order cumulant C4 defined in (3.113)). What is C4 for the
probability density in (3.114)? Compare your result to the corresponding result for C4 for the
Gaussian distribution.

Problem 3.43. Cauchy probability distribution
Not all probability densities have a finite variance.

(a) Sketch the Lorentz or Cauchy distribution given by

p(x) =
1
π

γ

(x− a)2 + γ2
. (−∞ < x <∞) (3.115)

Choose a = 0 and γ = 1 and compare the form of p(x) in (3.115) to the Gaussian distribution
given by (3.112).

(b) Give a simple argument for the existence of the first moment of the Lorentz distribution. Does
the second moment exist?
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3.7 The Gaussian Distribution as a Limit of the Binomial
Distribution

In Problem 3.30 we found that for large N , the binomial distribution has a well-defined maximum
at n = pN and can be approximated by a smooth, continuous function even though only integer
values of n are physically possible. We now find the form of this function of n.

The first step is to realize that for N � 1, PN (n) is a rapidly varying function of n near
n = pN , and for this reason we do not want to approximate PN (n) directly. Because the logarithm
of PN (n) is a slowly varying function (see Problem 3.30), we expect that the power series expansion
of lnPN (n) to converge. Hence, we expand lnPN (n) in a Taylor series about the value of n = ñ at
which lnPN (n) reaches its maximum value. We will write p(n) instead of PN (n) because we will
treat n as a continuous variable and hence p(n) is a probability density. We find

ln p(n) = ln p(n = ñ) + (n− ñ)
d ln p(n)
dn

∣∣
n=ñ

+
1
2

(n− ñ)2
d2 ln p(n)
d2n

∣∣
n=ñ

+ · · · (3.116)

Because we have assumed that the expansion (3.116) is about the maximum n = ñ, the first deriva-
tive d ln p(n)/dn

∣∣
n=ñ

must be zero. For the same reason the second derivative d2 ln p(n)/dn2
∣∣
n=ñ

must be negative. We assume that the higher terms in (3.116) can be neglected and adopt the
notation

lnA = ln p(n = ñ), (3.117)

and

B = −d
2 ln p(n)
dn2

∣∣
n=ñ

. (3.118)

The approximation (3.116) and the notation in (3.117) and (3.118) allows us to write

ln p(n) ≈ lnA− 1
2
B(n− ñ)2, (3.119)

or
p(n) ≈ Ae− 1

2B(n−ñ)2 . (3.120)

We next use Stirling’s approximation to evaluate the first two derivatives of ln p(n) and the
value of ln p(n) at its maximum to find the parameters A, B, and ñ. We write

ln p(n) = lnN !− lnn!− ln(N − n)! + n ln p+ (N − n) ln q. (3.121)

It is straightforward to use the relation (3.106) to obtain

d(ln p(n))
dn

= − lnn+ ln(N − n) + ln p− ln q. (3.122)

The most probable value of n is found by finding the value of n that satisfies the condition
d ln p/dn = 0. We find

N − ñ
ñ

=
q

p
, (3.123)
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or (N − ñ)p = ñq. If we use the relation p+ q = 1, we obtain

ñ = pN. (3.124)

Note that ñ = n, that is, the value of n for which p(n) is a maximum is also the mean value of n.
The second derivative can be found from (3.122). We have

d2(ln p(n))
dn2

= − 1
n
− 1
N − n

. (3.125)

Hence, the coefficient B defined in (3.118) is given by

B = −d
2 ln p(n)
dn2

∣∣∣
n=ñ

=
1
ñ

+
1

N − ñ
=

1
Npq

. (3.126)

From the relation (3.101) we see that

B =
1
σ2
, (3.127)

where σ2 is the variance of n.
If we use the simple form of Stirling’s approximation (3.103) to find the normalization constant

A from the relation lnA = ln p(n = ñ), we would find that lnA = 0. Instead, we have to use the
more accurate form of Stirling’s approximation (3.104). The result is

A =
1

(2πNpq)1/2
=

1
(2πσ2)1/2

. (3.128)

Problem 3.44. Derive (3.128) using the more accurate form of Stirling’s approximation (3.104)
with n = pN and N − n = qN .

If we substitute our results for ñ, B, and A into (3.120), we find the standard form for the
Gaussian probability distribution

p(n) =
1√

2πσ2
e−(n−n)2/2σ2

. (Gaussian probability density) (3.129)

An alternative derivation of the parameters A, B, and ñ is given in Problem 3.75.
From our derivation we see that (3.129) is valid for large values of N and for values of n near

n. Even for relatively small values of N , the Gaussian approximation is a good approximation
for most values of n. A comparison of the Gaussian approximation to the binomial distribution is
given in Table 3.4.

The most important feature of the Gaussian probability distribution is that its relative width,
σn/n, decreases as N−1/2. Of course, the binomial distribution shares this feature.
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n P10(n) Gaussian approximation
0 0.000977 0.001700
1 0.009766 0.010285
2 0.043945 0.041707
3 0.117188 0.113372
4 0.205078 0.206577
5 0.246094 0.252313

Table 3.4: Comparison of the exact values of P10(n) with the Gaussian probability distribution
(3.129) for p = q = 1/2.

3.8 The Central Limit Theorem or Why is Thermodynamics
Possible?

We have discussed how to estimate probabilities empirically by sampling, that is, by making
repeated measurements of the outcome of independent events. Intuitively we believe that if we
perform more and more measurements, the calculated average will approach the exact mean of the
quantity of interest. This idea is called the law of large numbers. However, we can go further and
find the form of the probability distribution that a particular measurement differs from the exact
mean. The form of this probability distribution is given by the central limit theorem. We first
illustrate this theorem by considering a simple measurement.

Suppose that we wish to estimate the probability of obtaining face 1 in one throw of a die.
The answer of 1

6 means that if we perform N measurements, face 1 will appear approximately N/6
times. What is the meaning of approximately? Let S be the total number of times that face one
appears in N measurements. We write

S =
N∑
i=1

si, (3.130)

where

si =

{
1, if the ith throw gives 1
0 otherwise.

(3.131)

If N is large, then S/N approaches 1/6. How does this ratio approach the limit? We can empirically
answer this question by repeating the measurement M times. (Each measurement of S consists of
N throws of a die.) Because S itself is a random variable, we know that the measured values of
S will not be identical. In Figure 3.8 we show the results of M = 10, 000 measurements of S for
N = 100 and N = 800. We see that the approximate form of the distribution of values of S is a
Gaussian. In Problem 3.45 we calculate the absolute and relative width of the distributions.

Problem 3.45. Estimate the absolute width and the relative width of the distributions shown in
Figure 3.8 for N = 100 and N = 800. Does the error of any one measurement of S decreases with
increasing N as expected? How would the plot change if M were increased to M = 10, 000?

In Section 3.12.3 we show that in the limit of large N , the probability density p(S) is given
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Figure 3.8: The distribution of the measured values of M = 10, 000 different measurements of the
sum S for N = 100 and N = 800 terms in the sum. The quantity S is the number of times that
face 1 appears in N throws of a die. For N = 100, the measured values are S = 16.67, S2 = 291.96,
and σS = 3.74. For N = 800, the measured values are S = 133.31, S2 = 17881.2, and σS = 10.52.
What are the estimated values of the relative width for each case?

by

p(S) =
1√

2πσ2
S

e−(S−S)2/2σ2
S , (3.132)

where

S = Ns (3.133)

σ2
S = Nσ2, (3.134)

with σ2 = s2 − s2. The quantity p(S)∆S is the probability that the value of
∑N
i=1 si is between S

and S + ∆S. Equation (3.132) is equivalent to the central limit theorem. Note that the Gaussian
form in (3.132) holds only for large N and for values of S near its most probable (mean) value. The
latter restriction is the reason that the theorem is called the central limit theorem; the requirement
that N be large is the reason for the term limit.

The central limit theorem is one of the most remarkable results of the theory of probability. In
its simplest form, the theorem states that the probability o the sum of a large number of random
variables approximates a Gaussian distribution. Moreover, the approximation steadily improves
as the number of variables in the sum increases.

For the throw of a die, s = 1
6 , s2 = 1

6 , and σ2 = s2 − s2 = 1
6 −

1
36 = 5

36 . For N throws of a
die, we have S = N/6 and σ2

S = 5N/36. Hence, we see that in this case the most probable relative
error in any one measurement of S decreases as σS/S =

√
5/N .

Note that if we let S represent the displacement of a walker after N steps, and let σ2 equal
the mean square displacement for a single step, then the result (3.132)–(3.134) is equivalent to
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our results for random walks in the limit of large N . Or we can let S represent the magnetization
of a system of noninteracting spins and obtain similar results. That is, a random walk and its
equivalents are examples of an additive random process.

The central limit theorem shows why the Gaussian probability density is ubiquitous in nature.
If a random process is related to a sum of a large number of microscopic processes, the sum will be
distributed according to the Gaussian distribution independently of the nature of the distribution
of the microscopic processes.

The central limit theorem implies that macroscopic bodies have well defined macroscopic
properties even though their constituent parts are changing rapidly. For example in a gas or
liquid, the particle positions and velocities are continuously changing at a rate much faster than a
typical measurement time. For this reason we expect that during a measurement of the pressure of
a gas or a liquid, there are many collisions with the wall and hence the pressure has a well defined
average. We also expect that the probability that the measured pressure deviates from its average
value is proportional to N−1/2, where N is the number of particles. Similarly, the vibrations of
the molecules in a solid have a time scale much smaller than that of macroscopic measurements,
and hence the pressure of a solid also is a well-defined quantity.

Problem 3.46. Random walks and the central limit theorem Use the central limit theorem to
show that the probability that a one-dimensional random walker has a displacement between x
and x+ dx. (There is no need to derive the central limit theorem.)

Problem 3.47. Central limit theorem
Use the applet/application at <stp.clarku.edu/simulations/centralLimitTheorem.html> to
test the applicability of the central limit theorem.

(a) First assume that the variable si is uniformly distributed between 0 and 1. Calculate the
mean and standard deviation of s and compare your numerical results with your analytical
calculation.

(b) Use the default value of N , the number of terms in the sum, and describe the qualitative form
of p(S), where p(S)∆S is the probability that the sum S is between S and S + ∆S. Does the
qualitative form of p(S) change as the number of measurements (trials) of S is increased for a
given value of N?

(c) What is the approximate width of p(S) for N = 12? Describe the changes, if any, of the width
of p(S) as N is increased. Increase N by at least a factor of 4. Do your results depend strongly
on the number of measurements?

(d) To determine the generality of your results, consider the probability density f(s) = e−s for
s ≥ 0 and answer the same questions as in parts (a)–(c).

(e) Consider the Lorentz distribution f(s) = (1/π)(1/(s2 + 1), where −∞ ≤ s ≤ ∞. What is the
mean value and variance of s? Is the form of p(S) consistent with the results that you found
in parts (b)–(d)?

http://stp.clarku.edu/simulations/centralLimitTheorem.html
<stp.clarku.edu/simulations/centralLimitTheorem.html>
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(f) Each value of S can be considered to be a measurement. The sample variance σ̃2
S is a measure

of the square of the differences of the result of each measurement and is given by

σ̃2
S =

1
N − 1

N∑
i=1

(Si − S)2. (3.135)

The reason for the factor of N − 1 rather than N in the definition of σ̃2
S is that to compute it,

we need to use the N values of s to compute the mean of S, and thus, loosely speaking, we
have only N − 1 independent values of s remaining to calculate σ̃2

S . Show that if N � 1, then
σ̃S ≈ σS , where the standard deviation σS is given by σ2

S = S2 − S2
.

(g) The quantity σ̃S is known as the standard deviation of the means. That is, σ̃S is a measure of
how much variation we expect to find if we make repeated measurements of S. How does the
value of σ̃S compare to your estimated width of the probability density p(S)?

3.9 The Poisson distribution and Should You Fly in Air-
planes?

We now return to the question of whether or not it is safe to fly. If the probability of a plane
crashing is p = 10−5, then 1 − p is the probability of surviving a single flight. The probability
of surviving N flights is then PN = (1 − p)N . For N = 400, PN ≈ 0.996, and for N = 105,
PN ≈ 0.365. Thus, our intuition is verified that if we took 400 flights, we would have only a small
chance of crashing.

This type of reasoning is typical when the probability of an individual event is small, but
there are very many attempts. Suppose we are interested in the probability of the occurrence of n
events out of N attempts given that the probability p of the event for each attempt is very small.
The resulting probability is called the Poisson distribution, a distribution that is important in the
analysis of experimental data. We discuss it here because of its intrinsic interest.

To derive the Poisson distribution, we begin with the binomial distribution:

P (n) =
N !

n! (N − n)!
pn(1− p)N−n. (3.136)

(As before, we suppress the N dependence of P .) As in Section (3.7, we will approximate lnP (n)
rather than P (n) directly. We first use Stirling’s approximation to write

ln
N !

(N − n)!
= lnN !− ln(N − n)! (3.137a)

≈ N lnN − (N − n) ln(N − n) (3.137b)
≈ N lnN − (N − n) lnN (3.137c)
= N lnN −N lnN + n lnN (3.137d)
= n lnN. (3.137e)
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From (3.137e) we obtain
N !

(N − n)!
≈ en lnN = Nn. (3.138)

For p � 1, we have ln(1− p) ≈ −p, eln(1−p) = 1 − p ≈ e−p, and (1− p)N−n ≈ e−p(N−n) ≈ e−pN .
If we use the above approximations, we find

P (n) ≈ Nn

n!
pne−pN =

(Np)n

n!
e−pN , (3.139)

or

P (n) =
nn

n!
e−n , (Poisson distribution) (3.140)

where n = pN . The form (3.140) is the Poisson distribution.
Let us apply the Poisson distribution to the airplane survival problem. We want to know the

probability of never crashing, that is, P (n = 0). The mean N = pN equals 10−5× 400 = 0.004 for
N = 400 flights and N = 1 for N = 105 flights. Thus, the survival probability is P (0) = e−N ≈
0.996 for N = 400 and P (0) ≈ 0.368 for N = 105 as we calculated previously. We see that if we
fly 100,000 times, we have a much larger probability of dying in a plane crash.

Problem 3.48. Poisson distribution

(a) Show that the Poisson distribution is properly normalized, and calculate the mean and variance
of n. Because P (n) for n > N is negligibly small, you can sum P (n) from n = 0 to n = ∞
even though the maximum value of n is N .

(b) Plot the Poisson distribution P (n) as a function of n for p = 0.01 and N = 100.

3.10 *Traffic Flow and the Exponential Distribution

The Poisson distribution is closely related to the exponential distribution as we will see in the
following. Consider a sequence of similar random events and let t1, t2, . . . be the time at which
each successive event occurs. Examples of such sequences are the successive times when a phone
call is received and the times when a Geiger counter registers a decay of a radioactive nucleus.
Suppose that we determine the sequence over a very long time T that is much greater than any
of the intervals ti − ti−1. We also suppose that the average number of events is λ per unit time so
that in a time interval t, the mean number of events is λt.

Assume that the events occur at random and are independent of each other. Given λ, the
mean number of events per unit time, we wish to find the probability distribution w(t) of the
interval t between the events. We know that if an event occurred at time t = 0, the probability
that another event occurs within the interval [0, t] is∫ t

0

w(t)∆t, (3.141)
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and the probability that no event occurs in the interval t is

1−
∫ t

0

w(t)∆t. (3.142)

Thus the probability that the duration of the interval between the two events is between t and
t+ ∆t is given by

w(t)∆t = probability that no event occurs in the interval [0, t]
× probability that an event occurs in interval [t, t+ ∆t]

=
[
1−
∫ t

0

w(t)dt
]
λ∆t. (3.143)

If we cancel ∆t from each side of (3.143) and differentiate both sides with respect to t, we find

dw

dt
= −λw, (3.144)

so that
w(t) = Ae−λt. (3.145)

The constant of integration A is determined from the normalization condition:∫ ∞
0

w(t) dt = 1 = A

∫ ∞
0

e−λtdt = A/λ. (3.146)

Hence, w(t) is the exponential function

w(t) = λe−λt. (3.147)

These results for the exponential distribution lead naturally to the Poisson distribution. Let
us divide a long time interval T into n smaller intervals t = T/n. What is the probability that 0,
1, 2, 3, . . . events occur in the time interval t, given λ, the mean number of events per unit time?
We will show that the probability that n events occur in the time interval t is given by the Poisson
distribution:

Pn(t) =
(λt)n

n!
e−λt. (3.148)

We first consider the case n = 0. If n = 0, the probability that no event occurs in the interval t is
(see (3.143))

Pn=0(t) = 1− λ
∫ t

0

e−λt
′
dt′ = e−λt. (3.149)

For the case n = 1, there is exactly one event in time interval t. This event must occur at
some time t′ which may occur with equal probability in the interval [0, t]. Because no event can
occur in the interval [t′, t], we have

Pn=1(t) =
∫ t

0

λe−λt
′
e−λ(t′−t)dt′, (3.150)
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where we have used (3.149) with t→ (t′ − t). Hence,

Pn=1(t) =
∫ t

0

λe−λtdt = (λt)e−λt. (3.151)

In general, if n events are to occur in the interval [0, t], the first must occur at some time t′ and
exactly (n− 1) must occur in the time (t− t′). Hence,

Pn(t) =
∫ t

0

λe−λt
′
Pn−1(t− t′). (3.152)

Equation (3.152) is a recurrence formula that can be used to derive (3.148) by induction. It is easy
to see that (3.148) satisfies (3.152) for n = 0 and 1. As is usual when solving recursion formula by
induction, we assume that (3.148) is correct for (n− 1). We substitute this result into (3.152) and
find

Pn(t) = λne−λt
∫ t

0

(t− t′)n−1dt′/(n− 1)! =
(λt)b

n!
e−λt. (3.153)

An application of the Poisson distribution is given in Problem 3.49.

N frequency
0 1
1 7
2 14
2 25
4 31
5 26
6 27
7 14
8 8
9 3

10 4
11 3
12 1
13 0
14 1

> 15 0

Table 3.5: Observed distribution of vehicles passing a marker on a highway in thirty second inter-
vals. The data was taken from page 98 of Montroll and Badger.

∗Problem 3.49. Analysis of traffic data
In Table 3.5 we show the number of vehicles passing a marker during a thirty second interval. The
observations were made on a single lane of a six lane divided highway. Assume that the traffic
density is so low that passing occurs easily and no platoons of cars develop.

(a) Is the distribution of the number of vehicles consistent with the Poisson distribution? If so,
what is the value of the parameter λ?
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(b) As the traffic density increases, the flow reaches a regime where the vehicles are very close to
one another so that they are no longer mutually independent. Make arguments for the form
of the probability distribution of the number of vehicles passing a given point in this regime.

3.11 *Are All Probability Distributions Gaussian?

We have discussed the properties of random additive processes and found that the probability
distribution for their sum is a Gaussian for a sufficiently large number of terms. As an example of
such a process, we discussed a one-dimensional random walk on a lattice for which the displacement
x is the sum of N random steps.

We now discuss random multiplicative processes. Examples of such processes include the
distributions of incomes, rainfall, and fragment sizes in rock crushing processes.11 Consider the
latter for which we begin with a rock of size w. We strike the rock with a hammer and generate
two fragments whose sizes are pw and qw, where q = 1− p. In the next step the possible sizes of
the fragments are p2w, pqw, qpw, and q2w. What is the distribution of the fragment sizes after N
blows of the hammer?

To answer this question, we consider a binary sequence in which the numbers x1 and x2 appear
independently with probabilities p and q respectively. If there are N elements in the product Π,
we can ask what is Π, the mean value of Π? To calculate Π we define P (n) to be the probability
that the product of N independent factors of x1 and x2 has the value x1

nx2
N−n. This probability

is given by the number of sequences where x1 appears n times multiplied by the probability of
choosing a specific sequence with x1 appearing n times. This probability is the familiar binomial
distribution:

PN (n) =
N !

n! (N − n)!
pnqN−n. (3.154)

We average over all possible outcomes of the product to obtain its mean value

Π =
N∑
n=0

P (n)x1
nx2

N−n = (px1 + qx2)N . (3.155)

The most probable event in the product contains Np factors of x1 and Nq factors of x2.
Hence, the most probable value of the product is

Π̃ = (x1
px2

q)N . (3.156)

To obtain a better feeling for these results, we first consider some special cases. For x1 = 2,
x2 = 1/2, and p = q = 1/2 we have Π = (1/4)[x2

2 + 2x1x2 + x2
2] = (1/4)[4 + 2 + 1/4] = 25/16 for

N = 2; for general N we have Π = (5/4)N . In contrast, the most probable value for N = 2 is
given by Π̃ = 21/2 × (1/2)1/2 = 1; the same result holds for any N . For p = 1/3 and q = 2/3 and
the same values of x1 and x2 we find Π = 1 for all N and Π̃ = ( 1

2 ×
1
2 × 2)2/3 = 2−2/3 for N = 2

and 2−N/3 for any N . We see that Π̃ 6= Π for a random multiplicative process. In contrast, the
11The following discussion is based on an article by Sidney Redner (see references).
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most probable event is a good approximation to the mean value of the sum orf a random additive
process (and is identical for p = q).

The reason for the large discrepancy between Π and Π̃ is the important role played by rare
events. For example, a sequence of N factors of x1 = 2 occurs with a very small probability, but the
value of this product is very large in comparison to the most probable value. Hence, this extreme
event makes a finite contribution to Π and a dominant contribution to the higher moments Πm.

∗Problem 3.50. (a) Confirm the general result in (3.155) for N = 4 by showing explicitly all the
possible values of the product.

(b) Consider the case x1 = 2, x2 = 1/2, p = 1/4, and q = 3/4, and calculate Π and Π̃.

(c) Show that Πm, the mean value of the mth moment, reduces to (pxm1 )N as m→∞. This result
implies that the mth moment is determined solely by the most extreme event for m� 1.

(d) Based on the Gaussian approximation for the probability of a random additive process, what
is a reasonable guess for the continuum approximation to the probability of a random mul-
tiplicative process? Such a distribution is called the log-normal distribution. Discuss why or
why not you expect the log-normal distribution to be a good approximation for N � 1.

∗Problem 3.51. Simulation of multiplicative process

(a) Run the applet/application at <stp.clarku.edu/simulations/productprocess.html> which
simulates the distribution of values of the product x1

nx2
N−n. Choose x1 = 2, x2 = 1/2, and

p = q = 1/2. First choose N = 4 and estimate Π and Π̃. Do your estimated values con-
verge more or less uniformly to the analytical values as the number of measurements becomes
large? Do a similar simulation for N = 40. Compare your results with a similar simulation
of a random walk and discuss the importance of extreme events for random multiplicative
processes.

(b) The true average value of a product of random variables is governed by rare events that are
at the tail of the distribution. However, the most probable events will likely dominate in a
simulation of a multiplicative process. As the number of trials increase, there will be an increase
in the number of rare events that are sampled, and we expect that the observed averages will
fluctuate greatly. As the number of trials is increased still further, the number of rare events
will be more accurately sampled, and the observed averages will eventually converge to their
true values. Redner has estimated that the minimum number of trials for this crossover to
occur is given by

lnT ∗ =
N

2pq

(
p− pq(x1/x2)m

q + p(x1/x2)m
)2

, (3.157)

where T is the number of trials and m is the moment of the distribution that we wish to
estimate. How does the estimate of T ∗ in (3.157) compare with the results you observe in the
simulation?

http://stp.clarku.edu/simulations/productprocess.html
<stp.clarku.edu/simulations/productprocess.html>
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3.12 *Supplementary Notes

3.12.1 The uncertainty for unequal probabilities

Consider a loaded die for which the probabilities Pj are not equal. We wish to motivate the form
(3.38) for S. Imagine that we roll the die a large number of times N . Then each outcome would
occur Nj = NPj times and there would be Nj = NP1 outcomes of face 1, NP2 outcomes of face
2, . . . These outcomes could occur in many different orders. Thus the original uncertainty about
the outcome of one roll of a die is converted into an uncertainty about order. Because all the
possible orders that can occur in an experiment of N rolls are equally likely, we can use (3.37) for
the associated uncertainty SN :

SN = ln Ω = ln
[ N !∏

jNj !

]
, (3.158)

The right-hand side of (3.158) equals the total number of possible sequences.
To understand the form (3.158) suppose that we know that if we toss a coin four times, we

will obtain 2 heads and 2 tails. What we don’t know is the sequence. In Table 3.6 we show the six
possible sequences. It is easy to see that this number is given by

M =
N !∏
jNj

=
4!

2! 2!
= 6. (3.159)

H H T T
H T H T
H T T H
T T H H
T H T H
T H H T

Table 3.6: Possible sequences of tossing a coin four times such that two heads and two tails are
obtained.

Now that we understand the form of SN in (3.158), we can find the desired form of S. The
uncertainty SN in (3.158) is the uncertainty associated with all N rolls. The uncertainty associated
with one roll is

S = lim
N→∞

1
N
SN = lim

N→∞

1
N

ln
[ N !∏

jNj !

]
= lim
N→∞

1
N

[
lnN !−

∑
j

lnNj !
]
. (3.160)

We can reduce (3.160) to a simpler form by using Stirling’s approximation, lnN ! ≈ N lnN − N
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for large N and substituting Nj = NPj :

S = lim
N→∞

1
N

[
N lnN −N −

∑
j

(NPj) ln(NPj) +
∑
j

(NPj)
]

(3.161a)

= lim
N→∞

1
N

[
N lnN −N −N lnN

∑
j

Pj −N
∑
j

Pj lnPj +N
∑
j

Pj
]

(3.161b)

= −
∑
j

Pj lnPj , (3.161c)

where we used the fact that
∑
j Pj = 1.

3.12.2 Method of undetermined multipliers

Suppose that we want to maximize the function f(x, y) = xy2 subject to the constraint that
x2 + y2 = 1. One way would be to substitute y2 = 1 − x2 and maximize f(x) = x(1 − x2).
However, this approach works only if f can be reduced to a function of one variable. However
we first consider this simple case as a way of introducing the general method of undetermined
multipliers.

We wish to maximize f(x, y) subject to the constraint that g(x, y) = x2 + y2 − 1 = 0. In the
method of undetermined multipliers, this problem can be reduced to solving the equation

df − λdg = 0, (3.162)

where df = y2dx + 2xydy = 0 at the maximum of f and dg = 2xdx + 2ydy = 0. If we substitute
df and dg in (3.162), we have

(y2 − 2λx)dx+ 2(xy − λy)dy = 0. (3.163)

We can choose λ = y2/2x so that the first term is zero. Because this term is zero, the second term
must also be zero; that is, x = λ = y2/2x, so x = ±y/

√
2. Hence, from the constraint g(x, y) = 0,

we obtain x =
√

1/3 and λ = 2.
In general, we wish to maximize the function f(x1, x2, . . . , xN ) subject to the constraints

gj(x1, x2, . . . , xN ) = 0 where j = 1, 2, . . . ,M with M < N . The maximum of f is given by

df =
N∑
i=1

( ∂f
∂xi

)
dxi = 0, (3.164)

and the constraint can be expressed as

dg =
N∑
i=1

(∂gj
∂xi

)
dxi = 0. (3.165)

As in our example, we can combine (3.164) and (3.165) and write df −
∑M
j=1 λjdgj = 0 or

N∑
i=1

[( ∂f
∂xi

)
−

M∑
i=1

λj

(∂gj
∂xi

)]
dxi = 0. (3.166)
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We are free to choose all M values of αj such that the first M terms in the square brackets are
zero. For the remaining N−M terms, the dxi can be independently varied because the constraints
have been satisfied. Hence, the remaining terms in square brackets must be independently zero
and we are left with N −M equations of the form

( ∂f
∂xi

)
−

M∑
i=1

λj

(∂gj
∂xi

)
= 0. (3.167)

In Example 3.12 we were able to obtain the probabilities by reducing the uncertainty S to
a function of a single variable P1 and then maximizing S(P1). We now consider a more general
problem where there are more outcomes, the case of a loaded die for which there are six outcomes.
Suppose that we know that the average number of points on the face of a die if f . Then we wish
to determine P1, P2, . . . , P6 subject to the constraints

6∑
j=1

Pj = 1, (3.168)

6∑
j=1

jPj = f. (3.169)

For a perfect die f = 3.5. Equation (3.167) becomes

6∑
j=1

[
(1 + lnPj) + α+ βj]dPj = 0, (3.170)

where we have used dS = −
∑6
j=1 d(Pj lnPj) = −

∑6
j=1(1 + lnPj)dPj ; α and β are the undeter-

mined (Lagrange) multipliers. We choose α and β so that the first two terms in the brackets (with
j = 1 and j = 2 are independently zero. We write

α = lnP2 − 2 lnP1 − 1 (3.171a)
β = lnP1 − lnP2. (3.171b)

We can solve (3.171b) for lnP2 = lnP1 − β and use (3.171a) to find lnP1 = −1 − α − β and use
this result to write P2 = −1 − α − β2. We can independently vary dP3, . . . dP6 because the two
constraints are satisfied by the values of P1 and P2. We let

lnPj = −1− α− jβ, (3.172)

or
Pj = e−1−αe−βj . (3.173)

We can eliminate the constant α by the normalization condition (3.168):

Pj =
e−βj∑
j e
−βj . (3.174)
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The constant β is determined by the constraint (3.47):

f =
e−β + 2e−β2 + 3e−β3 + 4e−β4 + 5e−β5 + 6e−β6

e−β + e−β2 + e−β3 + e−β4 + e−β5 + e−β6
. (3.175)

In general, (3.175) must be solved numerically.

Problem 3.52. Show that the solution to (3.175) is β = 0 for f = 7/2, β = +∞ for f = 2,
β = −∞ for f = 6, and β = −0.1746 for f = 4.

3.12.3 Derivation of the central limit theorem

To discuss the derivation of the central limit theorem, it is convenient to introduce the characteristic
function φ(k) of the probability density p(x). The main utility of the characteristic function is that
it simplifies the analysis of the sums of independent random variables. We define φ(k) as the Fourier
transform of p(x):

φ(k) = eikx =
∫ ∞
−∞

dx eikxp(x). (3.176)

Because p(x) is normalized, it follows that φ(k = 0) = 1. The main property of the Fourier
transform that we need is that if φ(k) is known, we can find p(x) by calculating the inverse Fourier
transform:

p(x) =
1

2π

∫ ∞
−∞

dk e−ikxφ(k). (3.177)

Problem 3.53. Calculate the characteristic function of the Gaussian probability density.

One useful property of φ(k) is that its power series expansion yields the moments of p(x):

φ(k) =
∞∑
n=0

kn

n!
dnφ(k)
dkn

∣∣
k=0

, (3.178)

= eikx =
∞∑
n=0

(ik)nxn

n!
. (3.179)

By comparing coefficients of kn in (3.178) and (3.179), we see that

x = −idφ
dk

∣∣
k=0

. (3.180)

In Problem 3.54 we show that

x2 − x2 = − d2

dk2
lnφ(k)

∣∣
k=0

(3.181)

and that certain convenient combinations of the moments are related to the power series expansion
of the logarithm of the characteristic function.
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Problem 3.54. The characteristic function generates the cumulants Cm defined by

lnφ(k) =
∞∑
m=1

(ik)m

m!
Cm. (3.182)

Show that the cumulants are combinations of the moments of x and are given by

C1 = x (3.183a)

C2 = σ2 = x2 − x2 (3.183b)

C3 = x3 − 3x2x+ 2x3 (3.183c)

C4 = x4 − 4x3 x− 3x2
2

+ 12x2 x2 − 6x4. (3.183d)

Now let us consider the properties of the characteristic function for the sums of independent
variables. For example, let p1(x) be the probability density for the weight x of adult males and let
p2(y) be the probability density for the weight of adult females. If we assume that people marry
one another independently of weight, what is the probability density p(z) for the weight z of an
adult couple? We have that

z = x+ y. (3.184)

How do the probability densities combine? The answer is

p(z) =
∫
dx dy p1(x)p2(y) δ(z − x− y). (3.185)

The integral in (3.185) represents all the possible ways of obtaining the combined weight z as
determined by the probability density p1(x)p2(y) for the combination of x and y that sums to
z. The form (3.185) of the integrand is known as a convolution. An important property of a
convolution is that its Fourier transform is a simple product. We have

φz(k) =
∫
dz eikzp(z) (3.186a)

=
∫
dz

∫
dx

∫
dy eikzp1(x)p2(y) δ(z − x− y) (3.186b)

=
∫
dx eikxp1(x)

∫
dy eikyp2(y) (3.186c)

= φ1(k)φ2(k). (3.186d)

It is straightforward to generalize this result to a sum of N random variables. We write

z = x1 + x2 + . . .+ xN . (3.187)

Then

φz(k) =
N∏
i=1

φi(k). (3.188)
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That is, for independent variables the characteristic function of the sum is the product of the
individual characteristic functions. If we take the logarithm of both sides of (3.188), we obtain

lnφz(k) =
N∑
i=1

lnφi(k). (3.189)

Each side of (3.189) can be expanded as a power series and compared order by order in powers
of ik. The result is that when random variables are added, their associated cumulants also add.
That is, the nth order cumulants satisfy the relation:

Czn = C1
n + C2

n + . . .+ CNn . (3.190)

We conclude see that if the random variables xi are independent (uncorrelated), their cumulants
and in particular, their variances, add.

If we denote the mean and standard deviation of the weight of an adult male as x and σ
respectively, then from (3.183a) and (3.190) we find that the mean weight of N adult males is
given by Nx. Similarly from (3.183b) we see that the standard deviation of the weight of N adult
males is given by σ2

N = Nσ2, or σN =
√
Nσ. Hence, we find the now familiar result that the sum

of N random variables scales as N while the standard deviation scales as
√
N .

We are now in a position to derive the central limit theorem. Let x1, x2, . . ., xN be N mutually
independent variables. For simplicity, we assume that each variable has the same probability
density p(x). The only condition is that the variance σ2

x of the probability density p(x) must be
finite. For simplicity, we make the additional assumption that x = 0, a condition that always can
be satisfied by measuring x from its mean. The central limit theorem states that the sum S has
the probability density

p(S) =
1√

2πNσx2
e−S

2/2Nσx
2

(3.191)

From (3.183b) we see that S2 = Nσ2
x, and hence the variance of S grows linearly with N . However,

the distribution of the values of the arithmetic mean S/N becomes narrower with increasing N :(
x1 + x2 + . . . xN

N

)2

=
Nσ2

x

N2
=
σ2
x

N
. (3.192)

From (3.192) we see that it is useful to define a scaled sum:

z =
1√
N

(x1 + x2 + . . .+ xN ), (3.193)

and to write the central limit theorem in the form

p(z) =
1√

2πσ2
e−z

2/2σ2
. (3.194)
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To obtain the result (3.194), we write the characteristic function of z as

φz(k) =
∫
dx eikz

∫
dx1

∫
dx2 · · ·

∫
dxN δ

(
z −

[x1 + x2 + . . .+ xN
N1/2

])
(3.195a)

× p(x1) p(x2) . . . p(xN ) (3.195b)

=
∫
dx1

∫
dx2 . . .

∫
dxN e

ik(x1+x2+...xN )/N1/2
p(x1) p(x2) . . . p(xN ) (3.195c)

= φ
( k

N1/2

)N
. (3.195d)

We next take the logarithm of both sides of (3.195d) and expand the right-hand side in powers of
k to find

lnφz(k) =
∞∑
m=2

(ik)m

m!
N1−m/2Cm. (3.196)

The m = 1 term does not contribute in (3.196) because we have assumed that x = 0. More
importantly, note that as N →∞, the higher-order terms are suppressed so that

lnφz(k)→ −k
2

2
C2, (3.197)

or
φz(k)→ e−k

2σ2/2 + . . . (3.198)

Because the inverse Fourier transform of a Gaussian is also a Gaussian, we find that

p(z) =
1√

2πσ2
e−z

2/2σ2
. (3.199)

The leading correction to φ(k) in (3.199) gives rise to a term of order N−1/2, and therefore does
not contribute in the limit N →∞.

The only requirements for the applicability of the central limit theorem are that the various
xi be statistically independent and that the second moment of p(x) exists. Not all probabilities
satisfy this latter requirement as demonstrated by the Lorentz distribution (see Problem 3.43). It
is not necessary that all the xi have the same distribution.

Vocabulary

sample space, events, outcome

uncertainty, principle of least bias or maximum uncertainty

probability distribution, probability density

mean value, moments, variance, standard deviation

conditional probability, Bayes’ theorem

binomial distribution, Gaussian distribution, Poisson distribution
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Problem 3.55. In Figure 3.9 we show a square lattice of 162 sites each of which is occupied with
probability p. Estimate the probability that a site in the lattice is occupied.
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Figure 3.9: Representation of a square lattice of 16×16 sites. The sites are represented by squares
and are either occupied (shaded) with probability p or are empty (white) with probability 1− p.

Problem 3.56. Three coins (in a fountain)
Three coins are tossed in succession. Assume that the simple events are equiprobable. Find the
probabilities of the following:

(a) the first coin is heads;

(b) exactly two heads have occurred;

(c) not more than two heads have occurred.

Problem 3.57. Fallacious reasoning
A student tries to solve Problem 3.13 by using the following reasoning. The probability of a double
six is 1/36. Hence the probability of finding at least one double six in 24 throws is 24/36. What is
wrong with this reasoning? If you have trouble understanding the error in this reason, try solving
the problem of finding the probability of at least one double six in two throws of a pair of dice.
What are the possible outcomes? Is each outcome equally probable?

Problem 3.58. d’Alembert’s fallacious reasoning
In two tosses of a single coin, what is the probability that heads will appear at least once? Use the
rules of probability to show that the answer is 3

4 . However, d’Alembert, a distinguished French
mathematician of the eighteenth century, reasoned that there are only 3 possible outcomes: heads
on the first throw, heads on the second throw, and no heads at all. The first two of these three
outcomes is favorable. Therefore the probability that heads will appear at least once is 2

3 . What is
the fallacy in his reasoning? Even eminent mathematicians (and physicists) have been lead astray
by the subtle nature of probability.

Problem 3.59. False positives
A diagnostic test for the presence of the AIDS virus has a probability of 0.005 of producing a false
positive. If 200 patients are tested at a clinic, what is the probability that at least one false positive
occurs?

Problem 3.60. Number of fish in a pond
A farmer wants to estimate how many fish are in her pond. She takes out 200 fish and tags them
and returns them to the pond. After sufficient time to allow the tagged fish to mix with the others,
she removes 250 fish at random and finds that 25 of them are tagged. Estimate the number of fish
in the pond.
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xi, yi xi, yi
1 0.984, 0.246 6 0.637, 0.581
2 0.860, 0.132 7 0.779, 0.218
3 0.316, 0.028 8 0.276, 0.238
4 0.523, 0.542 9 0.081, 0.484
5 0.349, 0.623 10 0.289, 0.032

Table 3.7: A sequence of ten random pairs of numbers.

Problem 3.61. Estimating the area of a pond
A farmer owns a field that is 10 m × 10 m. In the midst of this field is a pond of unknown area.
Suppose that the farmer is able to throw 100 stones at random into the field and finds that 40 of
the stones make a splash. How can the farmer use this information to estimate the area of the
pond?

Problem 3.62. Monte Carlo integration
Consider the ten pairs of numbers, (xi, yi), given in Table 3.7. The numbers are all are in the range
0 < xi, yi ≤ 1. Imagine that these numbers were generated by counting the clicks generated by a
Geiger counter of radioactive decays, and hence they can be considered to be a part of a sequence
of random numbers. Use this sequence to estimate the magnitude of the integral

F =
∫ 1

0

dx
√

(1− x2). (3.200)

If you have been successful in estimating the integral in this way, you have found a simple version
of a general method known as Monte Carlo integration.12 An applet for estimating integrals by
Monte Carlo integration can be found at <stp.clarku.edu/simulations/estimate>.

Problem 3.63. Bullseyes
A person playing darts hits a bullseye 20% of the time on the average. Why is the probability
of b bullseyes in N attempts a binomial distribution? What are the values of p and q? Find the
probability that the person hits a bullseye

(a) once in five throws;

(b) twice in ten throws. Why are these probabilities not identical?

Problem 3.64. There are 10 children in a given family. Assuming that a boy is as likely to be
born as a girl, find the probability of the family having

(a) 5 boys and 5 girls;

(b) 3 boys and 7 girls.

Problem 3.65. What is the probability that five children produced by the same couple will consist
of the following:

12Monte Carlo methods were first developed to estimate integrals that could not be performed by other ways.

http://stp.clarku.edu/simulations/estimate
<stp.clarku.edu/simulations/estimate>
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(a) three sons and two daughters?

(b) alternating sexes?

(c) alternating sexes starting with a son?

(d) all daughters? Assume that the probability of giving birth to a boy and a girl is the same.

Problem 3.66. Probability in baseball
A good hitter in baseball has a batting average of 300 or more, which means that the hitter will
be successful 3 times out of 10 tries on the average. Assume that on average a hitter gets three
hits for each 10 times at bat and that he has 4 times at bat per game.

(a) What is the probability that he gets zero hits in one game?

(b) What is the probability that he will get two hits or less in a three game series?

(c) What is the probability that he will get five or more hits in a three game series? Baseball fans
might want to think about the significance of “slumps” and “streaks” in baseball.

Problem 3.67. Playoff winners
In the World Series in baseball and in the playoffs in the National Basketball Association and the
National Hockey Association, the winner is determined by a best of seven series. That is, the first
team that wins four games wins the series and is the champion. Do a simple statistical calculation
assuming that the two teams are evenly matched and the winner of any game might as well be
determined by a coin flip and show that a seven game series should occur 31.25% of the time. What
is the probability that the series lasts n games? More information can be found at <www.mste.
uiuc.edu/hill/ev/seriesprob.html> and at <www.aip.org/isns/reports/2003/080.html>.

Problem 3.68. Galton board
The Galton board (named after Francis Galton (1822–1911)), is a triangular array of pegs. The
rows are numbered 0, 1, . . . from the top row down such that row n has n+ 1 pegs. Suppose that a
ball is dropped from above the top peg. Each time the ball hits a peg, it bounces to the right with
probability p and to the left with probability 1− p, independently from peg to peg. Suppose that
N balls are dropped successively such that the balls do not encounter one another. How will the
balls be distributed at the bottom of the board? Links to applets that simulate the Galton board
can be found in the references.

Problem 3.69. The birthday problem
What if somebody offered to bet that at least two people in your physics class had the same
birthday? Would you take the bet?

(a) What are the chances that at least two people in your class have the same birthday? Assume
that the number of students is 25.

(b) What are the chances that at least one other person in your class has the same birthday as
you? Explain why the chances are less in the second case.

http://www.mste.uiuc.edu/hill/ev/seriesprob.html
<www.mste.uiuc.edu/hill/ev/seriesprob.html>
http://www.mste.uiuc.edu/hill/ev/seriesprob.html
<www.mste.uiuc.edu/hill/ev/seriesprob.html>
http://www.aip.org/isns/reports/2003/080.html
<www.aip.org/isns/reports/2003/080.html>


CHAPTER 3. CONCEPTS OF PROBABILITY 158

Problem 3.70. A random walk down Wall Street
Many analysts attempt to select stocks by looking for correlations in the stock market as a whole
or for patterns for particular companies. Such an analysis is based on the belief that there are
repetitive patterns in stock prices. To understand one reason for the persistence of this belief do
the following experiment. Construct a stock chart (a plot of stock price versus time) showing the
movements of a hypothetical stock initially selling at $50 per share. On each successive day the
closing stock price is determined by the flip of a coin. If the coin toss is a head, the stock closes
1/2 point ($0.50) higher than the preceding close. If the toss is a tail, the price is down by 1/2
point. Construct the stock chart for a long enough time to see “cycles” and other patterns appear.
The moral of the charts is that a sequence of numbers produced in this manner is identical to a
random walk, yet the sequence frequently appears to be correlated.

Problem 3.71. Suppose that a random walker takes N steps of unit length with probability p
of a step to the right. The displacement m of the walker from the origin is given by m = n − n′,
where n is the number of steps to the right and n′ is the number of steps to the left. Show that
m = (p− q)N and σ2

m = (m−m)2 = 4Npq.

Problem 3.72. The result (3.79) for (∆M)2 differs by a factor of four from the result for σ2
n in

(3.101). Why? Compare (3.79) to the result of Problem 3.37.

Problem 3.73. Size of the airways in the mammalian lung
The geometry of branched structures such as blood vessels or airways are important factors in de-
termining the efficiency of physiological processes. The airways of the bronchial tree of mammalian
lungs branch at regular intervals with a systematic reduction of their diameter. In the human lung
the conducting airway tree ends at about 217 divisions.

In this problem we consider a simplified model of how the average diameter of the airways
in the mammalian lung change down the bronchial tree. Assume that the diameter at the n = 0
branch (the trachea) is one. Suppose that the airways branch into two nearly equal parts of width
p and q. (In this case p and q are not probabilities and hence p+ q is not necessarily unity.) After
the first division, the average diameter is L(1) = (p + q)/2; after two divisions (generations), the
average diameter is L(2) = (p2 + 2pq + q2)/4. Show that the average diameter of the bronchial
tube after n generations is given by

L(n) = (p+ q)n/2n = e−n/n0 , (3.201)

where n−1
0 = | ln[(p + q)/2]|. What is the behavior of L(n) for p = q = 1/3? This exponential

behavior of L(n) is observed for n ≤ 10. To explain the behavior of L(n) for larger N , it is
necessary to assume that the division is not precisely given by p and q, but is only p and q on the
average.

Problem 3.74. Watching a drunkard
A random walker is observed to take a total of N steps, n of which are to the right.

(a) Suppose that a curious observer finds that on ten successive nights the walker takes N = 20
steps and that the values of n are given successively by 14, 13, 11, 12, 11, 12, 16, 16, 14, 8.
Compute n, n2, and σn. Use this information to estimate p. If your reasoning gives different
values for p, which estimate is likely to be the most accurate?
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(b) Suppose that on another ten successive nights the same walker takes N = 100 steps and that
the values of n are given by 58, 69, 71, 58, 63, 53, 64, 66, 65, 50. Compute the same quantities
as in part (a) and estimate p. How does the ratio of σn to n compare for the two values of N?
Explain your results.

(c) Compute m and σm, where m = n − n′ is the net displacement of the walker. This problem
inspired an article by Zia and Schmittmann (see the references).

Problem 3.75. Alternative derivation of the Gaussian distribution
In Section 3.7 we evaluated the derivatives of P (n) to determine the parameters A, B, and ñ in
(3.120). Another way to determine these parameters is to assume that the binomial distribution
can be approximated by a Gaussian and require that the first several moments of the Gaussian
and binomial distribution be equal. We write

P (n) = Ae−
1
2B(n−ñ)2 , (3.202)

and require that ∫ N

0

P (n) dn = 1. (3.203)

Because P (n) depends on the difference n− ñ, it is convenient to change the variable of integration
in (3.203) to x = n− ñ. We have ∫ N−ñ

−ñ
P (x) dx = 1, (3.204)

where
P (x) = Ae−

1
2Bx

2
. (3.205)

In the limit of large N , we can extend the upper and lower limits of integration in (3.204) and
write ∫ ∞

−∞
P (x) dx = 1, (3.206)

The first moment of P (n) is given by

n =
∫ N

0

nP (n) dn = pN. (3.207)

Make a change of variables and show that∫ ∞
−∞

xP (x) dx = n− ñ. (3.208)

Because the integral in (3.208) is zero, we can conclude that ñ = n. We also have that

(n− n)2 =
∫ N

0

(n− n)2 P (n) dn = pqN. (3.209)

Do the integrals in (3.209) and (3.206) (see (A.17) and (A.21)) and confirm that the values of B
and A are given by (3.126) and (3.128), respectively. The generality of the arguments leading to
the Gaussian distribution suggests that it occurs frequently in probability when large numbers are
involved. Note that the Gaussian distribution is characterized completely by its mean value and
its width.
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Figure 3.10: Example of a castle wall as explained in Problem 3.76.

Problem 3.76. Consider a two-dimensional ‘wall constructed from N squares as shown in Fig-
ure 3.10. The base row of the cluster must be continuous, but higher rows can have gaps. Each
column must be continuous and self-supporting. Determine the total number WN of different N -
site clusters, that is, the number of possible arrangements of N squares consistent with the above
rules. Assume that the squares are identical.

Problem 3.77. First passage time
Suppose that a one-dimensional unbiased random walker starts out at the origin x = 0 at t = 0.
How many steps will it take for the walker to reach a site at x = 4? This quantity, known as
the first passage time, is a random variable because it is different for different possible realizations
of the walk. Possible quantities of interest are the probability distribution of the first passage
time and the mean first passage time, τ . Write a computer program to estimate τ(x) and then
determine its analytical dependence on x. Why is it more difficult to estimate τ for x = 8 than for
x = 4?

Problem 3.78. Heads you win
Two people take turns tossing a coin. The first person to obtain heads is the winner. Find the
probabilities of the following events:

(a) the game terminates at the fourth toss;

(b) the first player wins the game;

(c) the second player wins the game.
∗Problem 3.79. Range of validity of the Gaussian distribution
How good is the Gaussian distribution as an approximation to the binomial distribution as a
function of N? To determine the validity of the Gaussian distribution, consider the next two terms
in the power series expansion of lnP (n):

1
3!

(n− ñ)3C +
1

4!)
(n− ñ)4D, (3.210)

with C = d3 lnP (n)/d3n and D = d4 lnP (n)/d4n evaluated at n = ñ.

(a) Show that C = 0 if p = q. Calculate D for p = q and estimate the order of magnitude of the
first nonzero correction. Compare this correction to the magnitude of the first nonzero term
in lnP (n) (see (3.116)) and determine the conditions for which the terms beyond (n− ñ)2 can
be neglected.
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(b) Define the error as

E(n) = 1− Binomial(n)
Gaussian(n)

(3.211)

Plot E(n) versus n and determine the approximate width of E(n).

(c) Show that if N is sufficiently large and neither p nor q is too small, the Gaussian distribution
is a good approximation for n near the maximum of P (n). Because P (n) is very small for large
(n− n), the error in the Gaussian approximation for larger n is negligible.

Problem 3.80. Two-dimensional random walk
Consider a random walk on a two-dimensional square lattice where the walker has an equal proba-
bility of taking a step to one of four possible directions, north, south, east, or west. Use the central
limit theorem to find the probability that the walker is a distance r to r + dr from the origin,
where r2 = x2 + y2 and r is the distance from the origin after N steps. There is no need to do an
explicit calculation.

Problem 3.81. Continuum model of a random walk
One of the first continuum models of a random walk is due to Rayleigh (1919). In the Rayleigh
model the length a of each step is a random variable with probability density p(a) and the direction
of each step is random. For simplicity consider a walk in two dimensions and choose p(a) so that
each step has unit length. Then at each step the walker takes a step of unit length at a random
angle. Use the central limit theorem to find the asymptotic form of p(r,N) dr, the probability that
the walker is in the range r to r + dr, where r is the distance from the origin after N steps.

Problem 3.82. Suppose there are three boxes each with two balls. The first box has two green
balls, the second box has one green and one red ball, and the third box has two red balls. Suppose
you choose a box at random and find one green ball. What is the probability that the other ball
is green?

Problem 3.83. Open a telephone directory to an random page and make a list corresponding to
the last digit n of the first 100 telephone numbers. Find the probability P (n) that the number n
appears. Plot P (n) as a function of n and describe its n-dependence. Do you expect that P (n)
should be approximately uniform?

∗Problem 3.84. Model of a porous rock
A simple model of a porous rock can be imagined by placing a series of overlapping spheres at
random into a container of fixed volume V . The spheres represent the rock and the space between
the spheres represents the pores. If we write the volume of the sphere as v, it can be shown the
fraction of the space between the spheres or the porosity φ is φ = exp(−Nv/V ), where N is the
number of spheres. For simplicity, consider a two-dimensional system, and write a program to
place disks of diameter unity into a square box. The disks can overlap. Divide the box into square
cells each of which has an edge length equal to the diameter of the disks. Find the probability of
having 0, 1, 2, or 3 disks in a cell for φ = 0.03, 0.1, and 0.5.

∗Problem 3.85. Benford’s law
Do a search of the Web and find a site that lists the populations of various cities in the world (not
necessarily the largest ones) or the cities of your state or region. The quantity of interest is the
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first digit of each population. Alternatively, scan the first page of your local newspaper and record
the first digit of each of the numbers you find. (The first digit of a number such as 0.00123 is 1.)
What is the probability P (n) that the first digit is n, where n = 1, . . . , 9? Do you think that P (n)
will be the same for all n?

It turns out that the form of the probability P (n) is given by

P (n) = log10

(
1 +

1
n

)
. (3.212)

The distribution (3.212) is known as Benford’s law and is named after Frank Benford, a physicist.
It implies that for certain data sets, the first digit is distributed in a predictable pattern with a
higher percentage of the numbers beginning with the digit 1. What are the numerical values of
P (n) for the different values of n? Is P (n) normalized? Suggest a hypothesis for the nonuniform
nature of the Benford distribution.

Accounting data is one of the many types of data that is expected to follow the Benford
distribution. It has been found that artificial data sets do not have first digit patterns that follow
the Benford distribution. Hence, the more an observed digit pattern deviates from the expected
Benford distribution, the more likely the data set is suspect. Tax returns have been checked in
this way.

The frequencies of the first digit of 2000 numerical answers to problems given in the back of
four physics and mathematics textbooks have been tabulated and found to be distributed in a way
consistent with Benford’s law. Benford’s Law is also expected to hold for answers to homework
problems (see James R. Huddle, “A note on Benford’s law,” Math. Comput. Educ. 31, 66 (1997)).
The nature of Benford’s law is discussed by T. P. Hill, “The first digit phenomenon,” Am. Sci. 86,
358–363 (1998).
∗Problem 3.86. Ask several of your friends to flip a coin 200 times and record the results or
pretend to flip a coin and fake the results. Can you tell which of your friends faked the results?
Hint: What is the probability that a sequence of six heads in a row will occur? Can you suggest
any other statistical tests?
∗Problem 3.87. Zipf’s law
Analyze a text and do a ranking of the word frequencies. The word with rank r is the rth word when
the words of the text are listed with decreasing frequency. Make a log-log plot of word frequency
f versus word rank r. The relation between word rank and word frequency was first stated by
George Kingsley Zipf (1902–1950). This relation states that to a very good approximation for a
given text

f ∼ 1
r ln(1.78R)

, (3.213)

where R is the number of different words. Note the inverse power law behavior. The relation
(3.213) is known as Zipf’s law. The top 20 words in an analysis of a 1.6 MB collection of 423 short
Time magazine articles (245,412 term occurrences) are given in Table 3.8.
∗Problem 3.88. Time of response to emails
If you receive an email, how long does it take for you to respond to it? If you keep a record of your
received and sent mail, you can analyze the distribution of your response times – the number of
days (or hours) between receiving an email from someone and then replying.
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1 the 15861 11 his 1839
2 of 7239 12 is 1810
3 to 6331 13 he 1700
4 a 5878 14 as 1581
5 and 5614 15 on 1551
6 in 5294 16 by 1467
7 that 2507 17 at 1333
8 for 2228 18 it 1290
9 was 2149 19 from 1228

10 with 1839 20 but 1138

Table 3.8: Ranking of the top 20 words.

It turns out that the time it takes people to reply to emails can be described by a power law;
that is, P (τ) ∼ τ−a with a ≈ 1. Oliveira and Barabási have shown that the response times of
Einstein and Darwin to letters can also be described by a power law, but with an exponent a ≈ 3/2
(see J. G. Oliveira and A.-L. Barabási, “Darwin and Einstein correspondence patterns,” Nature
437, 1251 (2005). Their results suggest that there is an universal pattern for human behavior in
response to correspondence. What is the implication of a power law response?

∗Problem 3.89. A doctor has two drugs, A and B, which she can prescribe to patients with a
certain illness. The drugs have been rated in terms of their effectiveness on a scale of 1 to 6, with
1 being the least effective and 6 being the most effective. Drug A is uniformly effective with a
value of 3. The effectiveness of drug B is variable and 54% of the time it scores a value of 1, and
46% of the time it scores a value of 5. The doctor wishes to provide her patients with the best
possible care and asks her statistician friend which drug has the highest probability of being the
most effective. The statistician says, “It is clear that drug A is the most effective drug 54% of the
time. Thus drug A is your best bet.”

Later a new drug C becomes available. Studies show that on the scale of 1 to 6, 22% of
the time this drug scores a 6, 22% of the time it scores a 4, and 56% of the time it scores a 2.
The doctor, again wishing to provide her patients with the best possible care, goes back to her
statistician friend and asks him which drug has the highest probability of being the most effective.
The statistician says, ”Because there is this new drug C on the market, your best bet is now drug
B, and drug A is your worst bet.” Show that the statistician is right.

Problem 3.90. Three cards are in a hat. One card is white on both sides, the second is white
on one side and red on the other, and the third is red on both sides. The dealer shuffles the
cards, takes one out and places it flat on the table. The side showing is red. The dealer now
says, “Obviously this card is not the white-white card. It must be either the red-white card or the
red-red card. I will bet even money that the other side is red.” Is this bet fair?

Problem 3.91. Will an asteroid impact the Earth?
Estimate the probability that an asteroid will impact the Earth and cause major damage. Does it
make sense for society to take steps now to guard itself against such an occurrence?

∗Problem 3.92. Response to rare events
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The likelihood of the breakdown of the levees near New Orleans was well known before their
occurrence on August 30, 2005. Discuss the various reasons why the decision was made not to
strengthen the levees. Relevant issues include the ability of people to think about the probability
of rare events and the large amount of money needed to strengthen the levees to withstand such
an event.
∗Problem 3.93. Science and society issues
Does capital punishment deter murder? Are vegetarians more likely to have daughters? Does it
make sense to talk about a “hot hand” in basketball? Are the digits of π random? See <chance.
dartmouth.edu/chancewiki/> and <www.dartmouth.edu/~chance/> and read about interesting
issues involving probability and statistics.

Suggestions for further reading

Vinay Ambegaokar, Reasoning About Luck, Cambridge University Press (1996). A book devel-
oped for a course intended for non-science majors. An excellent introduction to statistical
reasoning and its uses in physics.

Peter L. Bernstein, Against the Gods: The Remarkable Story of Risk, John Wiley & Sons (1996).
The author is a successful investor and an excellent writer. The book includes an excellent
summary of the history of probability.

David S. Betts and Roy E. Turner, Introductory Statistical Mechanics, Addison-Wesley (1992).
Section 3.4 is based in part on Chapter 3 of this text.

Jean-Phillippe Bouchaud and Marc Potters, Theory of Financial Risks, Cambridge University
Press (2000). This book by two physicists is an example of the application of concepts in
probability and statistical mechanics to finance. Although the treatment is at the graduate
level and assumes some background in finance, it is recommended for students who might
be interested in the overlap of physics, finance, and economics. Also see J. Doyne Farmer,
Martin Shubik, and Eric Smith, “Is economics the next physical science?,” Phys. Today 58
(9), 37–42 (2005). A related book on the importance of rare events is by Nassim Nicholas
Taleb, The Black Swan: The Impact of the Highly Improbable, Random House (2007).

The <www.dartmouth.edu/~chance/> encourages its users to apply statistics to everyday events.

Giulio D’Agostini, “Teaching statistics in the physics curriculum: Unifying and clarifying role of
subjective probability,” Am. J. Phys. 67, 1260–1268 (1999). The author, whose main research
interest is in particle physics, discusses subjective probability and Bayes’ theorem. Section 3.4
is based in part on this article.

See <www.math.uah.edu/stat/objects/> for a simulation of the Galton board.

Gene F. Mazenko, Equilibrium Statistical Mechanics, John Wiley & Sons (2000). Sections 1.7 and
1.8 of this graduate level text discuss the functional form of the missing information.

Elliott W. Montroll and Michael F. Shlesinger, “On the wonderful world of random walks,” in
Studies in Statistical Mechanics, Vol. XI: Nonequilibrium Phenomena II, J. L. Lebowitz and
E. W. Montroll, editors, North-Holland (1984).

http://chance.dartmouth.edu/chancewiki/
<chance.dartmouth.edu/chancewiki/>
http://chance.dartmouth.edu/chancewiki/
<chance.dartmouth.edu/chancewiki/>
http://www.dartmouth.edu/~chance/
<www.dartmouth.edu/~chance/>
http://www.dartmouth.edu/~chance/
<www.dartmouth.edu/~chance/>
http://www.math.uah.edu/stat/objects/
<www.math.uah.edu/stat/objects/>
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Elliott W. Montroll and Wade W. Badger, Introduction to Quantitative Aspects of Social Phenom-
ena, Gordon and Breach (1974). The applications of probability that are discussed include
traffic flow, income distributions, floods, and the stock market.

Richard Perline, “Zipf’s law, the central limit theorem, and the random division of the unit
interval,” Phys. Rev. E 54, 220–223 (1996).

S. Redner, “Random multiplicative processes: An elementary tutorial,” Am. J. Phys. 58, 267–273
(1990).

Charles Ruhla, The Physics of Chance, Oxford University Press (1992).

B. Schmittmann and R. K. P. Zia, “‘Weather’ records: Musings on cold days after a long hot
Indian summer,” Am. J. Phys. 67, 1269–1276 (1999). A relatively simple introduction to
the statistics of extreme values. Suppose that somebody breaks the record for the 100 meter
dash. How long do records typically survive before they are broken?

Kyle Siegrist at the University of Alabama in Huntsville has developed many applets to illustrate
concepts in probability and statistics. See <www.math.uah.edu/stat/> and follow the link
to Bernoulli processes.

G. Troll and P. beim Graben, “Zipf’s law is not a consequence of the central limit theorem,”
Phys. Rev. E 57, 1347–1355 (1998).

Hans Christian von Baeyer, Information: The New Language of Science, Harvard University Press
(2004). This book raises many profound issues and is not an easy read even though it is well
written. Read it in small doses.

Charles A. Whitney, Random Processes in Physical Systems: An Introduction to Probability-
Based Computer Simulations, John Wiley & Sons (1990).

A discussion by Eliezer Yudkowsky of the intuitive basis of Bayesian reasoning can be found at
<yudkowsky.net/bayes/bayes.html>.

R. K. P. Zia and B. Schmittmann, “Watching a drunkard for 10 nights: A study of distributions
of variances,” Am. J. Phys. 71, 859–865 (2003). See Problem 3.74.

The outcome of tossing a coin is not really random. See Ivars Peterson, “Heads or tails?,” Sci-
ence News Online, <www.sciencenews.org/articles/20040228/mathtrek.asp> and Erica
Klarreich, “Toss out the toss-up: Bias in heads-or-tails, Science News 165 (9), 131 (2004),
<http://www.sciencenews.org/articles/20040228/fob2.asp>. Some of the original pub-
lications include Joseph Ford, “How random is a coin toss?,” Phys. Today 36 (4), 40–47
(1983); Joseph B. Keller, “The probability of heads,” Am. Math. Monthly 93, 191–197 (1986);
and Vladimir Z. Vulovic and Richard E. Prange, “Randomness of a true coin toss,” Phys.
Rev. A 33, 576–582 (1986).

http://www.math.uah.edu/stat
<www.math.uah.edu/stat/>
http://yudkowsky.net/bayes/bayes.html
<yudkowsky.net/bayes/bayes.html>
http://www.sciencenews.org/articles/20040228/mathtrek.asp
<www.sciencenews.org/articles/20040228/mathtrek.asp>
http://www.sciencenews.org/articles/20040228/fob2.asp
<http://www.sciencenews.org/articles/20040228/fob2.asp>
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We develop the basic methodology of statistical mechanics and provide a microscopic foundation
for the concepts of temperature and entropy.

4.1 Introduction

We first discuss a simple example to make explicit the probabilistic assumptions and nature of
calculations in statistical mechanics.

Consider an isolated system of N = 5 noninteracting spins with magnetic moment µ and spin
1/2 in a magnetic field B. If the total energy E = −µB, what is the mean magnetic moment of
a given spin in the system? The essential steps needed to analyze this system can be summarized
as follows.
1. Specify the macrostate and accessible microstates of the system. The macroscopic state or
macrostate of the system corresponds to the information that we know. For this example the
observable quantities are the total energy E, the magnetization M , the number of spins N , and
the external magnetic field B. (Because the spins are noninteracting, it is redundant to specify
both M and E.)

The most complete specification of the system corresponds to the enumeration of the mi-
crostates or configurations of the system. For N = 5 there are 25 = 32 total microstates, each
specified by the orientation of the N spins. However, not all of the 32 microstates are consistent
with the information that E = −µB. For example, E = −5µB for the microstate shown in Fig-
ure 4.1(a) is not allowed, that is, such a state is inaccessible. The accessible microstates of the
system are those that are consistent with the macroscopic conditions. In this example, ten of the
thirty-two total microstates are accessible (see Figure 4.1(b)).

166
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(a)

(b)

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 4.1: (a) Example of an inaccessible macrostate for the ensemble specified by E = −µB,N =
5. (b) The ten accessible members of the ensemble. Spin 1 is the left most spin.

2. Choose the ensemble. We calculate averages by preparing a collection of identical systems all
of which satisfy the macroscopic conditions E = −µB and N = 5. In this example the ensemble
consists of ten systems each of which is in one of the ten accessible microstates.

What can we say about the relative probability of finding the system in one of the ten accessible
microstates? Because the system is isolated and each microstate is consistent with the specified
macroscopic information, we assume that each microstate in the ensemble is equally likely. This
assumption of equal a priori probabilities implies that the probability Pn that the system is in
microstate n is given by

Pn =
1
Ω
, (4.1)

where Ω represents the number of microstates of energy E. This assumption is equivalent to the
principle of least bias or maximum uncertainty that we discussed in Section 3.4.1. For our example,
we have Ω = 10, and the probability that the system is in any one of its accessible microstates is
1/10.

3. Calculate the mean values and other statistical properties. As an example of a probability
calculation, we calculate the mean value of the orientation of spin 1 (see Figure 4.1(b)). Because
s1 assumes the value ±1, we have

〈s1〉 =
10∑
n=1

Pnsn (4.2a)

=
1
10
[
(+1) + (+1) + (+1) + (−1) + (+1) + (+1) + (−1) + (+1) + (−1) + (−1)

]
(4.2b)

=
2
10

=
1
5
. (4.2c)

The sum is over all the accessible microstates and sn is the value of spin 1 in the nth member of
the ensemble. We see from (4.2c) that the mean value of s1 is 〈s1〉 = 1/5.

Problem 4.1. Simple example

(a) What is the mean value of spin 2 in the above example?
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(b) What is the probability p that a given spin points up?

(c) What is the probability that if spin 1 is up, then spin 2 also is up?

There is a more direct way of calculating s1 in this case. Because M = 1, six out of the ten
spins are up. The equivalency of the spins implies that the probability of a spin being up is 6/10.
Hence, s = (3/5)(1) + (2/5)(−1) = 1/5. What is the implicit assumption that we made in the
more direct method?

Problem 4.2. Counting microstates
Consider N = 4 noninteracting spins with magnetic moment µ and spin 1/2 in a magnetic field B.

(a) If the total energy E = −2µB, what are the accessible microstates and the probabilities that
a particular spin has a magnetic moment ±µ?

(b) Consider N = 9 noninteracting spins with total energy E = −µB. What is the net number of
up spins, the number of accessible microstates, and the probabilities that a particular spin has
magnetic moment ±µ?

Problem 4.3. Consider a one-dimensional ideal gas consisting of N = 5 particles each of which
has the same speed v, but velocity ±v. The velocity of each particle is independent. What is the
probability that all the particles are moving in the same direction?

The model of noninteracting spins that we have considered is an example of an isolated sys-
tem. In this case the system of spins has fixed values of E, B, and N . In general, an isolated
system cannot exchange energy or matter with its surroundings nor do work on another system.
The macrostate of such a system is specified by E, V , and N (B instead of V for a magnetic
system). Our strategy will be to first understand how to treat isolated systems. Conceptually,
isolated systems are simpler because all the accessible microstates have the same probability (see
Section 4.5).

4.2 A Simple Example of a Thermal Interaction

Now that we have an idea of how we can do probability calculations for an isolated system, we
next consider some model systems that can exchange energy with another system. This exchange
has the effect of relaxing one of the internal constraints and, as we will see, imposing another. We
will see that for nonisolated systems, the probability of each microstate is not the same.

We know what happens when we place two bodies at different temperatures into thermal
contact with one another – energy is transferred from the hotter to the colder body until thermal
equilibrium is reached and the two bodies have the same temperature. We now consider a simple
model that illustrates how statistical concepts can help us understand the transfer of energy and
the microscopic nature of thermal equilibrium.

Consider a model system of N noninteracting distinguishable particles such that the energy
of each particle is restricted to integer values, that is, εn = 0, 1, 2, 3, . . . We can distinguish the
particles by their colors, or we can assume that the particles have the same color, but are fixed on
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microstate red white blue
1 1 1 1
2 2 0 1
3 2 1 0
4 1 0 2
5 1 2 0
6 0 1 2
7 0 2 1
8 3 0 0
9 0 3 0

10 0 0 3

Table 4.1: The ten accessible microstates of a system of N = 3 distinguishable particles with total
energy E = 3. Each particle may have energy 0, 1, 2, . . .

lattice sites. For reasons that we will discuss in Section 6.11, we will refer to this model system as
an Einstein solid.1

Consider an Einstein solid with N = 3 particles (with colors red, white, and blue) in an
isolated box and total energy E = 3. For these small values of N and E, we can enumerate
the accessible microstates by hand. The ten accessible microstates of this system are shown in
Table 4.1. Because the energy is specified, the ten accessible microstates are equally probable.
What is the probability that if one particle has energy 1, another particle has energy 2?

Problem 4.4. Consider an Einstein solid composed of N particles with total energy E. It can be
shown that the general expression for the number of microstates of this system is

Ω =
(E +N − 1)!
E! (N − 1)!

. (4.3)

(a) Verify that this expression yields the correct answers for the case N = 3 and E = 3.

(b) What is the number of microstates for an Einstein solid with N = 4 and E = 6?

Now that we know how to enumerate the number of microstates for an Einstein solid, consider
an isolated system of N = 4 particles that is divided into two subsystems surrounded by insulating,
rigid, impermeable outer walls and separated by a similar partition (see Figure 4.2). Subsystem
A consists of two particles, R (red) and G (green), with EA = 5; subsystem B consists of two
particles, B (black) and W (white), with energy EB = 1. The total energy E of the composite
system consisting of subsystem A plus subsystem B is

E = EA + EB = 5 + 1 = 6. (4.4)

The accessible microstates for the composite system are shown in Table 4.2. We see that subsystem
A has ΩA = 6 accessible microstates and subsystem B has ΩB = 2 accessible microstates. The
total number of microstates Ω accessible to the composite system is

Ω = ΩA × ΩB = 6× 2 = 12. (4.5)
1These particles are equivalent to the quanta of the harmonic oscillator, which have energy En = (n+ 1

2
)~ω. If

we measure the energies from the lowest energy state, 1
2

~ω, and choose units such that ~ω = 1, we have εn = n.
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subsystem A subsystem B

EA = 5 EB = 1

insulating, rigid, impermeable wall

R
WG

B

(a)

subsystem A subsystem B

EA + EB = 6

conducting, rigid, impermeable wall

R
WG

B

(b)

Figure 4.2: Two subsystems, each with two distinguishable particles, surrounded by (a) insulating,
rigid, and impermeable outer walls and (b) separated by a conducting, rigid, and impermeable
wall. The other walls remain the same.

The partition is an internal constraint that prevents the transfer of energy from one subsystem to
another and in this case keeps EA = 5 and EB = 1. (The internal constraint also keeps the volume
and number of particles in each subsystem fixed.)

EA accessible microstates EB accessible microstates
5,0 0,5 1,0 0, 1

5 4,1 1,4 1
3,2 2,3

Table 4.2: The 12 equally probable microstates accessible to subsystems A and B before the
removal of the internal constraint. The conditions are NA = 2, EA = 5, NB = 2, and EB = 1.

We now consider a simple example of a thermal interaction. Suppose that the insulating,
rigid, impermeable partition separating subsystems A and B is changed to a conducting, rigid,
impermeable partition (see Figure 4.2). The partition maintains the volumes VA and VB , and hence
the single particle energies are not changed. Because the partition is impermeable, the particles
cannot penetrate the partition and go from one subsystem to the other. However, energy can be
transferred from one subsystem to the other, subject only to the constraint that the total energy
of subsystems A and B is constant, that is, E = EA + EB = 6. The microstates of subsystems
A and B are listed in Table 4.3 for all the possible values of EA and EB . The total number of
microstates Ω(EA, EB) accessible to the composite system whose subsystems have energy EA and
EB is

Ω(EA, EB) = ΩA(EA)× ΩB(EB). (4.6)

For example. if EA = 4 and EB = 2, then subsystem A can be in any one of five microstates and
subsystem B can be in any of three microstates. These two sets of microstates of subsystems A
and B can be combined to give 5× 3 = 15 microstates of the composite system.

The total number of microstates Ω accessible to the composite system can be found by sum-
ming ΩA(EA)ΩB(EB) over the possible values of EA and EB consistent with the condition that
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EA microstates ΩA(EA) EB microstates ΩB(EB) ΩAΩB
6 6,0 0,6 7 0 0,0 1 7

5,1 1,5
4,2 2,4
3,3
5,0 0,5 6 1,0 0,1 2 12

5 4,1 1,4 1
3,2 2,3
4,0 0,4 5 2,0 0,2 3 15

4 3,1 1,3 2 1,1
2,2

3 3,0 0,3 4 3 3,0 0,3 4 16
2,1 1,2 2,1 1,2

2 2,0 0,2 3 4 4,0 0,4 5 15
1,1 3,1 1,3

2,2
1 1,0 0,1 2 5 5,0 0,5 6 12

4,1 1,4
3,2 2,3

0 0,0 1 6 6,0 0,6 7 7
5,1 1,5
4,2 2,4
3,3

Table 4.3: The 84 equally probable microstates accessible to the composite system consisting
of subsystems A and B after the removal of the internal constraint. The total energy is E =
EA + EB = 6 with NA = 2 and NB = 2.

EA + EB = 6. Hence, Ω can be expressed as

Ω =
∑
EA

ΩA(EA)ΩB(E − EA). (4.7)

From Table 4.3 we see that

Ω = (7× 1) + (6× 2) + (5× 3) + (4× 4) + (3× 5) + (2× 6) + (1× 7) = 84. (4.8)

Because the composite system is isolated, its accessible microstates are equally probable, that
is, the composite system is equally likely to be in any one of its 84 accessible microstates. An
inspection of Table 4.3 shows that the probability that the energy of the composite system is
divided such that EA = 2 and EB = 4 is 15/84. Let PA(EA) be the probability that subsystem A
has energy EA. Then PA(EA) is given by

PA(EA) =
ΩA(EA)ΩB(E − EA)

Ω
. (4.9)

We show in Table 4.4 and Figure 4.3 the various values of PA(EA).
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EA ΩA(EA) ΩB(6− EA) ΩAΩB PA(EA)
6 7 1 7 7/84
5 6 2 12 12/84
4 5 3 15 15/84
3 4 4 16 16/84
2 3 5 15 15/84
1 2 6 12 12/84
0 1 7 7 7/84

Table 4.4: The probability PA(EA) that subsystem A has energy EA.

0.00
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0.10

0.15

0.20

0 1 2 3 4 5 6
EA

P(
E

A
)

Figure 4.3: The probability PA(EA) that subsystem A has energy EA. The line between the points
is only a guide to the eye.

The mean energy of subsystem A is found by doing an ensemble average over the 84 microstates
accessible to the composite system. We use the results for PA(EA) in Table 4.4 and find that

EA =
(
0× 7

84
)

+
(
1× 12

84
)

+
(
2× 15

84
)

+
(
3× 16

84
)

+
(
4× 15

84
)

+
(
5× 12

84
)

+
(
6× 7

84
)

= 3. (4.10)

In this simple case the mean value of EA is equal to ẼA, the energy corresponding to the most
probable value of PA(EA).

Problem 4.5. Use the results of Table 4.4 to find the standard deviation of the energy of subsystem
A.

Note that the total number of microstates accessible to the composite system increases from
12 to 84 when the internal constraint is removed. From the microscopic point of view, it is
clear that the total number of microstates must either remain the same or increase when an
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internal constraint is removed. Because the number of microstates becomes a very large number
for macroscopic systems, it is convenient to work with the logarithm of the number of microstates.
We are thus led to define the quantity S by the relation

S = k ln Ω, (4.11)

where k is an arbitrary constant. Note the similarity of the definition (4.11) to the expression for
the missing information (3.37). We will later identify the quantity S that we have introduced in
(4.11) with the thermodynamic entropy we discussed in Chapter 2.

Although our simple model has only four particles, we can ask questions that are relevant
to much larger systems. For example, what is the probability that energy is transferred from
the “hotter” to the “colder” subsystem? Given that EA = 5 and EB = 1 initially, we see from
Table 4.4 that the probability of subsystem A gaining energy when the internal constraint is
removed is 7/84. The probability that its energy remains unchanged is 12/84. In the remaining
65/84 cases, subsystem A loses energy and subsystem B gains energy. We expect that if the two
subsystems had a larger number of particles, the overwhelming probability would be that that
energy goes from the hotter to the colder subsystem.

Problem 4.6. Two Einstein solids in thermal contact
Consider two Einstein solids with NA = 3 and EA = 4 and NB = 4 and EB = 2 initially. The two
systems are thermally isolated from one another.

(a) Use the relation (4.3) to determine the initial number of accessible microstates for the composite
system.

(b) Then remove the internal constraint so that the two subsystems may exchange energy. Deter-
mine the probability PA(EA) that system A has energy EA, the most probable energies ẼA
and ẼB , the probability that energy goes from the hotter to the colder system, and the mean
and variance of the energy of each subsystem.

(c) Plot PA versus EA and discuss its qualitative energy dependence. Make a table similar to the
one in Table 4.3, but do not list the microstates explicitly.

Problem 4.7. The applet/application at <stp.clarku.edu/simulations/EinsteinSolid.html>
determines the number of accessible microstates of an Einstein solid using (4.3) and will help you
answer the following questions. Suppose that initially system A has NA = 4 particles with energy
EA = 10 and system B has NB = 4 particles with energy EB = 2. Initially, the two systems are
thermally isolated from one another. The initial number of states accessible to subsystem A is
given by ΩA = 13!/(10! 3!) = 286, and the initial number of states accessible to subsystem B is
ΩB = 5!/(2! 3!) = 10. Then the internal constraint is removed so that the two subsystems may
exchange energy.

(a) Determine the probability PA(EA) that system A has energy EA, the most probable energies
ẼA and ẼB , the mean and variance of the energy of each subsystem, and the probability that
energy goes from the hotter to the colder system.

(b) Discuss the qualitative energy dependence of PA(EA).

http://stp.clarku.edu/simulations/EinsteinSolid.html
<stp.clarku.edu/simulations/EinsteinSolid.html>
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(c) What is the number of accessible microstates for the (composite) system after the internal
constraint has been removed? What is the total entropy (choose units such that k = 1)?
What is the change in the total entropy of the system?

(d) The entropy of the composite system when each subsystem is in its most probable macrostate
is k ln ΩA(ẼA)ΩB(E − ẼA). Compare the value of this contribution to the value of the total
entropy, k

∑
EA

ln ΩA(EA)ΩB(E − EA).

(e) Increase NA, NB , and the total energy by a factor of ten, and discuss the qualitative changes in
the various quantities of interest. Consider successively larger systems until you have satisfied
yourself that you understand the qualitative behavior of the various quantities.

∗Problem 4.8. Suppose that system A is an Einstein solid with NA = 8 particles and system B
consists of NB = 8 noninteracting spins that can be either up or down. The external magnetic field
is such that µB = 1/2. The magnitude of µB has been chosen so that the changes in the energy
of system B are the same as system A, that is, ∆E = ±1. The two systems are initially isolated
and the initial energies are EA = 4 and EB = 4. What is the initial entropy of the composite
system? Use the fact that ΩB = NB !/(n! (NB − n)!), where n is the number of up spins in system
B (see Section 3.5). Remove the internal constraint and allow the two systems to exchange energy.
Determine the probability PA(EA) that system A has energy EA, the mean and variance of the
energy of each subsystem, the most probable energies ẼA and ẼB , and the probability that energy
goes from the hotter to the colder system. What is the change in the total entropy of the system?

From our examples, we conclude that we can identify thermal equilibrium with the most
probable macrostate and the entropy with the logarithm of the number of accessible microstates,
We also found that the probability P (E) that a system has energy E is approximately a Gaussian
if the system is in thermal equilibrium with a much bigger system. What quantity can we identify
with the temperature? The results of Problem 4.8 if you were not convinced already, that in
general, this quantity is not same as the mean energy per particle of the two systems.

Let’s return to the Einstein solid and explore the energy dependence of the entropy. Consider
a system with NA = 3, NB = 4, and total energy E = 10. The number of microstates for the two
systems for the various possible values of EA are summarized in Table 4.5. We see that that the
most probable energies and hence thermal equilibrium corresponds to ẼA = 4 and ẼB = 6. In
general, what quantity is the same for system A and B at equilibrium? From our understanding
of thermal equilibrium, we know that this quantity must be the temperature. In columns 5 and
10 of Table 4.5 we show the inverse slope of the entropy SA(EA) and SB(EB) of systems A and B
calculated from the central difference approximation for the slope at E. For example,

1
TA(EA)

≈ [SA(EA + ∆EA)− S(EA −∆EA)]
2∆EA

. (4.12)

(We have chosen units such that Boltzmann’s constant k = 1.) We see that the inverse slopes are
approximately equal at EA = ẼA = 4, corresponding to the value of the most probable energy.
(For this small system, the entropy of the composite system is not simply equal to the sum of the
entropies of the most probable macrostate, and we do not expect the slopes to be precisely equal.

To obtain more insight into how temperature is related to the slope of the entropy, we look at
an energy away from equilibrium, say EA = 2 in Table 4.5. Note that the slope of SA(EA = 2),
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EA ΩA(EA) ln ΩA(EA) T−1
A TA EB ΩB(EB) ln ΩB(EB) T−1

B TB ΩAΩB
10 66 4.19 na na 0 1 0 na na 66
9 55 4.01 0.19 5.22 1 4 1.39 1.15 0.87 220
8 45 3.81 0.21 4.72 2 10 2.30 0.80 1.24 450
7 36 3.58 0.24 4.20 3 20 3.00 0.63 1.60 720
6 28 3.33 0.27 3.71 4 35 3.56 0.51 1.94 980
5 21 3.05 0.31 3.20 5 56 4.03 0.44 2.28 1176
4 15 2.71 0.37 2.70 6 84 4.43 0.38 2.60 1260
3 10 2.30 0.46 2.18 7 120 4.79 0.34 2.96 1200
2 6 1.79 0.60 1.66 8 165 5.11 0.30 3.30 990
1 3 1.10 0.90 1.11 9 220 5.39 0.28 3.64 660
0 1 0 na na 10 286 5.66 na na 286

Table 4.5: The number of states for subsystems A and B for total energy E = EA +EB = 10 with
NA = 3 and NB = 4. The number of states was determined using (4.3). There are a total of 8008
microstates. The most probable energy of subsystem A is ẼS = 4 and the fraction of microstates
associated with the most probable macrostate is 1260/8008 ≈ 0.157. This fraction will approach
unity as the number of particles in the systems become larger.

0.60, is steeper than the slope, 0.30, of SB(EB = 8), which means that if energy is passed from A
to B, the entropy gained by A will be greater than the entropy lost by B, and the total entropy
would increase. Because we know that the entropy is a maximum in equilibrium and energy
is transferred spontaneously from “hot” to “cold,” a steeper slope must correspond to a lower
temperature. This reasoning suggests that the temperature is associated with the inverse slope of
the energy dependence of the entropy.

Problem 4.9. The applet/application at <stp.clarku.edu/simulations/entropy.html> com-
putes the entropies of two Einstein solids in thermal contact. Explore the effect of increasing the
values of NA, NB , and the total energy E. Discuss the qualitative dependence of SA, SB , and
Stotal on the energy EA. In particular, explain why SA is an increasing function of EA and SB is
a decreasing function of EA. Given this dependence of SA and SB on EA, why does Stotal have a
maximum at a particular value of EA?

You might wish to skip to Section 4.5 where we will formally develop the relations between the
number of accessible microstates of an isolated system to various quantities including the entropy
and the temperature.

Boltzmann probability distribution. We next consider the Einstein solid in another physical
context. Consider an isolated Einstein solid of six particles with total energy E = 12. We focus
our attention on one of the particles and consider it to be a subsystem able to exchange energy
with the other five particles. This example is similar to the ones we have considered, but in this
case the subsystem consists of only one particle. The quantity of interest is the mean energy of the
subsystem and the probability Pn that the subsystem is in state n with energy εn. The number
of ways that the subsystem can be in state n is unity because the subsystem consists of only one
particle. So for this special subsystem of one particle, there is a one-to-one correspondence between
the microstate of the system and the energy of the system.

http://stp.clarku.edu/simulations/entropy.html
<stp.clarku.edu/simulations/entropy.html>
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microstate n εn E − εn ΩB Pn
12 12 0 4!/(0! 4!) = 1 0.00016
11 11 1 5!/(1! 4!) = 5 0.00081
10 10 2 6!/(2! 4!) = 15 0.00242
9 9 3 7!/(3! 4!) = 35 0.00566
8 8 4 8!/(4! 4!) = 70 0.01131
7 7 5 9!/(5! 4!) = 126 0.02036
6 6 6 10!/(6! 4!) = 210 0.03394
5 5 7 11!/(7! 4!) = 330 0.05333
4 4 8 12!/(8! 4!) = 495 0.07999
3 3 9 13!/(9! 4!) = 715 0.11555
2 2 10 14!/(10! 4!) = 1001 0.16176
1 1 11 15!/(11! 4!) = 1365 0.22059
0 0 12 16!/(12! 4!) = 1820 0.29412

Table 4.6: The number of microstates accessible to a subsystem of one particle that can exchange
energy with a system of five particles. The subsystem is in microstate n with energy εn = n. The
third column is the energy of the system of N = 5 particles. The total energy of the composite
system is E = 12. The total number of microstates is 6188.

The number of accessible microstates of the composite system is shown in Table 4.6 using the
relation (4.3). From Table 4.6 we can determine the mean energy of the subsystem of one particle:

ε =
12∑
n=0

εnPn =
1

6188
[
(0× 1820) + (1× 1365) + (2× 1001) + (3× 715) + (4× 495) + (5× 330)

+ (6× 210) + (7× 126) + (8× 70) + (9× 35) + (10× 15) + (11× 5) + (12× 1)
]

= 2. (4.13)

The probability Pn that the subsystem is in microstate n is plotted in Figure 4.4. Note that
Pn decreases monotonically with increasing energy. A visual inspection of the energy dependence
of Pn in Figure 4.4 indicates that Pn can be approximated by an exponential of the form

Pn =
1
Z
e−βεn , (4.14)

where εn = n in this example and Z is a normalization constant. Given the form (4.14), we can
estimate the parameter β from the slope of lnPn versus εn. The result is that β ≈ 0.57. You might
wish to skip to Section 4.6 to read about the generalization of these results.

Problem 4.10. Another Einstein solid
Consider an Einstein solid with NA = 1 and NB = 3 with a total energy E = 6.

(a) Calculate the probability Pn that system A is in microstate n. Is this probability the same as
the probability that the system A has energy εn?
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Figure 4.4: The probability Pn for the subsystem to be in state n with energy εn = n. The
subsystem can exchange energy with a system of N = 5 particles. The total energy of the composite
system of six particles is E = 12. The circles are the values of Pn given in Table 4.6. The continuous
line corresponds to Pn calculated from (4.14) with β = 0.57.

(b) In Table 4.3 we considered a similar composite system of four particles, except that NA = 2,
in contrast to part a for which NA = 1. Why does the probability calculated in part a differ
from that calculated in part prob:4/pn.b?

Problem 4.11. From Table 4.3 determine the probability Pn that system A is in microstate n
with energy En for the different possible energies of A. (The microstate n corresponds to the state
of system A.) What is the qualitative dependence of Pn on En, the energy of the microstate?

Problem 4.12. Use the applet/application at <stp.clarku.edu/simulations/EinsteinSolid.
html> to compute the probability Pn that a subsystem of one particle is in microstate n, assuming
that it can exchange energy with an Einstein solid of N = 11 particles. The total energy of the
two systems is E = 36.

(a) Compare your result for Pn to the form (4.14) and compute the parameter β from a semilog
plot. Also determine the mean energy of the subsystem of one particle and show that it is
given by ε ≈ 1/β.

(b) Calculate the constant Z by normalizing the probability and show that Z is given approxi-
mately by Z = (1− e−β)−1.

We will generalize the results we have found here in Example 4.4.

Problem 4.13. Qualitative behavior of the probabilities

(a) Explain why the probability Pn(En) that system A is in microstate n with energy En is a
monotonically decreasing function of En, given that the system is in thermal contact with a

http://stp.clarku.edu/simulations/EinsteinSolid.html
<stp.clarku.edu/simulations/EinsteinSolid.html>
http://stp.clarku.edu/simulations/EinsteinSolid.html
<stp.clarku.edu/simulations/EinsteinSolid.html>
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much larger system. (We could equally well write Pn(En) as Pn(EA), but we choose the former
notation to emphasize that the system is in a particular microstate. The specification of EA
alone specifies the macrostate of the system.)

(b) Explain why the probability PA(EA) that system A has energy EA has a Gaussian-like form.

Problem 4.14. Rapid increase in the number of states

(a) Consider an Einstein solid of N = 10 distinguishable oscillators. What is the total number of
accessible microstates Ω(E) for E = 10, 102, 103, . . .? Is Ω(E) a rapidly increasing function of
E for fixed N?

(b) Is Ω a rapidly increasing function of N for fixed E?

(c) Use Stirling’s approximation (3.103) to find the large E behavior of Ω for fixed N � 1.

4.3 Counting Microstates

In the examples we have considered so far, we have seen that the most time consuming task is
enumerating (counting) the number of accessible microstates for a system of fixed energy and
number of particles. We now discuss how to count the number of accessible microstates for several
other systems of interest.

4.3.1 Noninteracting spins

We first reconsider an isolated system of N noninteracting spins with spin 1/2 and magnetic
moment µ in an external magnetic field B. Because we can distinguish spins at different lattice
sites, a particular state or configuration of the system is specified by giving the orientation (up
or down) of each of the N spins. We want to find the total number of accessible microstates
Ω(E,B,N) for particular values of E, B, and N .

We know that if n spins are parallel to B and N − n spins are antiparallel to B, the energy
of the system is

E = n(−µB) + (N − n)(µB) = −(2n−N)µB. (4.15)

For a given N and B, n specifies the energy and vice versa. If we solve (4.15) for n, we find

n =
N

2
− E

2µB
. (4.16)

As we found in (3.88), the total number of microstates with energy E is given by the number of
ways n spins out of N can be up. This number is given by

Ω(n,N) =
N !

n! (N − n)!
, (4.17)

where n is related to E by (4.16). We will apply this result in Example 4.2 on page 191.
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pmax

L

x

p

Figure 4.5: The phase space for a single particle of mass m and energy E in a one-dimensional
box of length L. The maximum value of the momentum is pmax =

√
2mE. Any point within the

shaded rectangle corresponds to a microstate with energy less than or equal to E.

4.3.2 *One-dimensional Ising model

It is instructive to discuss the number of states for the one-dimensional Ising model. For small
N we can determine Ω(E,N) by counting on our fingers. For example, it is easy to verify that
Ω(−2, 2) = 2 and Ω(0, 2) = 2 and Ω(−3, 3) = 2 and Ω(1, 3) = 6 using periodic boundary conditions.
The general expression for Ω(E,N) for the one-dimensional Ising model for even N in the absence
of an external magnetic field is

Ω(E,N) = 2
(
N

i

)
= 2

N !
i! (N − i)!

, (i = 0, 2, 4, . . . , N) (4.18)

where i = (E +N)/2. The energy E is measured in units of J so E is an integer. We will discuss
the Ising model in more detail in Chapter 5.

Problem 4.15. Verify that (4.18) gives the correct answers for N = 2 and 4.

4.3.3 A particle in a one-dimensional box

Classical calculation. Consider the microstates of a single classical particle of mass m confined
to a one-dimensional box of length L. We know that the microstate of a particle is specified by
its position x and momentum p.2 We say that the microstate (x, p) is a point in phase space (see
Figure 4.5).

As in Section 4.3.1, we would like to calculate the number of microstates of the system with
energy E. Because the values of the position and momenta of a particle are continuous variables,
this question is not meaningful and instead we will determine the quantity g(E)∆E, the number
of microstates between E and E + ∆E; the quantity g(E) is the density of states. However, it is

2We could equally well specify the velocity v rather than p, but the momentum p is the appropriate conjugate
variable to x in the formal treatment of classical mechanics.
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easier to first calculate Γ(E), the number of microstates of the system with energy less than or
equal to E. Then the number of microstates between E and E + ∆E, g(E)∆E, is related to Γ(E)
by

g(E)∆E = Γ(E + ∆E)− Γ(E) ≈ dΓ(E)
dE

∆E. (4.19)

If the energy of the particle is E and the dimension of the box is L, then the microstates of
the particle with energy less than or equal to E are restricted to the rectangle shown in Figure 4.5,
where pmax =

√
2mE. Because the possible values of x and p are continuous, there are an infinite

number of microstates within the rectangle. As we discussed in Section 3.6, we have to group or
bin the microstates so that we can count them, and hence we divide the rectangle in Figure 4.5
into bins or cells of area ∆x∆p.

The area of phase space occupied by the trajectory of a particle whose position x is less than
or equal to L and whose energy is less than or equal to E is equal to 2pmaxL. Hence, the number
of cells or microstates equals

Γcl(E) =
2pmaxL

∆x∆p
= 2

L

∆x∆p
(2mE)1/2, (4.20)

where the values of ∆x and ∆p are arbitrary. What is the corresponding density of states?

Quantum calculation. The most fundamental description of matter at the microscopic level is
given by quantum mechanics. Although the quantum mechanical description is more abstract, we
will find that it makes counting microstates more straightforward.

As before, we consider a single particle of mass m in a one-dimensional box of length L.
According to de Broglie, a particle has wave properties associated with it, and the corresponding
standing wave has a node at the boundaries of the box. The wave function of the wave with one
antinode can be represented as in Figure 4.6; the corresponding wavelength is given by

λ = 2L. (4.21)

In general, the greater the number of antinodes of the wave, the greater the energy associated with
the particle. The possible wavelengths that are consistent with the boundary conditions at x = 0
and x = L satisfy

λn =
2L
n
, (n = 1, 2, 3, . . .) (4.22)

where the index n labels the quantum state of the particle and can be any nonzero, positive integer.
From the de Broglie relation,

p =
h

λ
, (4.23)

and the nonrelativistic relation between the energy E and the momentum p, E = p2/2m, we find
that the eigenvalues of a particle in a one-dimensional box are given by

En =
p2
n

2m
=

h2

2mλ2
n

=
n2h2

8mL2
. (4.24)
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x = 0 x = L

Figure 4.6: Representation of the ground state wave function of a particle in a one-dimensional
box. Note that the wave function equals zero at x = 0 and x = L.

It is now straightforward to count the number of microstates with energy less than or equal
to E. The value of n for a given E is (see (4.24))

n =
2L
h

(2mE)1/2. (4.25)

Because successive microstates correspond to values of n that differ by unity, the number of states
with energy less than or equal to E is given by

Γqm(E) = n =
2L
h

(2mE)1/2. (4.26)

Unlike the classical case, the number of states Γqm(E) for a quantum particle in a one-
dimensional box has no arbitrary parameters such as ∆x and ∆p. If we require that the classical
and quantum enumeration of microstates agree in the semiclassical limit,3 we see that the number
of microstates, Γcl(E) and Γqm(E), agrees for all E if we let 2/(∆x∆p) = 1/(π~). This requirement
implies that the area ∆x∆p of a cell in phase space is given by

∆x∆p = h. (4.27)

We see that Planck’s constant h can be interpreted as the volume (area for a two-dimensional
phase space) of the fundamental cell in phase space. That is, in order for the counting of microstates
in the classical system to be consistent with the more fundamental counting of microstates in a
quantum system, we cannot specify a microstate of the classical system more precisely than to
assign it to a cell of area h in phase space. This fundamental limitation implies that the subdivision
of phase space into cells of volume less than h is physically meaningless, a result consistent with
the Heisenberg uncertainty principle.

It will be convenient to introduce the wave vector k by the relation k = 2π/λ. Then we can
rewrite the deBroglie relation (4.23) as

p = ~k. (4.28)

3Note that the semiclassical limit is not equivalent to simply letting ~→ 0.
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For a particle in a one-dimensional box, we can express the condition (4.22) for a standing wave as

k =
π

L
n. (n = 1, 2, 3, . . .) (4.29)

Problem 4.16. Suppose that the energy of an electron in a one-dimensional box of length L is
E = 144 (h2/8mL2). How many microstates are there with energy less than or equal to this value
of E?

4.3.4 One-dimensional harmonic oscillator

The one-dimensional harmonic oscillator provides another example for which we can straightfor-
wardly count the number of microstates in both the classical and quantum cases. The total energy
of the harmonic oscillator is given by

E =
p2

2m
+

1
2
kx2, (4.30)

where k is the spring constant and m is the mass of the particle.

Classical calculation. The shape of the phase space area traversed by the trajectory x(t), p(t)
can be determined from (4.30) by dividing both sides by E and substituting ω2 = k/m:

x(t)2

2E/mω2
+
p(t)2

2mE
= 1. (4.31)

where the total energy E is a constant of the motion. From the form of (4.31) we see that the
shape of phase space of a one-dimensional harmonic oscillator is an ellipse,

x2

a2
+
p2

b2
= 1, (4.32)

with a2 = 2E/(mω2) and b2 = 2mE. Hence, the area of phase space is πab = 2πE/ω, and the
number of states with energy less than or equal to E is given by

Γcl(E) =
πab

∆x∆p
=

2πE
ω∆x∆p

. (4.33)

Quantum mechanical calculation. The energy eigenvalues of the harmonic oscillator are given
by

En = (n+
1
2

) ~ω. (n = 0, 1, 2, . . .) (4.34)

Hence the number of microstates is given by

Γqm(E) = n =
E

~ω
− 1

2
→ E

~ω
. (4.35)

We see that Γqm(E) = Γcl(E) for all E, if 2π/(∆x∆p) = ~ or ∆x∆p = h as before.
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Figure 4.7: The points represent possible values of nx and ny such that R2 = n2
x + n2

y = 122.
Note that nx and ny are integers such that nx, ny ≥ 1. Each point represents a single particle
microstate. What is the total number of states for R = 12? The corresponding number from the
asymptotic relation is Γ(E) = π 122/4 ≈ 113.

4.3.5 One particle in a two-dimensional box

Consider a single particle of mass m in a rectangular box of sides Lx and Ly. The energy of the
particle is given by

E =
p2

2m
=

1
2m

(px2 + py
2). (4.36)

Because the wave function takes the form of a standing wave in two dimensions, The wave vector
k satisfies the conditions (see (4.29))

kx =
π

Lx
nx, ky =

π

Ly
ny. (nx, ny = 1, 2, 3, . . .) (4.37)

The corresponding eigenvalues are given by

Enx,ny
=

h2

8m

[
nx

2

Lx
2 +

ny
2

Ly
2

]
. (4.38)

The states of the particle are labeled by the two integers nx and ny with nx, ny > 0. The
possible values of nx, ny lie at the centers of squares of unit area as shown in Figure 4.7. For
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simplicity, we assume that the box is square so that Lx = Ly. The values of (nx, ny) for a given E
satisfy the condition

R2 = nx
2 + ny

2 =
(2L
h

)2
(2mE). (4.39)

For large values of nx and ny, the values of nx and ny that correspond to states with energy less
than or equal to E lie inside the positive quadrant of a circle of radius R, where

R =
2L
h

(2mE)1/2. (4.40)

Recall that nx and ny are both positive. Hence, the number of states with energy less than or
equal to E is given by

Γ(E) =
1
4
πR2 = π

L2

h2
(2mE). (4.41)

Note that V = L2 in this case.

Problem 4.17. Finite size effects in two dimensions
The expression (4.41) for Γ(E) is valid only for large E because the area of a quadrant of a
circle overestimates the number of lattice points nx, ny inside a circle of radius R. Use the ap-
plet/application at <stp.clarku.edu/simulations/numberofstates> and explore how the re-
lation Γ = πR2/4 approximates the actual number of microstates. The program computes the
number of nonzero, positive integers that satisfy the condition n2

x + n2
y ≤ R2. What is the mini-

mum value of R for which the difference between the asymptotic relation and the exact count is
less than 1%?

4.3.6 One particle in a three-dimensional box

The generalization to three dimensions is straightforward. If we assume that the box is a cube
with linear dimension L, we have

E =
h2

8mL2
[n2
x + n2

y + n2
z]. (4.42)

The values of nx, ny, and nz that correspond to microstates with energy less than or equal to E
lie inside the positive octant of a sphere of radius R given by

R2 = n2
x + n2

y + n2
z =

(2L
h

)2

(2mE). (4.43)

Hence
Γ(E) =

1
8

(4
3
πR3

)
=
π

6

(2L
h

)3

(2mE)3/2 =
4π
3
V

h3
(2mE)3/2, (4.44)

where we have let V = L3.

Problem 4.18. Finite size effects in three dimensions
The expression (4.44) for Γ(E) is valid only for large E because the area of an octant of a sphere
overestimates the number of lattice points nx, ny, nz. Use the applet/application at <stp.clarku.
edu/simulations/numberofstates> to determine how the relation Γ = πR3/6 approximates the
total number of microstate.

http://stp.clarku.edu/simulations/numberofstates
<stp.clarku.edu/simulations/numberofstates>
http://stp.clarku.edu/simulations/numberofstates
<stp.clarku.edu/simulations/numberofstates>
http://stp.clarku.edu/simulations/numberofstates
<stp.clarku.edu/simulations/numberofstates>
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Problem 4.19. Estimation of the number of states
Estimate the number of microstates accessible to a gas molecule at typical room temperatures
and pressures. We can estimate the mean energy E of a gas molecule such as nitrogen at room
temperature by using the relation E = 3NkT/2. Calculate the number of microstates Γ(E) with
energy less than E accessible to such a molecule enclosed in a box having a volume of one liter
(103 cm3). Consider a small energy interval ∆E = 10−27 J that is much smaller than E, and
calculate the number of microstates g(E)∆E accessible to the molecule in the range between E
and E + ∆E.

4.3.7 Two noninteracting identical particles and the semiclassical limit

Consider two noninteracting particles of mass m of the same species in a one-dimensional box of
length L. The total energy is given by

En1,n2 =
h2

8mL2
[n2

1 + n2
2], (4.45)

where the quantum numbers n1 and n2 are positive nonzero integers. To count the microstates
correctly, we need to take into account that particles of the same species are indistinguishable, one
of the fundamental principles of quantum mechanics.

As an example of how we would count the microstates of this two particle system, suppose that
the total energy is such that n2

1 +n2
2 ≤ 25. The values of n1 and n2 that satisfy this constraint are

given in Table 4.7. However, the indistinguishability of the particles means that we cannot simply
assign the quantum numbers n1 and n2 subject only to the constraint that n2

1 + n2
2 ≤ 25. For

example, because the state (n1 = 1, n2 = 2) is indistinguishable from the state (n1 = 2, n2 = 1),
we can count only one of these states.

The assignment of quantum numbers is further complicated by the fact that the particles must
obey quantum statistics. We will discuss the nature of quantum statistics in Section 6.5. In brief,
the particles must obey either Bose or Fermi statistics. If the particles obey Bose statistics, then
any number of particles can be in the same single particle quantum state. However, if the particles
obey Fermi statistics, then two particles cannot be in the same single particle quantum state, and
hence the states (n1, n2) = (1, 1), (2, 2), (3,3) are excluded.

Because the particles are indistinguishable, there are fewer microstates than if the particles
were distinguishable, and we might think that counting the microstates is easier. However, the
counting problem (enumerating the accessible microstates) is much more difficult because we cannot
enumerate the states for each particle individually. For example, if n1 = 1, then n2 6= 1. However,
the counting of states can be simplified in the semiclassical limit. Because the indistinguishability
of particles of the same species is intrinsic, the particles remain indistinguishable even as we let
h → 0. Because the classical limit corresponds to very large quantum numbers and the total
number of states is huge, we can ignore the possibility that two particles will be in the same single
particle quantum state and assume that the particles occupy single particle states that are all
different. That is, in the semiclassical limit, there are many more microstates than particles and
including a few extra microstates won’t make any difference.

For the simple example summarized in Table 4.7, the assumption that every particle is in a
different microstate implies that we can ignore the microstates (1, 1), (2, 2), and (3, 3). Hence, in
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distinguishable particles Bose statistics Fermi statistics semiclassical
n1 n2 n1 n2 n1 n2 n1 n2

1 1 1 1
2 1 2 1 2 1 2 1
1 2 1 2
2 2 2 2
3 1 3 1 3 1 3 1
1 3 1 3
3 2 3 2 3 2 3 2
2 3 2 3
3 3 3 3
4 1 4 1 4 1 4 1
1 4 1 4
4 2 4 2 4 2 4 2
2 4 2 4
4 3 4 3 4 3 4 3
3 4 3 4

Table 4.7: The quantum numbers of two noninteracting identical particles of mass m in a one-
dimensional box of length L with energies such that n2

1 + n2
2 ≤ 25. If the two particles obey

Fermi statistics, they cannot be in the same microstate, so n1 = 1 and n2 = 1 is not allowed for
example. There is no such restriction for Bose statistics. Because the particles are identical and
hence indistinguishable quantum mechanically, n1 = 1, n2 = 2 is indistinguishable from n1 = 2,
n2 = 1. In the semiclassical limit, there are many many states and the possibility of both particles
being in the same state is ignored. However, the particles remain indistinguishable. The number
of microstates of this two particle system is 12/2! = 6 in the semiclassical limit.

the semiclassical limit, we are left with six states (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), and (4, 3) that
satisfy the criterion n2

1 + n2
2 ≤ 25.

This example illustrates how we can simplify the counting of the microstates in the semiclas-
sical limit. We first count the total number of microstates of the N identical particles assuming
that the particles are distinguishable. For N = 2 and the constraint that n2

1 + n2
2 ≤ 25, we would

find 12 microstates, assuming that the two particles are in different single particle states (see the
last column of Table 4.7). We then correct for the overcounting of the microstates due to the
indistinguishability of the particles by dividing by N !, the number of permutations of the different
single particle states. For our example we would correct for the overcounting by dividing by the
2! ways of permuting two particles, and we obtain a total of 12/2! = 6 states.
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4.4 The Number Of States of N Noninteracting Particles:
Semiclassical Limit

We now apply these considerations to count the number of microstates ofN noninteracting particles
in a three-dimensional box in the semiclassical limit. A simpler way to do so that yields the correct
E and V dependence is given in Problem 4.20, but the numerical factors will not be identical to
the result of the more accurate calculation that we discuss here.

The idea is to first count the microstates assuming that the N particles are distinguishable
and then divide by N ! to correct for the overcounting. We know that for one particle in a three-
dimensional box, the number of microstates with energy less than or equal to E is given by
the volume of the positive part of the three-dimensional sphere of radius R (see (4.40)). For N
distinguishable particles in a three-dimensional box, the number of microstates with energy less
than or equal to E is given by the volume of the positive part of a 3N -dimensional hypersphere of
radius R = (2mE)1/2(2L/h). To simplify the notation, we consider the calculation of Vn(R), the
volume of a n-dimensional hypersphere of radius R, and write Vn(R) as

Vn(R) =
∫
r21+r22+···+r2n<R2

dr1 dr2 · · · drn. (4.46)

It is shown in Section 4.14.1 that Vn(R) is given by (for integer n)

Vn(R) =
2πn/2

nΓ(n/2)
Rn, (4.47)

where the Gamma function Γ(n) = (n−1)!, Γ(n+1) = nΓ(n) if n is an integer, and Γ(1/2) =
√
π/2.

The cases n = 2 and n = 3 yield the expected results, V2 = 2πR2/(2Γ(1)) = πR2 because Γ(1) = 1,
and V3 = 2π3/2R3/(3Γ(3/2)) = 4

3πR
3 because Γ(3/2) = Γ(1/2) = π1/2/2. The volume of the

positive part of a n-dimensional sphere of radius R is given by

Γn(R) =
(1

2

)n
Vn(R). (4.48)

(The volume Γn(R) should not be confused with the Gamma function Γ(n).)
We are interested in the case n = 3N and R = (2mE)1/2(2L/h). In this case the volume

Γ(E, V,N) is given by

Γ(E, V,N) =
(1

2

)3N 2π3N/2

3N(3N/2− 1)!
R3N/2 (4.49a)

=
(1

2

)3N π3N/2

(3N/2)!
R3N/2 (4.49b)

=
(1

2

)3N(2L
h

)3N/2 π3N/2

(3N/2)!
(2mE)3N/2 (4.49c)

=
( V
h3

)N (2πmE)3N/2

(3N/2)!
. (4.49d)
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If we include the factor of 1/N ! to correct for the overcounting of microstates in the semiclassical
limit, we obtain the desired result:

Γ(E, V,N) =
1
N !

( V
h3

)N (2πmE)3N/2

(3N/2)!
. (semiclassical limit) (4.50)

A more convenient expression for Γ can be found by using Stirling’s approximation for N � 1.
We have

ln Γ = − lnN ! +N ln
V

h3
+

3
2
N ln(2πmE)− ln

(3N
2

)
! (4.51a)

= −N lnN +N +N lnV − 3N
2

lnh2 +
3
2
N ln(2πmE)− 3

2
N ln

3N
2

+
3N
2

(4.51b)

= N ln
V

N
+

3
2
N ln

4πmE
3Nh2

+
5
2
N (4.51c)

= N ln
V

N
+

3
2
N ln

mE

3Nπ~2
+

5
2
N, (4.51d)

where we have let h = 2π~ to obtain (4.51d) from (4.51c).

Problem 4.20. We can obtain an equivalent expression for Γ(E, V,N) using simpler physical
considerations. We write

Γ(E, V,N) ≈ 1
N !

Γ1(
E

N
, V )Γ1(

E

N
, V ) . . .Γ1(

E

N
, V ), (4.52)

where Γ1(E, V ) is the number of states of a single particle with energy less than E in a three-
dimensional box of volume V . We have assumed that on the average each particle has an energy
E/N . Find the form of Γ(E, V,N) using the relation (4.44) for Γ1. Compare the V and E-
dependencies of Γ(E, V,N) obtained from this simple argument to (4.50). What about the N -
dependence?

Problem 4.21. Calculate g(E, V,N) and verify that Γ(E, V,N) and g(E, V,N) are rapidly in-
creasing functions of E, V , and N .

4.5 The Microcanonical Ensemble (Fixed E, V, and N)

So far, we have learned how to count the number of microstates of an isolated system. Such
a system of particles is specified by the energy E, volume V , and number of particles N . All
microstates that are consistent with these conditions are assumed to be equally probable. The
collection of systems in different microstates and specified values of E, V , and N is called the
microcanonical ensemble. In general, the energy E is a continuous variable, and the energy is
specified to be in the range E to E + ∆E.4

4For a quantum system, the energy E must always be specified in some range. The reason is that if the energy
were specified exactly, the system would have to be in an eigenstate of the system. If it were, the system would
remain in this eigenstate indefinitely, and a statistical treatment would be meaningless.
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In the following we show how the quantities that correspond to the usual thermodynamic
quantities, for example, the entropy, temperature, and pressure, are related to the number of
microstates. We will then use these relations to derive the ideal gas equation of state and other
well known results using (4.51d) for the number of microstates of an ideal gas of N particles in a
volume V with energy E.

We first establish the connection between the number of accessible microstates to various ther-
modynamic quantities by using arguments that are similar to our treatment of the simple models
that we considered in Section 4.2. Consider two isolated systems A and B that are separated by an
insulating, rigid, and impermeable wall. The macrostate of each system is specified by EA, VA, NA
and EB , VB , NB , respectively, and the corresponding number of microstates is ΩA(EA, VA, NA)
and ΩB(EB , VB , NB). Equilibrium in this context means that each accessible microstate is equally
represented in our ensemble. The number of microstates of the composite system consisting of the
two isolated subsystems A and B is

Ω = ΩA(EA, VA, NA) ΩB(EB , VB , NB). (4.53)

We want a definition of the entropy that is a measure of the number of microstates and that
is additive. It was assumed by Boltzmann that S is related to Ω by the well known formula, first
proposed by Planck:

S = k ln Ω. (4.54)

Note that if we substitute (4.53) in (4.54), we find that S = SA+SB , and S is an additive function
as it must be.

Next we modify the wall between A and B so that it becomes conducting, rigid, and imper-
meable. We say that we have relaxed the internal constraint of the composite system. The two
subsystems are now in thermal contact so that the energies EA and EB can vary, subject to the
condition that the total energy E = EA+EB is fixed; the volumes VA and VB and particle numbers
NA and NB remain unchanged. What happens to the number of accessible microstates after we
relax the internal constraint? If subsystem A has energy EA, it can be in any one of its Ω(EA)
microstates. Similarly, subsystem B can be in any one of its ΩB(E − EA) microstates. Because
every possible state of A can be combined with every possible state of B to give a different state of
the composite system, it follows that the number of microstates accessible to the composite system
when A has energy EA is the product ΩA(EA)ΩB(E −EA). Hence, the total number of accessible
microstates after the subsystems are in thermal equilibrium is

Ω(E) =
∑
EA

ΩA(EA)ΩB(E − EA). (4.55)

The probability that system A has energy EA is given by

P (EA) =
ΩA(EA)ΩB(E − EA)

Ω(E)
. (4.56)

Note that the logarithm of (4.55) does not yield a sum of two functions. However, the dominant
contribution to the right-hand side of (4.55) comes from the term with EA = ẼA, where ẼA is the
most probable value of EA. With this approximation we can write

Ω ≈ ΩA(ẼA)ΩB(E − ẼA). (4.57)
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The approximation (4.57) becomes more and more accurate as the thermodynamic limit (N,V →
∞, ρ = N/V = constant) is approached and allows us to write

S = k ln Ω = SA + SB (4.58)

before and after the constraint is removed. We see immediately that one consequence of the
proposed relation between S and Ω is that the entropy increases or remains unchanged after an
internal constraint is relaxed.

The relation S = k ln Ω is not mysterious. It is a matter of counting the number of accessible
microstates and assuming that they are all equally probable. The connection between the entropy
and the probability distribution of the system’s microstates was one of the great achievements of
Ludwig Boltzmann, and the equation S = k lnW appears on his tombstone.5

Given the definition (4.54) of S as a function of E, V , and N , it is natural to adopt the
thermodynamic definitions of temperature, pressure, and chemical potential:

1
T

=
( ∂S
∂E

)
V,N

(4.59)

P

T
=
( ∂S
∂V

)
E,N

(4.60)

µ

T
= −

( ∂S
∂N

)
E,V

. (4.61)

We have made the connection between statistical mechanics and thermodynamics.
How should we generalize the relation of S to the numbber of microstates for a system in

which the energy is a continuous variable? Three possibilities are

S = k ln g(E)∆E (4.62a)
S = k ln Γ (4.62b)
S = k ln g(E). (4.62c)

It is easy to show that in the limit N → ∞, the three definitions yield the same result (see
Problem 4.23). The reason is that Γ(E) and g(E) are such rapidly increasing functions of E that
it makes no difference whether we include the microstates with energy less than or equal to E or
just the states between E and E + ∆E.

Example 4.1. Find the pressure and thermal equations of state of an ideal classical gas.

Solution. If we use any of the definitions of S given in (4.62), we find that the entropy of an ideal
gas in the semiclassical limit for N →∞ is given by

S(E, V,N) = Nk
[

ln
V

N
+

3
2

ln
mE

3Nπ~2
+

5
2
]
. (4.63)

5See <en.wikipedia.org/wiki/Ludwig_Boltzmann> for a summary of Boltzmann’s life and accomplishments and
a photograph of his tombstone. Boltzmann never wrote down the relation S = k ln Ω and referred only to S and
the logarithm of the probability of a state being proportional. And the constant k was introduced by Planck, not
by Boltzmann.

http://en.wikipedia.org/wiki/Ludwig_Boltzmann
<en.wikipedia.org/wiki/Ludwig_Boltzmann>
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Problem 4.22. Compare the form of S given in (4.63) with the form of S determined from
thermodynamic considerations in Section 2.19.

Problem 4.23. Equivalent definitions of the entropy
Verify the result (4.63) for the entropy S of an ideal gas using any of the definitions of S given in
(4.62).

We now use the result (4.63) for S to obtain the thermal equation of state of an ideal classical
gas. From (4.63) we see that

1
T

=
( ∂S
∂E

)
V,N

=
3
2
Nk

E
, (4.64)

and hence we obtain the familiar result

E =
3
2
NkT. (4.65)

The pressure equation of state follows from (4.60) and (4.63) and is given by

P

T
=
( ∂S
∂V

)
E,N

=
Nk

V
,

and hence
PV = NkT. (4.66)

We have finally derived the equations of state of an ideal classical gas from first principles! We see
that we can calculate the thermodynamic information for an isolated system by counting all the
accessible microstates as a function of the total energy E, volume V , and number of particles N .
Do the equations of state depend on ~ and the various constants in (4.50)?

Note that we originally defined the ideal gas temperature scale in Section 2.4 by assuming
that T ∝ P . We then showed that the ideal gas temperature scale is consistent with the thermo-
dynamic temperature defined by the relation 1/T = (∂S/∂E)V,N . Finally, we have shown that the
association of S with the logarithm of the number of accessible microstates is consistent with the
relation P ∝ T for an ideal classical gas.

Problem 4.24. Use the relations (4.63) and (4.65) to obtain S as a function of T , V , and N
instead of E, V , and N . This relation is known as the Sackur-Tetrode equation.

Problem 4.25. Use (4.61) and (4.63) to derive the dependence of the chemical potential µ on
E, V , and N for a ideal classical gas. Then use (4.65) to determine µ(T, V,N). We will derive
µ(T, V,N) for the ideal classical gas more simply in Section 6.8.

Example 4.2. Consider a system of N noninteracting spins and find the dependence of its tem-
perature T on the total energy E. What is the probability that a given spin is up?

Solution. First we have to find the dependence of the entropy S on the energy E of the system.
As discussed in Sec. 4.3.1, the energy E for a system with n spins up out of N in a magnetic field
B is given by

E = −(n−n′)µB = −[n−(N−n)]µB = −(2n−N)µB, (4.15)
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where n′ = N − n is the number of down spins and µ is the magnetic moment of the spins. The
corresponding number of microstates is given by (4.17):

Ω(n) =
N !

n!(N − n)!
. (4.17)

From (4.15), we find that the value of n corresponding to a given E is given by

n =
1
2

(
N − E

µB

)
. (4.67)

The thermodynamic temperature T is given by

1
T

=
( ∂S
∂E

)
B,N

=
dS(n)
dn

dn

dE
= − 1

2µB
dS

dn
. (4.68)

To calculate dS/dn, we use the approximation (3.106) for large n:

d

dn
lnn! = lnn, (4.69)

and find
dS(n)
dn

= k[− lnn+ ln(N − n)], (4.70)

where S(n) = k ln Ω(n) from (4.17). Hence

1
T

= −k 1
2µB

ln
N − n
n

. (4.71)

Equation (4.71) yields T as a function of E by eliminating n using (4.67).
The natural variables in the microcanonical ensemble are E, V , and N . Hence, T is a derived

quantity and is found as a function of E. As shown in Problem 4.26, we can rewrite this relation
to express E as a function T . The result is

E = −NµB tanh
µB

kT
= −NµB tanhβµB, (4.72)

where β = 1/kT .
The probability p that a given spin is up is equal to the ratio n/N . We can solve (4.71) for

n/N and obtain (see Problem 4.26)

p =
n

N
=

1
1 + e−2µB/kT

, (4.73a)

=
eµB/kT

eµB/kT + e−µB/kT
=

eβµB

eβµB + e−βµB
, (4.73b)

We have obtained the result for p that we promised in Section 3.5.
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ensemble macrostate probability distribution thermodynamics

microcanonical E, V,N Pn = 1/Ω S(E, V,N) = k ln Ω

canonical T, V,N Pn = e−βEn/Z F (T, V,N) = −kT lnZ

grand canonical T, V, µ Pn = e−β(En−µNn)/Z Ω(T, V, µ) = −kT lnZ

Table 4.8: Summary of the three most common ensembles. Note that Ω is the number of acces-
sible microstates in the microcanonical ensemble and the thermodynamic potential in the grand
canonical ensemble.

Note we have had to consider all N spins even though the spins do not interact with each
another. The reason is that the N spins have a definite energy and hence we cannot assign the
orientation of the spins independently. We will obtain the result (4.73) by a more straightforward
method in Section 4.6.

Problem 4.26. Solve (4.71) for n/N and verify (4.73). Then use (4.15) to solve for E as a function
of T for a system of N noninteracting spins.

Although the microcanonical ensemble is conceptually simple, it is not the most practical en-
semble. The major problem is that because we must satisfy the constraint that E is specified, we
cannot assign energies to each particle individually, even if the particles do not interact. Another
problem is that because each microstate is as important as any other, there are no obvious ap-
proximation methods that retain only the most important microstates. Moreover, isolated systems
are very difficult to realize experimentally, and the temperature rather than the energy is a more
natural independent variable.

Before we discuss the other common ensembles, we summarize their general features in Ta-
ble 4.8. The internal energy E is fixed in the microcanonical ensemble and hence only the mean
temperature is specified and the temperature fluctuates. In the canonical ensemble the temper-
ature T and hence the mean energy is fixed, but the energy fluctuates. Similarly, the chemical
potential and hence the mean number of particles is fixed in the grand canonical ensemble, and
the number of particles fluctuates. In all of these ensembles, the volume V is fixed which implies
that the pressure fluctuates. We also can choose an ensemble in which the pressure is fixed and
the volume fluctuates.

∗Problem 4.27. Consider a collection of N distinguishable, harmonic oscillators with total energy
E. The oscillators are distinguishable because they are localized on different lattice sites. In one
dimension the energy of each particle is given by εn = (n+ 1

2 )~ω, where ω is the angular frequency.
Hence, the total energy can be written as E = (Q + 1

2N)~ω, where Q is the number of quanta.
Calculate the dependence of the temperature T on the total energy E in the microcanonical
ensemble using the result that the number of accessible microstates in which N distinguishable
oscillators can share Q indistinguishable quanta is given by Ω = (Q + N − 1)!/Q!(N − 1)! (see
(4.3)). Use this relation to find E(T ). The thermodynamics of this system is calculated much
more simply in the canonical ensemble as shown in Example 4.56.
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4.6 Systems in Contact with a Heat Bath: The Canonical
Ensemble (Fixed T, V, and N)

We now assume that the system of interest can exchange energy with a much larger system known
as a heat bath. The heat bath is sufficiently large that it is not significantly affected by the smaller
system. For example, if we place a glass of cold water into a room, the temperature of the water
will eventually reach the temperature of the air in the room. Because the volume of the glass is
small compared to the volume of the room, the cold water does not cool the air appreciably and
the air is an example of a heat bath.

The composite system, the system of interest plus the heat bath, is an isolated system. We
can characterize the macrostate of the composite system by E, V, N . The accessible microstates
of the composite system are equally probable. If the system of interest is in a microstate with
energy En, then the energy of the heat bath is Eb = E − En. Because the system of interest is
much smaller than the heat bath, we know that En � E.6

For a given microstate of the system, the heat bath can be in any one of a large number of
microstates such that the total energy of the composite system is E. The probability Pn that the
system is in microstate n with energy En is given by (see (4.53))

Pn =
1× Ωb(E − En)∑
n Ωb(E − En)

, (4.74)

where Ωb(E − En) is the number of microstates of the heat bath for a given microstate n of the
system of interest. As En increases, Ωb(E−En), the number of accessible microstates available to
the heat bath, decreases. We conclude that Pn is a decreasing function of En, because the larger
the value of En, the less energy is available to the heat bath.

We can simplify the form of Pn by using the fact that En � E. As we have seen before, we
cannot approximate Ωb(E−En) directly because Ωb is a rapidly varying function of its argument.
For this reason we take the logarithm of (4.74) and write

lnPn = C + ln Ωb(Eb = E − En), (4.75)

where C is related to the denominator of (4.74) and does not depend on En. We now expand
ln Ωb(E − En) and write

lnPn ≈ C + ln Ωb(E)− En
(∂ ln Ωb(Eb)

∂Eb

)
Eb=E

(4.76a)

= C + ln Ωb(E)− En
kT

. (4.76b)

We have used the relation

β ≡ 1
kT

=

(
∂ ln Ωb(Eb)

∂Eb

)
N,V

, (4.77)

6Note that it is not clear how we should assign the potential energy of interaction of particles at the interface of
the system and the heat bath. If the number of particles in the system of interest is large, the number of particles
near the interface between the two systems is small in comparison to the number of particles in the bulk so that
the potential energy of interaction of particles near the surface can be ignored. Nevertheless, these interactions are
essential in order for the system to come into thermal equilibrium with the heat bath.
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Figure 4.8: In general, different structure implies different chemical properties.

where T is the temperature of the heat bath. As can be seen from (4.77), β is proportional to the
inverse temperature of the heat bath. From (4.76b) we obtain

Pn =
1
Z
e−βEn . (Boltzmann distribution) (4.78)

The function Z is found from the normalization condition
∑
n Pn = 1 and is given by

Z =
∑
n

e−βEn . (partition function) (4.79)

The “sum over states” Z(T, V,N) is known as the partition function. (In German Z is known as
the Zustandsumme, a more descriptive term.) Note that Pn applies to a system in equilibrium
with a heat bath at temperature T . The nature of the system has changed from Section 4.5.

Problem 4.28. Discuss the relation between the qualitative results that we obtained in Table 4.6
and the Boltzmann distribution in (4.78).

Problem 4.29. The hydrocarbon 2-butene, CH3-CH = CH-CH3 occurs in two conformations
(geometrical structures) called cis- and trans. The cis (on this side) conformation of 2-butene has
both CH3 groups on the same side of the C = C double bond. In the trans (across) conformation
the CH3 groups are on opposite sides of the double bond (see Figure 4.8). The energy difference
∆E between the two conformations is approximately ∆E/k = 4180 K, with the trans conformation
lower than the cis conformation. Determine the relative abundance of the two conformations at
T = 300 K and T = 1000 K.

In the canonical ensemble the temperature T is fixed by the heat bath, and a macrostate is
specified by the temperature T , volume V , and the number of particles N . The mean energy of
the system is given by

E =
∑
n

PnEn =
1
Z

∑
n

En e
−βEn , (4.80)

where we have substituted the Boltzmann form (4.78) for the probability distribution. We use a
trick similar to that used in Section 3.5 to obtain a simpler form for E. First we write

E = − 1
Z

∂

∂β

∑
n

e−βEn , (4.81)
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where we have used the fact that ∂
∂β (e−βEn) = −Ene−βEn . Because

∂Z

∂β
= −

∑
n

Ene
−βEn , (4.82)

we can write

E = − 1
Z

∂Z

∂β
= − ∂

∂β
lnZ . (4.83)

We see that E is a function of T for fixed V and N and can be expressed as a derivative of Z.
In the same spirit, we can express CV , the heat capacity at constant volume, in terms of Z.

We have

CV =
∂E

∂T
=
dβ

dT

∂E

∂β
, (4.84)

=
1
kT 2

[ 1
Z

∂2Z

∂β2
− 1
Z2

(∂Z
∂β

)2]
, (4.85)

where ∂E/∂β has been calculated from (4.83). Because

E2 =
1
Z

∑
n

E2
n e
−βEn =

1
Z

∂2Z

∂β2
, (4.86)

we obtain the relation

CV =
1
kT 2

[
E2 − E2]

. (4.87)

Equation (4.87) relates the response of the system to a change in energy to the equilibrium energy
fluctuations. Note that we can calculate the variance of the energy, a measure of the magnitude of
the energy fluctuations, from the heat capacity. We will later find other examples of the relation
of the linear response of an equilibrium system to the equilibrium fluctuations of an associated
quantity.7

∗Problem 4.30. The isothermal compressibility of a system is defined as κ = −(1/V )
(
∂V/∂P

)
T

.
Explain why κ is a linear response. In analogy to the relation of CV to fluctuations in the energy,
what type of fluctuations do you think are related to κ (at fixed T , P , and N)?

Because the energy is restricted to a very narrow range in the microcanonical ensemble and
can range anywhere between zero and infinity in the canonical ensemble, it is not obvious that
the two ensembles give the same results for the thermodynamic properties of a system. One way
to understand why the thermodynamic properties are independent of the choice of ensemble is
to use the relation (4.87) to estimate the range of energies in the canonical ensemble that have a
significant probability. Because both E and CV are extensive quantities, they are proportional to
N . Hence, the relative fluctuations of the energy in the canonical ensemble is given by√

E2 − E2

E
=
√
kT 2CV

E
∼ N1/2

N
∼ N−1/2. (4.88)

7The relation (4.87) is important conceptually and is useful for simulations at a given temperature (see Sec-
tion 4.11). However, it is almost always more convenient to calculate CV from its definition in (4.84).
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From (4.88) we see that in the limit of large N , the relative fluctuations in the values of E that
would be observed in the canonical ensemble are vanishingly small. For this reason the mean
energy in the canonical ensemble is a well defined quantity just like it is in the microcanonical
ensemble. However, the fluctuations in the energy are qualitatively different in the two ensembles.

Problem 4.31. The Boltzmann probability given by (4.78) is the probability that the system is
in a particular microstate with energy En. On the basis of what you have learned so far, what
do you think is the form of the probability p(E)∆E that the system has energy between E and
E + ∆E?

In addition to the relation of the mean energy to ∂ lnZ/∂β, we can express the mean pressure
P in terms of ∂ lnZ/∂V . If the system is in microstate n, then a quasistatic change dV in the
volume produces the energy change

dEn =
dEn
dV

dV = −πn dV. (4.89)

The quantity dEn in (4.89) is the work done on the system in state n to produce the volume
change dV . The relation (4.89) defines the pressure πn = −dEn/dV of the system in microstate
n.8 Hence, the mean pressure of the system is given by

P =
∑
n

πnPn. (4.90)

From (4.78), (4.79), and (4.90) we can express the mean pressure as

P = kT
(∂ lnZ
∂V

)
T,N

. (4.91)

Note that in defining the pressure, we assumed that a small change in the volume does not
change the probability distribution Pn of the microstates, but changes only the energy En of the
microstates. In general, a perturbation of the system will induce transitions between the different
microstates of the system and hence change the probabilities Pn as well as the energy of the
microstates. That is, if the system is initially in microstate n, it will not stay in this state as the
volume is changed. However, if the change occurs sufficiently slowly so that the system can adjust
to the change, then the system will remain in state n. As discussed in Chapter 2, such a change is
called quasistatic.

We can use the relation E =
∑
n PnEn to write the total change in the energy as

dE =
∑
n

EndPn +
∑
n

PndEn. (4.92)

The second term in (4.92) can be written as∑
n

Pn dEn =
∑
n

Pn
dEn
dV

dV. (4.93)

8We have written the pressure in microstate n as πn rather than Pn or pn to avoid confusion with the probability.
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Figure 4.9: The The probability distribution changes when energy is transferred to the system
incoherently, that is, by heating. The energy levels remain fixed if no work is done on the system.

The identification of the second term in (4.92) with the work done on the system allows us to
rewrite (4.92) as

dE =
∑
n

En dPn − P dV. (4.94)

If we use the fundamental thermodynamic relation (2.132), dE = TdS − PdV (for fixed N), we
can identify the first term in (4.94) with the change in entropy of the system. Hence, we have

TdS =
∑
n

En dPn. (4.95)

From (4.95) we see that a change in entropy of the system is related to a change in the probability
distribution (see Figure 4.9).

We can use (4.95) to obtain an important conceptual expression for the entropy. We rewrite
Pn = e−βEn/Z as En = −kT (lnZ + lnPn), and substitute this relation for En into (4.95):

TdS =
∑
n

En dPn = −kT
∑
n

lnZ dPn − kT
∑
n

lnPn dPn. (4.96)

The first term in (4.96) is zero because the total change in the probability must sum to zero. From
(4.96) we write

dS = −k
∑
n

lnPn dPn, (4.97a)

= −k
∑
n

d(Pn lnPn). (4.97b)

We integrate both sides of (4.97b) to obtain the desired result:

S = −k
∑
n

Pn lnPn . (4.98)
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We have assumed that the constant of integration is zero (see the following). The quantity defined
by (4.11) and (4.98) is known as the statistical entropy in contrast to the thermodynamic entropy
introduced in Chapter 2. Note the similarity of (4.98) to the uncertainty function defined in (3.38).

The relation (4.98) for S is also applicable to the microcanonical ensemble. If there are Ω
accessible microstates, then Pn = 1/Ω for each state because each state is equally likely. Hence,

S = −k
Ω∑
n=1

1
Ω

ln
1
Ω

= −kΩ
1
Ω

ln
1
Ω

= k ln Ω. (4.99)

The constant of integration in going from (4.97b) to (4.98) must be set to zero so that S reduces to
its form in the microcanonical ensemble. We see that we can interpret (4.98) as the generalization
of its microcanonical form with the appropriate weight for each state.

It is remarkable that the statistical entropy defined by (4.11) and (4.98) is equivalent to its
thermodynamic definition which can be expressed as

dS =
dQ

T
. (4.100)

The relation (4.98) is of fundamental importance and shows that the entropy is uniquely
determined by the probability distribution Pn of the different microstates. Note that complete
predictability (only one accessible microstate) implies the vanishing of the entropy. Also as the
number of accessible microstates increases, the greater the value of S and hence the higher the
degree of unpredictability of the system.

The idea of entropy has come a long way. It was first introduced into thermodynamics as
a state function to account for the irreversible behavior of macroscopic systems under certain
conditions. The discovery of the connection between this quantity and the probability distribution
of the system’s microstates was one of the great achievements of Ludwig Boltzmann. Since then,
our understanding of entropy has been extended by Shannon and Jaynes and others to establish a
link between thermodynamics and information theory (see Section 3.4.1). In this context we can
say that S is a measure of the lack of information, because the greater the number of microstates
that are available to a system in a given macrostate, the less we know about which microstate the
system is in.

Although the relation (4.11) is of fundamental importance, we will not use it to calculate
the entropy in any of the applications that we consider. The calculation of the entropy will be
discussed in Section 4.7.

The third law of thermodynamics. The third law was first formulated by Nernst in 1906
based on experimental observations. We can easily see that the law follows from the statistical
definition of the entropy. At T = 0, the system is in the ground state which we will label by 0.
From (4.98) we see that if Pn = 1 for state 0 and is zero for all other microstates, then S = 0.
We conclude that S → 0 as T → 0 if the system has an unique ground state. This behavior is
what is expected for simple systems. However, as will discuss in the following, the statement that
S(T = 0) = 0 at T = 0 is in general not correct. So we will state Nernst’s theorem or the third
law of thermodynamics as

The entropy of a system at T = 0 is a well-defined constant. For any processes that
bring a system at T = 0 from one equilibrium state to another, ∆S = 0.
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If there are g(0) microstates with the same ground state energy, then the corresponding
(residual) entropy is S(T = 0) = k ln g(0). In this case the ground state is degenerate.9 As
an example, because an electron has spin 1/2, it has two quantum states for each value of its
momentum. In practice, there is always a very small, but nonzero magnetic field due to the
Earth’s magnetic field for example. So if we could measure the residual entropy directly, we would
find that S(T = 0) = 0. However, there are some complex systems for which g(0) ∝ eN .10 In
either case, we conclude that the heat capacities must go to zero as T → 0 (see Problem 4.49).

Problem 4.32. Explain why the entropy associated with the ground state of a system of N
electrons is kN ln 2.

4.7 Connection Between Statistical Mechanics and Thermo-
dynamics

We have seen that the statistical quantity that enters into the calculation of the mean energy and
the mean pressure is not Z, but lnZ (see (4.83) and (4.91)). We also learned in Section 2.21 that
the Helmholtz free energy F = E−TS is the thermodynamic potential for the variables T , V , and
N . Because this set of variables corresponds to the variables specified by the canonical ensemble,
it is natural to look for a connection between lnZ and F , and we define the latter as

F = −kT lnZ . (statistical mechanics definition of the free energy) (4.101)

At this stage the quantity defined in (4.101) has no obvious relation to the thermodynamic potential
F = E − TS that we defined in (2.151).

We now show that F as defined by (4.101) is equivalent to the thermodynamic definition
F = E − TS. This equivalence and the relation (4.101) gives the fundamental relation between
statistical mechanics and thermodynamics for given values of T , V , and N , just as S = k ln Ω gives
the fundamental relation between statistical mechanics and thermodynamics for given values of E,
V , and N (see Table 4.8).

We write the total change in the quantity βF = − lnZ as

d(βF ) = − 1
Z

∂Z

∂β
dβ − 1

Z

∂Z

∂V
dV

= E dβ − βP dV, (4.102)

where we have used (4.83) and (4.90). We add and subtract βdE to the right-hand side of (4.102)
to find

d(βF ) = Edβ + βdE − βdE − βPdV (4.103a)

= d(βE)− β(dE + PdV ). (4.103b)

9An energy level is said to be degenerate if there are two or more microstates with the same energy.
10A simple example of a system with a nontrivial number of ground states is the Ising antiferromagnet on the

triangular lattice. We will discuss this system in Problem 5.16. In this case the system has a nonzero entropy at
zero temperature.
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Hence, we can write
d(βF − βE) = −β(dE + PdV ). (4.104)

From the thermodynamic relation dE = TdS − PdV (for fixed N), we can rewrite (4.104) as

d(βF − βE) = −β(dE + PdV ) = −βTdS = −dS/k. (4.105)

If we integrate (4.105), we find

S/k = β(E − F ) + constant, (4.106)

or
F = E − TS + constant. (4.107)

If we make the additional assumption that the free energy should equal the internal energy of the
system at T = 0, we can set the constant in (4.107) equal to zero, and we obtain

F = E − TS. (4.108)

Equation (4.108) is equivalent to the thermodynamic definition of the Helmholtz free energy with
E replaced by E. In the following, we will write E instead of E because the distinction will be
clear from the context.

In Section 2.21 we showed that the Helmholtz free energy F is the natural thermodynamic
potential for given values of T , V , and N and that

S = −
(∂F
∂T

)
V,N

. (4.109)

P = −
(∂F
∂V

)
T,N

(4.110)

µ =
( ∂F
∂N

)
T,V

. (4.111)

These relations still hold with F = −kT lnZ.
We have found that if we start with the statistical mechanical relation F = −kT lnZ (see

(4.101)), we obtain the thermodynamic relation F = E − TS (see (4.108)). It is instructive to
start with the latter and show that it implies that F = −kT lnZ. We substitute E = −∂ lnZ/∂β
and the relation S = kβ2(∂F/∂β) (see (4.109)) and find

F = E − TS = −∂ lnZ
∂β

− β
(∂F
∂β

)
V,N

. (4.112)

We rewrite (4.112) as

F + β
(∂F
∂β

)
V,N

= −∂ lnZ
∂β

=
(∂βF
∂β

)
V,N

. (4.113)

If we integrate both sides of (4.113), we find (up to a constant) that

F = −kT lnZ. (4.114)
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4.8 Simple Applications of the Canonical Ensemble

To gain experience with the canonical ensemble, we consider some relatively simple examples. In
all of these examples, the goal is to calculate the partition function. Then we calculate the free
energy using (4.101), the entropy from (4.109), and the mean energy from (4.83). (In these simple
examples, the volume of the system will not be relevant, so we will not calculate the pressure.) In
principle, we can follow this “recipe” for any physical system. We will later find that summing
over the microstates to evaluate the partition function is usually a formidable task and can be done
exactly in only a few cases.

Example 4.3. Consider a system consisting of two distinguishable particles. Each particle has two
states with single particle energies 0 and ∆. The quantity ∆ is called the energy gap. The system
is in equilibrium with a heat bath at temperature T . What are the thermodynamic properties of
the system?

Solution. The states of this two-particle system are (0, 0), (0,∆), (∆, 0), and (∆,∆). The partition
function Z2 is given by

Z2 =
4∑

n=1

e−βEn (4.115a)

= 1 + 2e−β∆ + e−2β∆ (4.115b)

= (1 + e−β∆)2. (4.115c)

We see that we can express Z2 in terms of Z1, the partition function for one particle:

Z1 =
2∑

n=1

e−βεn = 1 + e−β∆. (4.116)

By comparing the forms of (4.115c) and (4.116), we find that

Z2 = Z2
1 . (4.117)

What do you expect the relation is between ZN , the partition function for N noninteracting
distinguishable particles, and Z1?

Note that if the two particles were indistinguishable, there would be three microstates if the
particles were bosons and one microstate if the particles are fermions, and the relation (4.117)
would not hold.

Because Z2 is simply related to Z1, we can consider the statistical properties of a system
consisting of one particle with Z1 given by (4.116). From (4.78) we find the probability that the
system is in each of its two possible states is given by:

p1 =
1
Z1

=
1

1 + e−β∆
(4.118a)

p2 =
e−β∆

Z1
=

e−β∆

1 + e−β∆
. (4.118b)
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The average energy is given by

e =
2∑

n=1

Pnεn =
∆ e−β∆

1 + e−β∆
. (4.119)

We will use a lower case symbol to denote the results for one particle.
Of course, e could also be found from the relation e = −∂ lnZ1/∂β. For our example, we have

Z1 = 1 + e−β∆ (4.120)

and
∂Z

∂β
= −∆e−β∆. (4.121)

Hence

e = − ∂

∂β
lnZ1 = − 1

Z

∂Z

∂β
=

∆e−β∆

1 + e−β∆
, (4.122)

in agreement with (4.119). The energy of N noninteracting, distinguishable particles of the same
type is given by E = Ne.

It is easy to calculate the various thermodynamic quantities directly from the partition function
in (4.115c). The free energy per particle, f , is given by

f = −kT lnZ1 = −kT ln[1 + e−β∆], (4.123)

and s, the entropy per particle, is given by

s = −
( ∂f
∂T

)
V

= k ln[1 + e−β∆] + k
β∆

1 + eβ∆
. (4.124)

If we had not already calculated the average energy e, we could also obtain it from the relation
e = f − Ts. Confirm that the various ways of determining e yield the same results as found in
(4.119). The behavior of the various thermodynamic properties of this system are explored in
Problem 4.53.

Example 4.4. Determine the thermodynamic properties of a one-dimensional harmonic oscillator
in equilibrium with a heat bath at temperature T .

Solution. The energy levels of a single harmonic oscillator are given by

εn = (n+
1
2

)~ω. (n = 0, 1, 2, . . .) (4.125)

The corresponding partition function is

Z =
∞∑
n=0

e−β~ω(n+1/2) = e−β~ω/2
∞∑
n=0

e−nβ~ω (4.126a)

= e−β~ω/2(1 + e−β~ω + e−2β~ω + · · · ) = e−β~ω/2(1 + x+ x2 + · · · ), (4.126b)
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where x = e−β~ω. The infinite sum in (4.126b) is a geometrical series in x and can be summed
using the result that 1 + x+ x2 + . . . = 1/(1− x) (see Appendix A). The result is

Z =
e−β~ω/2

1− e−β~ω , (4.127)

and

lnZ = −1
2
β~ω − ln(1− e−β~ω). (4.128)

Problem 4.33. Thermodynamics of a system of harmonic oscillators in the canonical ensemble

(a) Show that

f =
1
2

~ω + kT ln(1− e−β~ω) (4.129)

s = k
[ β~ω
eβ~ω − 1

− ln(1− e−β~ω)
]

(4.130)

e = ~ω
[1
2

+
1

eβ~ω − 1
]
. (4.131)

Equation (4.131) is Planck’s formula for the mean energy of an oscillator at temperature T .
The heat capacity is discussed in Problem 4.56.

(b) Given the result (4.131) what is the mean energy of a system of N harmonic oscillators in
equilibrium with a heat bath at temperature T?

(c) Compare your answer with the result for the energy of N harmonic oscillators calculated in
the microcanonical ensemble in Problem 4.27. Do the two ensembles give identical results?

Equation (4.79) for Z is a sum over all the microstates of the system. Because the energies
of the different microstates may be the same, we can group together microstates with the same
energy and write (4.79) as

Z =
∑
levels

g(El) e−βEl , (4.132)

where g(El) is the number of microstates with energy El. The sum in (4.132) is over all the energy
levels of the system, rather than over all the microstates of the system.

Example 4.5. Consider a three level single particle system with five microstates with energies
0, ε, ε, ε, and 2ε. What is g(εl) for this system? What is the mean energy of the system if it is
equilibrium with a heat bath at temperature T?

Solution. The partition function is given by (see (4.132))

Z1 = 1 + 3e−βε + e−2βε. (4.133)

Hence, the mean energy of a single particle is given by

e = ε
3e−βε + 2e−2βε

1 + 3e−βε + e−2βε
. (4.134)

What is the energy of N such particles?
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Problem 4.34. In Section 4.3.2 we were given the number of states with energy E for the one-
dimensional Ising model. Use the result (4.18) to calculate the free energy of the one-dimensional
Ising model for N = 2 and 4.

4.9 Example of a Simple Thermometer

Consider a system of one particle which we will call a demon that can exchange energy with another
system (see page 17). The demon obeys the following rules or algorithm:

1. Set up an initial microstate of the system with the desired total energy and assign an initial
energy to the demon. (The initial demon energy is usually set to zero.)

2. Make a trial change in the microstate. For the Einstein solid, choose a particle at random
and randomly increase or decrease its energy by unity. For a system of particles, change the
position of a particle by a small random amount. For the Ising model, flip a spin chosen at
random. Compute the change in energy of the system, ∆E. If ∆E ≤ 0, accept the change,
and increase the energy of the demon by |∆E|. If ∆E > 0, accept the change if the demon
has enough energy to give to the system, and reduce the demon’s energy by ∆E. If a trial
change is not accepted, the existing microstate is counted in the averages. In either case the
total energy of the system plus the demon remains constant.

3. Repeat step 2 many times choosing particles (or spins) at random.

4. Compute the averages of the quantities of interest once the system and the demon have
reached equilibrium.

The demon can trade energy with the system as long as its energy remains greater than its lower
bound, which we have chosen to be zero. The demon is a facilitator that allows the particles in
the system to indirectly trade energy with one another.

In Problems 4.35 and 4.37 we use the demon algorithm to determine the probability that the
demon is in a particular microstate.

Problem 4.35. The demon and the ideal gas
Consider a demon that exchanges energy with an ideal classical gas of N identical particles of mass
m in one dimension. Because the energy of a particle depends only on its speed, the positions of
the particles are irrelevant in this case. The demon chooses a particle at random and change its
velocity by an amount, δ, chosen at random between −∆ and ∆. The change in energy of the
system is the difference ∆E = 1

2 [(v + δ)2 − v2], where we have chosen units so that m = 1. The
parameter ∆ is chosen so that the percentage of accepted changes is between 30% to 50%. The
applet/application at <stp.clarku.edu/simulations/demon/idealgas.html> implements this
algorithm. The applet chooses the special microstate for which all the velocities of the particles
in the system are identical so that the system has the desired initial energy. The initial demon
energy is set to zero for simplicity.

(a) The demon can be considered to be a small system in equilibrium with a much larger system.
Before you do the simulation, sketch the energy-dependence of the probability p(Ed)dEd that
the demon has an energy between Ed and Ed + dEd.

http://stp.clarku.edu/simulations/demon/idealgas.html
<stp.clarku.edu/simulations/demon/idealgas.html>
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(b) Consider a small number of particles, say N = 10. After the demon and the system have
reached equilibrium, what is Ed, the mean energy of the demon, and E/N , the mean energy
per particle of the system? Fix N = 20 and increase the total energy of the system. How does
the ratio of Ed/(E/N) depend on the total energy?

(c) Compare the initial mean velocity of the particles in the system to the mean value after
equilibrium has been established. Would your results be different if the demon had a nonzero
initial energy if the total energy of the demon plus the system was the same as before?

(d) Run for a sufficient number of trials so that the form of p(Ed) is well defined. Use the Enable
log scale button in the Views menu to verify the exponential form of p(Ed). Fit your results
to the form p(Ed) ∝ exp(−βEd), where β is a parameter. Given the form of p(Ed), determine
analytically the dependence of the mean demon energy on β (see Problem 4.36) and compare
your prediction with your numerical results. Estimate T from the inverse slope of ln p(Ed)
versus Ed. (The units are such that the Boltzmann constant k = 1.)

(e) What is the relation of the mean energy per particle in the system to the temperature? Use
the results that you found in parts (b) and (d) to explain the relation between Ed and E/N .

(f) How do your results change for an ideal gas in two and three dimensions?

Problem 4.36. Temperature dependence of the mean demon energy I
A demon exchanges energy with an ideal classical gas of N particles in one dimension (see Prob-
lem 4.35). What is the mean energy of the demon?

In this case the demon energy is a continuous variable. Hence,

Ed =

∫∞
0
Ed e

−βEd∫∞
0
e−βEd

. (4.135)

(a) Explain why the relation (4.135) for the demon energy is reasonable and determine the tem-
perature dependence of Ed.

(b) Would this temperature dependence be different if the gas were two- or three-dimensional?
Would the temperature dependence change if the particles in the gas interacted with one
another?

Problem 4.37. The demon and the Einstein solid
Consider a demon that exchanges energy with an Einstein solid of N particles. The demon chooses
a particle at random and randomly increases or decreases its energy by one unit consistent with
the constraint that Ed ≥ 0. In this case the energy of the particle chosen also must remain
nonnegative. If a trial change is not accepted, the existing microstate is counted in all averages.
Use the applet/application at <stp.clarku.edu/simulations/demon/einsteinsolid.html>.

a) Choose N = 20 and E = 40. Does Ed eventually reach a well defined average value? If so, what
is the mean energy of the demon after equilibrium between the demon and the system has been
established? Compare the values of Ed and E/N , the mean energy per particle of the system.

http://stp.clarku.edu/simulations/demon/einsteinsolid.html
<stp.clarku.edu/simulations/demon/einsteinsolid.html>
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b) Compute the probability P (Ed) that the demon has the energy Ed. Fit your results to the form
P (Ed) ∝ exp(−βEd), where β is a parameter. Then increase E to E = 80. How do the various
averages change? If time permits, increase E and N and determine any changes in P (Ed and
the ratio Ed/E/N .

c) Is there a simple relation between Ed and E/N?

Problem 4.38. Temperature dependence of the mean demon energy II
A demon exchanges energy with a system of an Einstein solid of N particles (see Problem 4.37).
What is the mean energy of the demon?

(a) Explain why the energy of the demon is restricted to integer values.

(b) Explain why the demon’s mean energy is given by

Ed =
∑∞
n=0 ne

−βn∑∞
n=0 e

−βn . (4.136)

(c) Do the sums in (4.136) to determine the temperature dependence of Ed. (It is necessary to
only do the sum in the denominator of (4.136).)

(d) Why is the temperature dependence of Ed different if the demon exchanges energy with an
ideal gas rather than an Einstein solid?

(e) In what limit does the temperature dependence become the same?

4.10 Simulations of the Microcanonical Ensemble

How can we implement the microcanonical ensemble on a computer? One way to do so for a
classical system of particles is to use the method of molecular dynamics (see Section 1.5). In
this method we choose initial conditions for the positions and velocities of each particle that are
consistent with the desired values of E, V , and N . The numerical solution of Newton’s equations
generates a trajectory in 3N -dimensional phase space. Each point on the trajectory represents a
microstate of the microcanonical ensemble with the additional condition that the momentum of
the center of mass is fixed. The averages over the phase space trajectory represent a time average.

To do such a simulation we need to be careful to choose a representative initial condition.
For example, suppose that we started with the particles in one corner of the box. Even though a
microstate with all the particles in one corner is as likely to occur as other microstates with the
same energy, there are many more microstates for which the particles are spread throughout the
box than there are those with particles in one corner.

As we will justify further in Section 6.3, we can identify the temperature of a system of
interacting particles with the kinetic energy per particle using the relation (4.65). (For the ideal
gas the total energy is simply the kinetic energy.) If we were to do a molecular dynamics simulation,
we would find that the total energy is (approximately) constant, but the kinetic energy and hence
the temperature fluctuates. The mean temperature of the system becomes well defined if the system
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is in equilibrium, the number of particles in the system is sufficiently large, and the simulation is
done for a sufficiently long time.

Our assumption that a molecular dynamics simulation generates microstates consistent with
the microcanonical ensemble is valid as long as a representative sample of the accessible microstates
can be reached during the duration of the simulation. Such a system is said to be quasi-ergodic.

What if we have a system of fixed total energy for which Newton’s equations of motion is not
applicable? For example, there is no dynamics for Einstein solid in which the particles have only
integer values of the energy. Another general way of generating representative microstates is to
use a Monte Carlo method. As an example, consider a system of N noninteracting distinguishable
particles whose single particle energies are 0, 1, 2, . . . For this model the relevant variables are the
quantum numbers of each particle such that their sum equals the desired total energy E. Given
a set of quantum numbers, how do we generate another set of quantum numbers with the same
energy? Because we want to generate a representative sample of the accessible states, we need to
make all changes at random. One possibility is to choose a particle at random and make a trial
change in its energy by ±1. However, such a trial change would change the total energy of the
system and hence not be acceptable. (For this simple example of noninteracting particles, we could
choose two particles at random and make trial changes, some of which would leave the total energy
unchanged.)

A more interesting example is the Ising model in which the spins interact with their nearest
neighbors with an energy +J if the spins are parallel and energy −J if the spins are antiparallel (see
Section 1.10.3). We will discuss the Ising model in some detail in Chapter 5. Here it is sufficient
to understand that the individual spins interact with one another.

The condition that the total energy be fixed makes sampling the accessible microstates of the
Ising model difficult. If we choose a spin at random and flip it, the change will change the energy
of the system in general. This difficulty is analogous to the difficulty that we have already found
doing calculations in the microcanonical ensemble. We can circumvent this difficulty by relaxing
the condition that the total energy be fixed by adding to the system of N particles an extra degree
of freedom called the demon, as we discussed in Section 4.9. The total energy of the demon plus
the original system is fixed. Because the demon is one particle out of N + 1, the fluctuations in
the energy of the original system are order 1/N , which goes to zero as N →∞.

4.11 Simulations of the Canonical Ensemble

Suppose that we wish to simulate a system that is in equilibrium with a heat bath at temperature
T . One way to do so is to start with an arbitrary microstate of energy E and weight it by its
relative probability e−βE . For example, for the Einstein solid considered in Section 4.10, we could
generate another microstate by choosing a particle at random and changing its energy by ±1 at
random. A new microstate would be generated and the mean energy of the system would be
estimated by

E(T ) =
∑M
n=1Ene

−βEn∑M
n=1 e

−βEn

, (4.137)

where En is the energy of microstate n and the sum is over the M states that have been generated
in this way. However, this procedure would be very inefficient because the M states would include
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many states whose weight in averages such as (4.137) would be very small.
To make the sampling procedure effective, we need to generate microstates with probabilities

proportional to their weight, that is, proportional to e−βEn . In this way we would generate states
with the highest probability. Such a sampling procedure is known as importance sampling. The
simplest and most common method of importance sampling in statistical mechanics is known as
the Metropolis algorithm. The method is based on the fact that the ratio of the probability that
the system is in state j with energy Ej to the probability of being in state i with energy Ei is
pj/pi = e−β(Ej−Ei) = e−β∆E , where ∆E = Ej − Ei. We interpret this ratio as the probability of
making a transition from state i to state j. If ∆E < 0, the quantity e−β∆E is greater than unity,
and the probability is unity. The Metropolis algorithm can be summarized as follows:

1. Choose an initial microstate, for example, choose random initial energies for each particle in
an Einstein solid or random positions in a system of particles interacting via the Lennard-
Jones potential.

2. Make a trial change in the microstate. For the Einstein solid, choose a particle at random
and increase or decrease its energy by unity. For a system of particles, change the position
of a particle by a small random amount. Compute the change in energy of the system, ∆E,
corresponding to this change. If ∆E < 0, then accept the change. If ∆E > 0, accept the
change with probability w = e−β∆E . To do so, generate a random number r uniformly
distributed in the unit interval. If r ≤ w, accept the new microstate; otherwise, retain the
previous microstate.

3. Repeat step 2 many times.

4. Compute the averages of the quantities of interest once the system has reached equilibrium.

Problem 4.39. Simulation of the Einstein solid in equilibrium with a heat bath
Use the Metropolis algorithm to simulate an Einstein solid of N particles at a temperature T .
The applet/application at <stp.clarku.edu/simulations/EinsteinSolidHeatBath.html> im-
plements the Metropolis algorithm by choosing a particle at random and randomly increasing or
decreasing its energy by one unit. If the energy is decreased, the change is accepted. If the energy
is increased, the program generates a number r at random in the unit interval and accepts the
change if r ≤ e−β , where β = 1/T . (As usual, we choose units such that Boltzmann’s constant
k = 1.) If a trial change is not accepted, the existing microstate is counted in all averages.

(a) Choose N = 20 and β = 1. Does the energy of the system eventually reach a well defined
average? If so, vary β and determine E(T ).

(b) Compare your results to the analytical results you found in Example 4.4.

4.12 Grand Canonical Ensemble (Fixed T, V, and µ)

In Section 4.6 we derived the Boltzmann probability distribution for a system in equilibrium with
a heat bath at temperature T . The role of the heat bath is to fix the temperature and hence the
mean energy of the system. We now find the probability distribution for a system in equilibrium

http://stp.clarku.edu/simulations/EinsteinSolidHeatBath.html
<stp.clarku.edu/simulations/EinsteinSolidHeatBath.html>
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with a heat bath at temperature T and a particle reservoir with chemical potential µ. In this case
the role of the particle reservoir is to fix the chemical potential and hence the mean number of
particles. This ensemble is known as the grand canonical ensemble.

As before, the composite system is isolated with total energy E, total volume V , and total
number of particles N . The probability that the (sub)system is in microstate n with energy En
and Nn particles is given by (see (4.74))

Pn =
1× Ωb(E − En, N −Nn)∑
n Ωb(E − En, N −Nn)

. (4.138)

The difference between (4.74) and (4.138) is that we have allowed both the energy and the number
of particles of the system of interest to vary. As before, we take the logarithm of both sides of
(4.138) and exploit the fact that En � E and Nn � N . We have

lnPn ≈ constant− En
∂ ln Ωb(E)

∂E
−Nn

∂ ln Ωb(N)
∂N

. (4.139)

The derivatives in (4.139) are evaluated at Ebath = E and Nreservoir = N , respectively. If we
substitute β = ∂ ln Ωb/∂E (see (4.77)) and βµ = −∂ ln Ωb/∂N (see (2.125)), we obtain

lnPn = constant− En
kT

+
µNn
kT

, (4.140)

or

Pn =
1
Z
e−β(En−µNn) . (Gibbs distribution) (4.141)

Equation (4.141) is the Gibbs probability distribution for a variable number of particles. This
distribution gives the probability that the system is in state n with energy En and Nn particles.
The grand partition function Z in (4.141) is found from the normalization condition∑

n

Pn = 1. (4.142)

Hence, we obtain

Z =
∑
n

e−β(En−µNn) . (4.143)

In analogy to the relations we found in the canonical ensemble, we expect that there is a
simple relation between the Landau potential defined in (2.167) and the grand partition function.
Because the derivation of this relation proceeds as in Sec. 4.6, we simply give the relation:

Ω = −kT lnZ . (4.144)

Example 4.6. Many impurity atoms in a semiconductor exchange energy and electrons with the
electrons in the conduction band. Consider the impurity atoms to be in thermal and chemical
equilibrium with the conduction band, which can be considered to be an energy and particle
reservoir. Assume that ∆ is the ionization energy of the impurity atom. Find the probability that
an impurity atom is ionized.
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Solution. Suppose that one and only one electron can be bound to an impurity atom. Because
an electron has a spin, both spin orientations ↑ and ↓ are possible. An impurity atom has three
allowed states: state 1 without an electron (atom ionized), state 2 with an electron attached with
spin ↑, and state 3 with an electron attached with spin ↓. We take the zero of energy to correspond
to the two bound states. The microstates of the system are summarized below.

state n description N εn
1 electron detached 0 −∆
2 electron attached, spin ↑ 1 0
3 electron attached, spin ↓ 1 0

The grand partition function of the impurity atom is given by

Z = eβ∆ + 2eβµ. (4.145)

Hence, the probability that an atom is ionized (state 1) is given by

P (ionized) =
eβ∆

eβ∆ + 2eβµ
=

1
1 + e−β(∆−µ)

. (4.146)

4.13 *Entropy and Disorder

Many texts and articles for the scientifically literate refer to entropy as a measure of “disorder” or
“randomness.” This interpretation is justified by the relation, S = k ln Ω. The argument is that an
increase in the disorder in a system corresponds to an increase in Ω. Usually a reference is made
to a situation such as the tendency of students’ rooms to become messy. There are two problems
with this interpretation – it adds nothing to our understanding of entropy and is inconsistent with
our naive understanding of structural disorder.

We have already discussed the interpretation of the entropy as a measure of the uncertainty
or lack of information. Thus, we already have a precise definition of entropy and can describe a
student’s messy room as having a high entropy because of our lack of information about the location
of a particular paper or article of clothing. We could define disorder as lack of information, but
such a definition does not help us to understand entropy any better because it would not provide
an independent understanding of disorder.

The other problem with introducing the term disorder to describe entropy is that it can lead
to incorrect conclusions. In the following we will describe two examples where the crystalline phase
of a given material has a higher entropy than the liquid phase. Yet you would probably agree that
a crystal is more ordered than a liquid. So how can a crystal have a higher entropy?

Suppose that you are going on a short trip and need to pack your suitcase with only a few
articles.11 In this case the volume of the suitcase is much greater than the total volume of the
articles you wish to pack, and you would probably just randomly throw the articles into the
suitcase. Placing the articles in an ordered arrangement would require extra time and the ordered
arrangement would probably be destroyed during transport. In statistical mechanics terms we say

11This example is due to Laird (see the references).
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that there are many more ways in which the suitcase can be packed in a disordered arrangement
than the ordered one. Hence, we could include that the disordered state has a higher entropy than
the ordered state. This low density case is consistent with the usual association of entropy and
disorder.

Now suppose that you are going on a long trip and need to pack many articles in the same
suitcase, that is, the total volume of the articles to be packed is comparable to the volume of the
suitcase. In this high density case you probably know from experience that randomly throwing the
articles into the suitcase won’t allow you to shut the suitcase. Such a configuration is incompatible
with the volume constraints of the suitcase. If you randomly throw the articles in the suitcase
many times, you might find a few configurations that would allow you to close the suitcase. In
contrast, if you pack the articles in a neat and ordered arrangement, the suitcase can be closed.
Also there are many such configurations that would satisfy the constraints. We conclude that
the number of ordered arrangements (of the articles in the suitcase) is greater than the number
of corresponding disordered arrangements. Therefore an ordered arrangement in the high density
suitcase has a higher entropy than a structurally disordered state. The association of disorder with
entropy is not helpful here.

The suitcase example is an example of an entropy-driven transition because energy did not
enter into our considerations at all. Another example of an entropy-driven transition is a system of
hard spheres or hard disks. In this seemingly simple model the interaction between two particles
is given by

u(r) =

{
∞ r < σ

0 r ≥ σ.
(4.147)

For this model only non-overlapping configurations are allowed and so the potential energy is zero.
Hence, the internal energy is solely kinetic and the associated contribution of the energy to the free
energy is the ideal gas part which depends only on the temperature and the density. Hence, the
difference in the free energy ∆F = ∆E − T∆S between a hard sphere crystal and a hard sphere
fluid at the same density and temperature must equal −T∆S.

In the following problem we will do an exploratory simulation of a system of hard disks that
suggests that there is a transition from a fluid at low density to a crystal at high density (at
fixed temperature). Thus at some density ∆F must become negative, which can occur only if
∆S = Scrystal − Sfluid is positive. We conclude that at high density the entropy of the crystal
must be greater than that of a fluid at equal temperature and density for a fluid-solid (freezing)
transition to exist.

Problem 4.40. Simulation of hard disks
The dynamics of a system of hard disks are straightforward in principle because the particles move
in straight lines in between collisions. The applet/application at <stp.clarku.edu/simulations/
hardDisks> finds when the next two particles are going to collide and moves the particles accord-
ingly.

(a) Run the simulation for the default parameters and record the density and the results for
PA/NkT and the temperature. Is the temperature a useful quantity for hard disks? Does it
fluctuate during the simulation. If not why not? Does the pressure P fluctuate?

http://stp.clarku.edu/simulations/hardDisks
<stp.clarku.edu/simulations/hardDisks>
http://stp.clarku.edu/simulations/hardDisks
<stp.clarku.edu/simulations/hardDisks>
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(b) Compute PA/NkT as a function of density for a fixed number of particles. Is there any
evidence of a phase transition where the slope of the pressure with respect to density changes
abruptly?

Vocabulary

composite system, subsystem

equal a priori probabilities

microcanonical ensemble, canonical ensemble, grand canonical ensemble

Boltzmann distribution, Gibbs distribution

entropy S, Helmholtz free energy F , Gibbs free energy G, Landau potential Ω

demon algorithm, Metropolis algorithm

4.14 Supplementary Notes

4.14.1 The volume of a hypersphere

We derive the volume of a hypersphere of n dimensions given in (4.47). As in (4.46), the volume
is given by

Vn(R) =
∫
x2
1+x2

2+···+x2
n<R

2
dx1 dx2 · · · dxn. (4.148)

Because Vn(R) ∝ Rn for n = 2 and 3, we expect that Vn is proportional to Rn. Hence, we write

Vn = CnR
n, (4.149)

where Cn is the (unknown) constant of proportionality that depends only on n. We rewrite the
volume element dVn = dx1 dx2 · · · dxn as

dVn = dx1 dx2 · · · dxn = Sn(R) dR = nCnR
n−1dR, (4.150)

where Sn = nCnR
n−1 is the surface area of the hypersphere. As an example, for n = 3 we have

dV3 = 4πR2 dR and S3 = 4πR2. To find Cn for general n, consider the identity (see Appendix A)

In =
∫ ∞
−∞

dx1 · · ·
∫ ∞
−∞

dxn e
−(x2

1+···+x2
n) =

[∫ ∞
−∞

dx e−x
2]n = πn/2. (4.151)

The left-hand side of (4.151) can be written as

In =
∫ ∞
−∞

dx1 · · ·
∫ ∞
−∞

dxn e
−(x2

1+···+x2
n) =

∫ ∞
0

dRSn(R) e−R
2

= nCn

∫ ∞
0

dRRn−1 e−R
2
. (4.152)
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We can relate the integral in (4.152) to the Gamma function Γ(n) defined by the relation

Γ(n) =
∫ ∞

0

dxxn−1 e−x. (4.153)

The relation (4.153) holds for n > −1 and whether or not n is an integer. We make the change of
variables x = R2 so that

In =
1
2
nCn

∫ ∞
0

dxxn/2−1 e−x =
1
2
nCn Γ(n/2). (4.154)

A comparison of (4.154) with (4.151) yields the relation

Cn =
2πn/2

nΓ(n/2)
=

πn/2

(n/2)Γ(n/2)
. (4.155)

It follows that

Vn(R) =
2πn/2

nΓ(n/2)
Rn. (4.156)

4.14.2 Fluctuations in the canonical ensemble

To gain more insight into the spread of energies that are actually observed in the canonical en-
semble, we determine the probability P (E)∆E that a system in equilibrium with a heat bath
at temperature T has energy E in the range ∆E. In most macroscopic systems, the number of
microstates with the same energy is large. In such a case the probability that the system is in any
of the microstates with energy El can be written as

Pl =
g(El)e−βEl∑
l g(El)e−βEl

, (4.157)

where g(El) is the number of microstates with energy El. As in (4.132)) the sum in the denominator
in (4.157) is over the different energy levels of the system. In the thermodynamic limit N , V →∞,
the spacing between consecutive energy levels becomes very small and we can regard E as a
continuous variable. We write P (E)dE for the probability that the system in the range E and
E+dE and let g(E) dE be the number of microstates between E and E+dE. (The function g(E)
is the density of states and is the same function discussed in Section 4.3.) Hence, we can rewrite
(4.157) as

P (E) dE =
g(E)e−βEdE∫∞

0
g(E)e−βEdE

. (4.158)

As we did in Section 3.7, we can find an approximate form of P (E) by expanding P (E) about
E = Ẽ, the most probable value of E. To do so, we evaluate the derivatives ∂ lnP/∂E and
∂2 lnP/∂E2 using (4.158): (∂ lnP

∂E

)
E=Ẽ

=
(∂ ln g
∂E

)
E=Ẽ

− β = 0. (4.159)

and
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(∂2 lnP
∂E2

)
E=Ẽ

=
(∂2 ln g
∂E2

)
E=Ẽ

. (4.160)

We have (∂2 ln g
∂E2

)
E=Ẽ

=
∂

∂E

(∂ ln g
∂E

)
E=Ẽ

=
∂β

∂E
. (4.161)

Finally, we obtain
∂β

∂E
= − 1

kT 2

∂T

∂E
= − 1

kT 2CV
. (4.162)

We can use the above results to expand lnP (E) about E = Ẽ through second order in (E−Ẽ)2.
The result is

lnP (E) = lnP (Ẽ)− (E − Ẽ)2

2kT 2CV
+ . . . (4.163)

or
P (E) = P (Ẽ)e−(E−Ẽ)2/2kT 2CV . (4.164)

If we compare (4.164) to the standard form of a Gaussian distribution (3.129), we see that E = Ẽ
and σ2

E = kT 2CV as expected.

Additional Problems

Problem 4.41. Discuss the statistical nature of the Clausius statement of the second law that
energy cannot go spontaneously from a colder to a hotter body. Under what conditions is the
statement applicable? In what sense is this statement incorrect?

Problem 4.42. Given our discussion of the second law of thermodynamics from both the macro-
scopic and microscopic points of view, discuss the following quote due to Arthur Stanley Eddington:

The law that entropy always increases, the Second Law of Thermodynamics, holds . . .
the supreme position among the laws of Nature. If someone points out to you that
your pet theory of the universe is in disagreement with Maxwell’s equations, then so
much the worse for Maxwell’s equations. . . But if your theory is found to be against
the second law of thermodynamics, I can give you no hope; there is nothing for it but
to collapse in deepest humiliation.

Problem 4.43. Consider an isolated composite system consisting of subsystems 1 and 2 that can
exchange energy with each other. Subsystem 1 consists of three noninteracting spins, each having
magnetic moment µ. Subsystem 2 consists of two noninteracting spins each with a magnetic
moment 2µ. A magnetic field B is applied to both systems.

(a) Suppose that the total energy is E = −3µB. What are the accessible microstates of the
composite system? What is the probability P (M) that system 1 has magnetization M?
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Table 4.9: Listing of inline problems.

(b) Suppose that systems 1 and 2 are initially separated from each other and that the net magnetic
moment of 1 is −3µ and the net magnetic moment of 2 is +4µ. The systems are then placed in
thermal contact with one another and are allowed to exchange energy. What is the probability
P (M) that the net magnetic moment of system 1 has one of its possible values M? What is
the mean value of the net magnetic moment of system 1?

Problem 4.44. Consider two isolated systems of noninteracting spins with NA = 4 and NB = 16.
If their initial energies are EA = −2µB and EB = −2µB, what is the total number of microstates
available to the composite system? If the two systems are now allowed to exchange energy with
one another, what is the probability that system 1 has energy EA? What is the mean value of EA
and its relative fluctuations of EA? Calculate the analogous quantities for system B. What is the
most probable macrostate for the composite system?

Problem 4.45. Show that the relations (4.59)–(4.61) follow from the thermodynamic relation
dE = TdS − PdV + µdN (see (2.132)).

Problem 4.46. Suppose that the number of states between energy E and E + ∆E of an isolated
system of N particles in a volume V is given by

g(E)∆E = c(V − bN)N (E +
N2a

V
)3N/2∆E, (4.165)

where a, b, and c are constants. What is the entropy of the system? Determine the temperature
T as a function of E. What is the energy in terms of T , the density ρ = N/V , and the parameters
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a and b? What is the pressure as a function of T and ρ? What are the units of the parameters a
and b?

Problem 4.47. Discuss the assumptions that are needed to derive the classical ideal gas equations
of state, (4.65) and (4.66).

Problem 4.48. Assume that g(E) = E3N/2 for a classical ideal gas. Plot g(E), e−βE , and the
product g(E) e−βE versus E for N = 6 and β = 1. What is the qualitative behavior of the three
functions? Show that the product g(E)e−βE has a maximum at Ẽ = 3N/(2β). Compare this value
to the mean value of E given by

E =

∫∞
0
Eg(E)e−βEdE∫∞

0
g(E)e−βEdE

. (4.166)

Problem 4.49. Explain why the various heat capacities must go to zero as T → 0.

Problem 4.50. The partition function of a hypothetical system is given by

lnZ = aT 4V, (4.167)

where a is a constant. Evaluate the mean energy E, the pressure P , and the entropy S.

Problem 4.51. An analogy for the heat capacity
The following analogy might be useful for understanding the temperature dependence of the heat
capacity of a two level system.

(a) Suppose that you walk into a store with little money in your pocket (and no credit card).
Would you care about the prices of the articles you wished to purchase? Would you care about
the prices if you had just won the lottery?

(b) Suppose that you wish to purchase a car that costs $20,000 but have no money. You then find
a dollar bill on the street. Has your “capacity” for purchasing the car increased? Suppose that
your uncle gives you $8000. Has your capacity for purchasing the car increased substantially?
How much money would you need before you might think about buying the car?

Problem 4.52. Show that the partition function Z12 of two independent distinguishable systems
1 and 2 both in equilibrium with a heat bath at temperature T equals the product of the partition
functions of the separate systems:

Z12 = Z1Z2. (4.168)

Problem 4.53. Qualitative temperature dependence of two level system

(a) Consider a system of N noninteracting, distinguishable particles each of which can be in single
particle states with energy 0 and ∆ (see Example 4.3). The system is in equilibrium with a
beat bath at temperature T . Sketch the probabilities that a given particle is in the ground state
and the excited state with energy ∆, and discuss the limiting behavior of the probabilities for
low and high temperatures. What does high and low temperature mean in this case? Sketch
the T -dependence of the mean energy E(T ) and give a simple argument for its behavior.
From your sketch of E(T ) sketch the T -dependence of the heat capacity C(T ) and describe its
qualitative behavior. Give a simple physical argument why C has a maximum and estimate
the temperature at which the maximum occurs.
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(b) Calculate C(T ) explicitly and verify that its behavior is consistent with the qualitative features
illustrated in your sketch. The maximum in the heat capacity of a two state system is called
the Schottky anomaly, but the characterization of this behavior as anomaly is a misnomer
because many systems behave as two level systems at low temperatures.

Problem 4.54. Consider a system of N noninteracting, distinguishable particles. Each particle
can be in one of three states with energies 0, ∆, and 10∆. Without doing an explicit calculation,
sketch the temperature dependence of the heat capacity at low temperatures.

Problem 4.55. Consider a system of one particle in equilibrium with a heat bath. The particle
has two microstates of energy ε1 = 0 and ε2 = ∆. Find the probabilities p1 and p2 when the mean
energy of the system is 0.2∆, 0.4∆, 0.5∆, 0.6∆, and ∆, respectively. What are the corresponding
temperatures? (Hint: Write the mean energy as x∆ and express your answers in terms of x.)

Problem 4.56. Harmonic oscillators in equilibrium with a heat bath

(a) Calculate the heat capacity CV of a system of N one-dimensional harmonic oscillators (see
Example 4.4).

(b) Plot the T -dependence of the mean energy E and the heat capacity C = dE/dT . Show that
E → kT at high temperatures for which kT � ~ω. This result corresponds to the classical
limit and will be shown in Section 6.3 to be a consequence of the equipartition theorem. In
this limit the thermal energy kT is large in comparison to ~ω, the separation between energy
levels. Hint: expand the exponential function in (4.131).

(c) Show that at low temperatures for which ~ω � kT , E = ~ω( 1
2 + e−β~ω). What is the value of

the heat capacity? Why is the latter so much smaller than it is in the high temperature limit?

(d) Verify that S → 0 as T → 0 in agreement with the third law of thermodynamics, and that at
high T , S → kN ln(kT/~ω). The latter result implies that the effective number of microstates
over which the probability is nonzero is ekT/~ω. This result is reasonable because the width
of the Boltzmann probability distribution is kT , and hence the number of microstates that are
occupied at high temperature is kT/~ω.

Problem 4.57. In the canonical ensemble the temperature is fixed and the constant volume heat
capacity is related to the variance of the energy fluctuations (see (4.87)). As discussed on page 207,
the temperature fluctuates in the microcanonical ensemble. Guess how the constant volume heat
capacity might be expressed in the microcanonical ensemble.

Problem 4.58. Consider the system illustrated in Figure 4.10. The system consists of two dis-
tinguishable particles, each of which can be in either of two boxes. Assume that the energy of a
particle is zero if it is in the left box and r if it is in the right box. There is also a correlation
energy term that lowers the energy by ∆ if the two particles are in the same box.

(a) Enumerate the 22 = 4 microstates and their corresponding energy.

(b) Suppose that r = 1 and ∆ = 15. Sketch the qualitative behavior of the heat capacity C as a
function of T .
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1
2

Figure 4.10: The two particles considered in Problem 4.58. The two distinguishable particles can
each be in one of the two boxes. The energy of the system depends on which box the particles
occupy.

(c) Calculate the partition function Z for arbitrary values of r and ∆ and use your result to find
the mean energy and the heat capacity. Explain your result for C in simple terms.

(d) What is the probability that the system is in a particular microstate?

Problem 4.59. Consider a system in equilibrium with a heat bath at temperature T and a particle
reservoir at chemical potential µ. The reservoir has a maximum of four distinguishable particles.
Assume that the particles in the system do not interact and can be in one of two states with
energies zero or ∆. Determine the (grand) partition function of the system.

Problem 4.60. Constant pressure ensemble
In the text we derived the form of the probability distribution for a system with fixed T , V , and N
(the canonical ensemble) and fixed T , V , and µ (the grand canonical ensemble). What is the form
of the probability distribution for an equilibrium system with fixed T , P , and N? This ensemble
has no generally accepted name and is not particularly useful for calculations. However, it is useful
for doing simulations at a given pressure rather than for a given volume.

Problem 4.61. Demonstration of an entropy-driven transition
The following demonstration illustrates an entropy-driven transition. Get a bag of M & M’s or
similar disk-shaped candy. Ball bearings work better, but they are not as tasty. You will also need
a flat bottom glass dish (preferably square) that fits on an overhead projector.

Place the glass dish on the overhead projector and add a few of the candies. Shake the
dish gently from side to side to simulate the effects of temperature. You should observe a two-
dimensional model of a gas. Gradually add more candies while continuing to shake the dish. As
the density is increased further, you will begin to notice clusters of hexagonal crystals. Do these
clusters disappear if you shake the dish faster? At what density do large clusters of hexagonal
crystals begin to appear? Is this density less than the maximum packing density?
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Magnetic Systems
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We apply the general formalism of statistical mechanics developed in Chapter 4 to the Ising model,
a model magnetic system for which the interactions between the magnetic moments are important.
We will discover that these interactions lead to a wide range of phenomena, including the existence
of phase transitions and other cooperative phenomena. Computer simulation methods will be used
extensively and a simple approximation method known as mean-field theory will be introduced.

5.1 Paramagnetism

We first review the behavior of a system of noninteracting magnetic moments with spin 1/2 in
equilibrium with a heat bath at temperature T . We discussed this system in Section 4.3.1 and in
Example 4.2 using the microcanonical ensemble. We will find that this system is much easier to
treat in the canonical ensemble.

Because we have assumed that the magnetic moments or spins are noninteracting, the only
interaction is that of the spins with an external magnetic field B in the z direction. The magnetic
field due to the spins themselves is assumed to be negligible. The energy of interaction of a spin
with the external magnetic field B is given by

E = −µ · B = −µzB = −µBs, (5.1)

where µz is the component of the magnetic moment in the direction of the magnetic field B. We
write µz = sµ, where s = ±1. (The association of the magnetic moment of the electron with its
spin is an intrinsic quantum mechanical effect (see Section 5.9.1). We assume that the spins are
fixed on a lattice so that they are distinguishable even though the spins are intrinsically quantum
mechanical.

What would we like to know about the properties of a system of noninteracting spins? In the
absence of an external magnetic field, there are not many physical quantities of interest. The spins
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point randomly up or down because there is no preferred direction, and the mean internal energy
is zero. In contrast, in the presence of an external magnetic field, the net magnetic moment and
the energy of the system are nonzero. In the following we will calculate their mean values as a
function of the temperature T and external magnetic field B.

As will learn from experience, the easiest ensemble to use is usually the canonical ensemble.
Because each spin is independent of the others and distinguishable, we can find the partition
function for one spin, Z1, and use the relation ZN = ZN1 to obtain ZN , the partition function for
N spins. (We reached a similar conclusion in Example 4.3.) We can derive the relation between
Z1 and ZN by writing the energy of the N spins as E = −µB

∑N
i=1 si and expressing the partition

function ZN for the N -spin system as

ZN =
∑
s1=±1

∑
s2=±1

. . .
∑

sN =±1

eβµBΣN
i=1si (5.2)

=
∑
s1=±1

∑
s2=±1

. . .
∑

sN =±1

eβµBs1eβµBs2 . . . eβµBsN

=
∑
s1=±1

eβµBs1
∑
s2=±1

eβµBs2 . . .
∑

sN =±1

eβµBsN

=
[ ∑
s1=±1

eβµBs1
]N = ZN1 . (5.3)

To find Z1 we write

Z1 =
∑
s=±1

e−βµBs = eβµB(−1) + eβµB(+1) = 2 coshβµB, (5.4)

where we have performed the sum over s = ±1. Hence, the partition function for N spins is simply

ZN = (2 coshβµB)N . (5.5)

We now use the canonical ensemble formalism that we developed in Section 4.6 to find the
thermodynamic properties of the system for a given T and B. The free energy is given by

F = −kT lnZN = −NkT lnZ1 = −NkT ln(2 coshβµB). (5.6)

The mean energy E is

E = −∂ lnZN
∂β

=
∂(βF )
∂β

= −NµB tanhβµB. (5.7)

In the following we will frequently omit the mean value notation because it will be clear from the
context that an average is implied. From (5.7) we see that E → 0 as T →∞ (β → 0).

Problem 5.1. Comparison of results of two ensembles

(a) Compare the result (5.7) for the mean energy of a system of noninteracting spins in the canoni-
cal ensemble to the corresponding result that you found in Problem 4.26 for the microcanonical
ensemble.
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(b) Compare the results for the thermodynamics of system of noninteracting spins with the corre-
sponding results found in Example 4.3.

The heat capacity C is a measure of the change of the temperature due to the addition of
energy at constant magnetic field. The heat capacity at constant magnetic field can be expressed
as

C =
(∂E
∂T

)
B

= −kβ2 ∂E

∂β
. (5.8)

(We will write C rather than CB because no confusion will result.) From (5.7) and (5.8), we find
that the heat capacity of a system of N noninteracting spins is given by

C = N(βµB)2 sech2 βµB. (5.9)

Note that the heat capacity is always positive, goes to zero as T → 0 consistent with the third law
of thermodynamics, and goes to zero at high T .

Magnetization and Susceptibility. Two additional macroscopic quantities of interest are
the mean magnetic moment or magnetization (in the z direction)

M = µ

N∑
i=1

si, (5.10)

and the isothermal susceptibility χT:

χT =
(∂M
∂B

)
T
. (5.11)

Often it is more convenient to work with the mean magnetization per spin m, an intensive variable,
which is defined as

m =
1
N
M. (5.12)

We also will sometime drop the factor of µ in (5.10) so that M becomes the net of number of spins
pointing in a given direction. The distinction between M and m and their various meanings will
be clear from the context.

The susceptibility χT is a measure of the change of the magnetization due to a change in the
external magnetic field and is another example of a linear response function. We can express M
and χT in terms of derivatives of lnZ by noting that the total energy can be written in the general
form as

E = E0 −MB, (5.13)

where E0 is the energy of interaction of the spins with themselves and −MB is the energy of
interaction of the spins with the magnetic field. (For noninteracting spins E0 = 0.) The form of
E in (5.13) implies that we can write Z in the form

Z =
∑
s

e−β(E0,s−MsB), (5.14)
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where Ms and E0,s are the values of M and E0 in microstate s. From (5.14) we have

∂Z

∂B
=
∑
s

βMs e
−β(E0,s−MsB), (5.15)

and hence the mean magnetization is given by

M =
1
Z

∑
s

Mse
−β(E0,s−MsB) (5.16a)

=
1
βZ

∂Z

∂B
= kT

∂ lnZN
∂B

. (5.16b)

If we substitute the relation F = −kT lnZ, we obtain

M = −∂F
∂B

. (5.17)

Problem 5.2. Relation of the zero field susceptibility to the magnetization fluctuations
Use considerations similar to that used to derive (5.16b) to show that in the limit B → 0 the
susceptibility in zero magnetic field can be written as

χT =
1
kT

[M2 −M2
] . (5.18)

The quantity χT in (5.18) is the zero-field susceptibility.1 Note the similarity of the form (5.18)
with the form (4.87) for the heat capacity CV .

The quantities CV and χT are examples of linear response functions. For example, χT is a
measure of the reponse of the magnetization to a very weak magnetic field. The relations of the
response functions CV and χT to the equilibrium fluctuations of the energy and magnetization,
respectively, are special cases of a general result known as the fluctuation-dissipation theorem.

From (5.6) and (5.17) we find that the mean magnetization of a system of noninteracting spins
is

M = Nµ tanh(βµB). (5.19)

The susceptibility can be calculated using (5.11) and (5.19) and is given by

χT = Nµ2β sech2(βµB). (5.20)

For high temperatures (kT � µB) or small β (β � µB), sech(βµB)→ 1, and the leading behavior
of χT is given by

χT → Nµ2β =
Nµ2

kT
. (kT � µB) (5.21)

The result (5.21) is known as the Curie form for the isothermal susceptibility and is commonly
observed for magnetic materials at high temperatures.

1We will use the same notation for the zero-field isothermal susceptibility and the isothermal susceptibility in a
nonzero field because the distinction will be clear from the context.
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We see that M is zero at B = 0 for all T > 0 implying that the system is paramagnetic. For
B 6= 0, we note that M → 0 as β → 0 (high T ), which implies that χT → 0 as T →∞. Because a
system of noninteracting spins is paramagnetic, such a model is not applicable to materials such as
iron that can have a nonzero magnetization even when the magnetic field is zero. Ferromagnetism
is due to the interactions between the spins.

Problem 5.3. Thermodynamics of noninteracting spins

(a) Plot the magnetization per spin as given by (5.19) and the heat capacity C as given by (5.9)
as a function of T . Give a simple argument why C must have a broad maximum somewhere
between T = 0 and T = ∞. What is the relation of a system of noninteracting spins to the
system considered in Example 4.3?

(b) Plot the isothermal susceptibility χT versus T for fixed B and describe its limiting behavior
for low and high T .

(c) Calculate the entropy of a system of N noninteracting spins and discuss its limiting behavior
at low and high temperatures.

Problem 5.4. Adiabatic demagnetization
Consider a solid containing N noninteracting paramagnetic atoms whose magnetic moments can
be aligned either parallel or antiparallel to the magnetic field B. The system is in equilibrium with
a heat bath at temperature T . The magnetic moment is µ = 9.274× 10−24 J/tesla.

(a) If B = 4 tesla, at what temperature are 75% of the spins oriented in the +z direction?

(b) Assume that N = 1023, T = 1 K, and that B is increased quasistatically from 1 tesla to 10 tesla.
What is the magnitude of the energy transfer from the heat bath?

(c) If the system is now thermally isolated at T = 1 K and B is quasistatically decreased from
10 tesla to 1 tesla, what is the final temperature of the system? This process is known as
adiabatic demagnetization.

5.2 Thermodynamics of Magnetism

Note that in Section 5.1 we chose the canonical ensemble specified by T , B, and N . In this ensemble
the free energy F defined by the relation F = −kT lnZ implies that F is a function of T , B, and
N . Because B is specified, the magnetization M fluctuates. It can be shown (see Section 5.9.2)
that the magnetic work done on a magnetic system with magnetization M in an external magnetic
field B is given by dW = −MdB. For fixed N , we have the thermodynamic relation

dF (T,B) = −SdT −MdB. (5.22)

From (5.22) we obtain (5.17) for the magnetization in terms of the free energy. We note that if M
is specified and B is allowed to fluctuate, we can define G = F +MH so that

dG(T,M) = −SdT +BdM. (5.23)
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5.3 The Ising Model

As we saw in Section 5.1, the absence of interactions between the spins implies that the system
can only be paramagnetic. The most important model of a system that exhibits a phase transition
is the Ising model, the harmonic oscillator of statistical mechanics.2 The model was proposed by
Wilhelm Lenz (1888–1957) in 1920 and was solved exactly for the one-dimensional case by his
student Ernst Ising in 1925.3 Ising was very disappointed because the one-dimensional case does
not have a phase transition. Lars Onsager (1903–1976))4 solved the Ising model exactly in 1944
for two dimensions in the absence of an external magnetic field and showed that there was a phase
transition in two dimensions.5 The two-dimensional Ising model is the simplest model of a phase
transition.

In the Ising model the spin at every site is either up (+1) or down (−1). Unless otherwise
stated, the interaction is between nearest neighbors only and is given by −J if the spin are parallel
and +J if the spins are antiparallel. The total energy can be expressed in the form6

E = −J
N∑

i,j=nn(i)

sisj −H
N∑
i=1

si , (Ising model) (5.24)

where si = ±1 and J is known as the exchange constant. In the following, we will refer to s itself
as the spin.7 The first sum in (5.24) is over all pairs of spins that are nearest neighbors. The
interaction between two nearest neighbor spins is counted only once. We have implicitly assumed
that the external magnetic field is in the up or positive z direction. The factors of µ0 and g have
been incorporated into the quantity H which we will refer to as the magnetic field. In the same
spirit the magnetization becomes the net number of positive spins rather than the net magnetic
moment. A discussion of how magnetism occurs in matter in given in Section 5.9.1.

In addition to the conceptual difficulties of statistical mechanics, there is no standard procedure
for calculating the partition function. In spite of the apparent simplicity of the Ising model, we
can find exact solutions only in one dimension and in two dimensions in the absence of a magnetic
field.8 In other cases we need to use approximation methods and computer simulations.

2Each year hundreds of papers are published that apply the Ising model to problems in such diverse fields as
neural networks, protein folding, biological membranes, and social behavior. For this reason the Ising model is
sometimes known as the fruit fly of statistical mechanics.

3A biographical note about Ising’s life is at <www.bradley.edu/las/phy/personnel/ising.html>.
4See <en.wikipedia.org/wiki/Lars_Onsager> for a summary of Onsager’s life.
5The model is sometimes known as the Lenz-Ising model. The history of the Ising model is discussed by Stephen

Brush.
6If we interpret the spin as a operator, then the energy is really a Hamiltonian. The distinction is unimportant

here.
7Because the spin S is a quantum mechanical object, we expect that the commutator of the spin operator with

the Hamiltonian is nonzero. However, because the Ising model retains only the component of the spin along the
direction of the magnetic field, the commutator of the spin S with the Hamiltonian is zero, and we can treat the
spins in the Ising model as if they were classical.

8In three dimensions it has been shown that the Ising model is NP-complete, that is, it is computationally
intractable. The three-dimensional Ising model (and the two-dimensional Ising model with nearest neighbor and next
nearest neighbor interactions falls into the same class as other hard problems such as the traveling salesman problem.
See <www.sandia.gov/LabNews/LN04-21-00/sorin_story.html> and <www.siam.org/siamnews/07-00/ising.pdf>.
The Ising model is also of interest to computer scientists in part for this reason.

http://www.bradley.edu/las/phy/personnel/ising.html
<www.bradley.edu/las/phy/personnel/ising.html>
http://en.wikipedia.org/wiki/Lars_Onsager
<en.wikipedia.org/wiki/Lars_Onsager>
http://www.sandia.gov/LabNews/LN04-21-00/sorin_story.html
<www.sandia.gov/LabNews/LN04-21-00/sorin_story.html>
http://www.siam.org/siamnews/07-00/ising.pdf
<www.siam.org/siamnews/07-00/ising.pdf>
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In Section 5.4 we will discuss the one-dimensional Ising model for which we can find an exact
solution. In Section 5.5 we will briefly discuss the nature of the exact solutions for the two-
dimensional Ising model. We will find that the two-dimensional Ising model exhibits a continuous
phase transition. We will also consider simulations of the Ising model to gain more insight into the
behavior of the Ising model. In Section 5.6 we will discuss a relatively simple approximation known
as mean-field theory that is applicable to a wide variety of systems. A more advanced discussion
of the Ising model is given in Chapter 9. In Sections 5.9.3 and 5.9.4 we discuss two common types
of perturbation expansions.

5.4 The Ising chain

In the following we describe several methods for obtaining exact solutions of the one-dimensional
Ising model and introduce an additional physical quantity of interest.

5.4.1 Exact enumeration

The canonical ensemble is the natural choice for calculating the thermodynamic properties of the
Ising model. Because the spins are interacting, we no longer have the relation ZN = ZN1 , and
we have to calculate ZN directly. The calculation of the partition function ZN is straightforward
in principle. The goal is to enumerate all the microstates of the system and the corresponding
energies, calculate ZN for finite N , and then take the limit N → ∞. The difficulty is that the
total number of states, 2N , is too many for N � 1. However, for the one-dimensional Ising model
(Ising chain) we can calculate ZN for small N and quickly see how to generalize to arbitrary N .

For a finite chain we need to specify the boundary condition for the spin at each end. One
possibility is to choose free ends so that the spin at each end has only one interaction (see Fig-
ure 5.1(a)). Another choice is toroidal boundary conditions as shown in Figure 5.1(b). This choice
implies that the Nth spin is connected to the first spin so that the chain forms a ring. The choice
of boundary conditions does not matter in the thermodynamic limit, N →∞.

In the absence of an external magnetic field, we will find that it is more convenient to choose
free boundary conditions when calculating Z directly. The energy of the Ising chain in the absence
of an external magnetic field is given explicitly by

E = −J
N−1∑
i=1

sisi+1. (free boundary conditions) (5.25)

We begin by calculating the partition function for two spins. There are four possible states: both
spins up with energy −J, both spins down with energy −J, and two states with one spin up and
one spin down with energy +J (see Figure 5.2). Thus Z2 is given by

Z2 = 2eβJ + 2e−βJ = 4 coshβJ. (5.26)

In the same way we can enumerate the eight microstates for N = 3 (see Problem 5.5). We
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(a)

(b)

Figure 5.1: (a) Example of free boundary conditions for N = 9 spins. The spins at each end
interact with only one spin. In contrast, all the other spins interact with two spins. (b) Example
of toroidal boundary conditions. The Nth spin interacts with the first spin so that the chain forms
a ring. As a result, all the spins have the same number of neighbors and the chain does not have
a surface.

-J -J +J +J

Figure 5.2: The four possible configurations of the N = 2 Ising chain.

find that

Z3 = 2 e2βJ + 4 + 2 e−2βJ (5.27a)

= 2(eβJ + e−βJ)2 = 8(coshβJ)2 (5.27b)

= (eβJ + e−βJ)Z2 = (2 coshβJ)Z2. (5.27c)

The relation (5.27c) between Z3 and Z2 suggests a general relation between ZN and ZN−1:

ZN = (2 coshβJ)ZN−1 = 2
(
2 coshβJ

)N−1
. (5.28)

We can derive the recursion relation (5.28) directly by writing ZN for the Ising chain in the
form

ZN =
∑
s1=±1

· · ·
∑

sN =±1

eβJ
PN−1

i=1 sisi+1 . (5.29)

The sum over the two possible states for each spin yields 2N microstates. To understand the
meaning of the sums in (5.29), we write (5.29) for N = 3:

Z3 =
∑
s1=±1

∑
s2=±1

∑
s3=±1

eβJs1s2+βJs2s3 . (5.30)
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The sum over s3 can be done independently of s1 and s2, and we have

Z3 =
∑
s1=±1

∑
s2=±1

eβJs1s2
[
eβJs2 + e−βJs2

]
(5.31a)

=
∑
s1=±1

∑
s2=±1

eβJs1s22 coshβJs2 = 2
∑
s1=±1

∑
s2=±1

eβJs1s2 coshβJ. (5.31b)

We have used the fact that the cosh function is even and hence coshβJs2 = coshβJ , independently
of the sign of s2. The sum over s1 and s2 in (5.31b) is straightforward, and we find,

Z3 = (2 coshβJ)Z2, (5.32)

in agreement with (5.27c).
The analysis of (5.29) proceeds similarly. Note that spin N occurs only once in the exponential

and we have, independently of the value of sN−1,∑
sN =±1

eβJsN−1sN = 2 coshβJ. (5.33)

Hence we can write ZN as
ZN = (2 coshβJ)ZN−1. (5.34)

We can use the general result (5.28) for ZN to find the Helmholtz free energy:

F = −kT lnZN = −kT
[

ln 2 + (N − 1) ln(2 coshβJ)
]
. (5.35)

In the thermodynamic limit N →∞, the term proportional to N in (5.35) dominates, and we have
the desired result:

F = −NkT ln
(
2 coshβJ

)
. (5.36)

Problem 5.5. Exact enumeration
Enumerate the 2N microstates for the N = 3 and N = 4 Ising chain and find the corresponding
contributions to Z3 and Z4 for free boundary conditions. Then show that Z3 and Z4 satisfy the
recursion relation (5.34) for free boundary conditions.

Problem 5.6. Thermodynamics of the Ising chain

(a) What is the ground state of the Ising chain?

(b) What is the behavior of S in the limits T → 0 and T →∞? The answers can be found without
doing an explicit calculation.

(c) Use (5.36) for F to verify the following results for the entropy S, the mean energy E, and the
heat capacity C of the Ising chain:

S = Nk
[

ln(e2βJ + 1)− 2βJ
1 + e−2βJ

]
. (5.37)

E = −NJ tanhβJ. (5.38)

C = Nk(βJ)2(sechβJ)2. (5.39)

Verify your answers for the limiting behavior of S given in part (b). A plot of the T -dependence
of the heat capacity in the absence of a magnetic field is given in Figure 5.3.
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Figure 5.3: The temperature dependence of the heat capacity C of an Ising chain in the absence
of an external magnetic field. At what value of kT/J does C exhibit a maximum? Explain.

∗Problem 5.7. Density of states
In Problem 4.18 the density of states was given without proof for the one-dimensional Ising model
for even N and toroidal boundary conditions:

Ω(E,N) = 2
(
N

i

)
= 2

N !
i! (N − i)!

, (i = 0, 2, 4, . . . , N)

with E = 2 i−N .

(a) Use this form of Ω and the relation

ZN =
∑
E

Ω(E,N)e−βE (5.40)

to find the free energy for small values of (even) N .

(b) Use the results for ZN that you found by exact enumeration to find Ω(E,N) for small values
of N .

5.4.2 ∗Spin-spin correlation function

We can gain further insight into the properties of the Ising model by calculating the spin-spin
correlation function G(r) defined as

G(r) = sksk+r − sk sk+r. (5.41)

Because the average of sk is independent of the choice of the site k and equals m = M/N , the
magnetization per spin, and G(r) can be written as

G(r) = sksk+r −m2. (5.42)
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Figure 5.4: Plot of the spin-spin correlation function G(r) as given by (5.43) for the Ising chain
for βJ = 2.

The average is over all spin configurations. Because all lattice sites are equivalent, G(r) is in-
dependent of the choice of k and depends only on the separation r (for a given T and H),
where r is the separation between the two spins in units of the lattice constant. Note that
G(r = 0) = m2 −m2 ∝ χT (see (5.18)).

The spin-spin correlation function tells us the degree to which a spin at one site is correlated
with a spin at another site. If the spins are not correlated, then G(r) = 0. At high temperatures
the interaction between spins is unimportant, and hence the spins are randomly oriented in the
absence of an external magnetic field. Thus in the limit kT � J , we expect that G(r) → 0 for
fixed r. For fixed T and H, we expect that if spin k is up, then the two adjacent spins will have a
greater probability of being up than down. Why? As we move away from spin k, we expect that
the probability that spin k + r is up will decrease. Hence, we expect that G(r)→ 0 as r →∞.

We will show in the following that G(r) can be calculated exactly for the Ising chain. The
result is

G(r) =
(

tanhβJ
)r
. (5.43)

A plot of G(r) for βJ = 2 is shown in Figure 5.4. Note that G(r)→ 0 for r � 1 as expected.
We also see from Figure 5.4 that we can associate a length with the decrease of G(r). We will

define the correlation length ξ by writing G(r) in the form

G(r) = e−r/ξ. (5.44)

For the one-dimensional Ising model

ξ = − 1
ln(tanhβJ)

. (5.45)
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At low temperatures, tanhβJ ≈ 1− 2e−2βJ , and

ln
(

tanhβJ
)
≈ −2e−2βJ . (5.46)

Hence

ξ =
1
2
e2βJ . (βJ � 1) (5.47)

From (5.47) we see that the correlation length becomes very large for low temperatures (βJ � 1).
The correlation length gives the length scale for the decay of correlations between the spins.

Problem 5.8. What is the maximum value of tanhβJ? Show that for finite values of βJ , G(r)
given by (5.43) decays with increasing r.

To calculate G(r) we assume free boundary conditions and consider only the zero-field case.
It is convenient to generalize the Ising model and assume that the magnitude of each of the nearest
neighbor interactions is arbitrary so that the total energy E is given by

E = −
N−1∑
i=1

Jisisi+1, (5.48)

where Ji is the interaction energy between spin i and spin i+ 1. At the end of the calculation we
will set Ji = J . We will find in Section 5.4.4, that m = 0 for T > 0 for the one-dimensional Ising
model. Hence, we can write G(r) = sksk+r. For the form (5.48) of the energy, sksk+r is given by

sksk+r =
1
ZN

∑
s1=±1

· · ·
∑

sN =±1

sksk+r exp
[N−1∑
i=1

βJisisi+1

]
, (5.49)

where

ZN = 2
N−1∏
i=1

2 coshβJi. (5.50)

The right-hand side of (5.49) is the value of the product of two spins separated by a distance r in
a particular configuration times the probability of that configuration.

We now use a trick similar to that used in Appendix A to calculate various integrals. If we
take the derivative of the exponential with respect to Jk, we bring down a factor of sksk+1. Hence,
the nearest neighbor spin-spin correlation function G(r = 1) = sksk+1 for the Ising model with
Ji = J can be expressed as

sksk+1 =
1
ZN

∑
s1=±1

· · ·
∑

sN =±1

sksk+1 exp
[N−1∑
i=1

βJisisi+1

]
, (5.51a)

=
1
ZN

1
β

∂

∂Jk

∑
s1=±1

· · ·
∑

sN =±1

exp
[N−1∑
i=1

βJisisi+1

]
, (5.51b)

=
1
ZN

1
β

∂ZN (J1, · · · , JN−1)
∂Jk

∣∣∣∣
Ji=J

(5.51c)

=
sinhβJ
coshβJ

= tanhβJ, (5.51d)
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where we have used the form (5.50) for ZN . To obtain G(r = 2), we use the fact that s2
k+1 = 1 to

write sksk+2 = sk(sk+1sk+1)sk+2 = (sksk+1)(sk+1sk+2). We write

G(r = 2) =
1
ZN

∑
{sj}

sksk+1sk+1sk+2 exp
[N−1∑
i=1

βJisisi+1

]
, (5.52a)

=
1
ZN

1
β2

∂2ZN (J1, · · · , JN−1)
∂Jk ∂Jk+1

= [tanhβJ ]2. (5.52b)

It is clear that the method used to obtain G(r = 1) and G(r = 2) can be generalized to
arbitrary r. We write

G(r) =
1
ZN

1
βr

∂

∂Jk

∂

Jk+1
· · · ∂

Jk+r−1
ZN , (5.53)

and use (5.50) for ZN to find that

G(r) = tanhβJk tanhβJk+1 · · · tanhβJk+r−1,

=
r∏

k=1

tanhβJk+r−1. (5.54)

For a uniform interaction, Ji = J , and (5.54) reduces to the result for G(r) in (5.43).

Problem 5.9. Calculation of G(r) for four spins
Consider an Ising chain of N = 4 spins and calculate G(r) by exact enumeration of the 24 mi-
crostates. Choose free boundary conditions and calculate G(r) using the microstates that you
enumerated in Problem 5.5. Assume that the system is in equilibrium with a heat bath at tem-
perature T and in zero magnetic field.

5.4.3 Simulations of the Ising chain

Although we have found an exact solution for the one-dimensional Ising model, we can gain addi-
tional physical insight by doing simulations. As we will see, simulations are essential for the Ising
model in higher dimensions.

As we discussed in Section 4.11, the Metropolis algorithm is the simplest and most common
Monte Carlo algorithm for a system in equilibrium with a heat bath at temperature T . In the
context of the Ising model, the Metropolis algorithm can be implemented as follows:

1. Choose an initial microstate of N spins. The two most common initial states are the ground
state with all spins parallel or the T =∞ state where each spin is chosen to be ±1 at random.

2. Choose a spin at random and make a trial flip. Compute the change in energy of the system,
∆E, corresponding to the flip. The calculation is straightforward because the change in
energy is determined by only the two nearest neighbor spins. If ∆E < 0, then accept the
change. If ∆E > 0, accept the change with probability p = e−β∆E . To do so, generate
a random number r uniformly distributed in the unit interval. If r ≤ p, accept the new
microstate; otherwise, retain the previous microstate.
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3. Repeat step (2) many times choosing spins at random.

4. Compute the averages of the quantities of interest such as E, M , C, and χ after the system
has reached equilibrium.

In the following two problems we explore some of the qualitative properties of the Ising chain.

Problem 5.10. Qualitative properties of the Ising chain
Use the applet/application at <stp.clarku.edu/simulations/ising/ising1d.html> to simulate
the one-dimensional Ising model. It is convenient to measure the temperature in units such that
J/k = 1. For example, a temperature of T = 2 really means that T = 2J/k. The “time” is
measured in terms of Monte Carlo steps per spin, where in one Monte Carlo step per spin, N
spins are chosen at random for trial changes. (On the average each spin will be chosen equally,
but during any finite interval, some spins might be chosen more than others.) Choose H = 0.

(a) Choose N = 200 spins and start the system at T = 2 and observe the evolution of the magne-
tization and energy per spin to equilibrium. The initial state is chosen to be the ground state.
What is the approximate time for the system to reach equilibrium? What is your criterion
for equilibrium? What is the mean energy, magnetization, heat capacity, and susceptibility?
Estimate the mean size of the domains of parallel spins.

(b) Consider T = 1.0 and T = 0.5 and observe the size of the domains of parallel spins. Estimate
the mean size of the domains at these temperatures.

Problem 5.11. Thermodynamic properties of the Ising chain
The thermodynamic quantities of interest for the Ising model include the mean energy E, the heat
capacity C, and the isothermal susceptibility χT. We are especially interested in the temperature-
dependence of these quantities near T = 0.

(a) Why is the mean value of the magnetization of little interest for the one-dimensional Ising
model?

(b) How can the heat capacity and susceptibility be computed during the simulation at a given
temperature?

(c) Use the applet at <stp.clarku.edu/simulations/ising/ising1d.html> to estimate these
quantities and determine the qualitative-dependence of χ and the correlation length ξ on T at
low temperatures.

(d) Why does the Metropolis algorithm become inefficient at low temperatures?

5.4.4 *Transfer matrix

So far we have considered the Ising chain only in zero external magnetic field. As might be expected,
the solution for H 6= 0 is more difficult. We next apply the transfer matrix method to solve for
the thermodynamic properties of the Ising chain in nonzero magnetic field. The transfer matrix
method is very general and can be applied to various magnetic systems and to seemingly unrelated
quantum mechanical systems. The transfer matrix method also is of historical interest because it
led to the exact solution of the two-dimensional Ising model in the absence of a magnetic field.

http://stp.clarku.edu/simulations/ising/ising1d.html
<stp.clarku.edu/simulations/ising/ising1d.html>
http://stp.clarku.edu/simulations/ising/ising1d.html
<stp.clarku.edu/simulations/ising/ising1d.html>
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Problem 5.12. Transfer matrix method in zero magnetic field
Show that the partition function for a system of N = 3 spins with toroidal boundary conditions
can be expressed as the the product of two matrics:(

eβJ e−βJ

e−βJ eβJ

)(
eβJ e−βJ

e−βJ eβJ

)
. (5.55)

To apply the transfer matrix method to the one-dimensional Ising model, it is necessary to
adopt toroidal boundary conditions so that the chain becomes a ring with sN+1 = s1. This
boundary condition enables us to write the energy as:

E = −J
N∑
i=1

sisi+1 −
1
2
H

N∑
i=1

(si + si+1). (toroidal boundary conditions) (5.56)

The use of toroidal boundary conditions implies that each spin is equivalent.
The transfer matrix T is defined by its four matrix elements which are given by

Ts,s′ = eβ[Jss′+ 1
2H(s+s′)]. (5.57)

The explicit form of the matrix elements is

T++ = eβ(J+H) (5.58a)

T−− = eβ(J−H) (5.58b)

T−+ = T+− = e−βJ , (5.58c)

or

T =
(
T++ T+−
T−+ T−−

)
=
(
eβ(J+H) e−βJ

e−βJ eβ(J−H)

)
. (5.59)

The definition (5.57) of T allows us to write ZN in the form

ZN (T,H) =
∑
s1

∑
s2

· · ·
∑
sN

Ts1,s2Ts2,s3 · · ·TsN ,s1 . (5.60)

The form of (5.60) is suggestive of our interpretation of T as a transfer function.
The rule for matrix multiplication that we need for the transfer matrix method is

(T2)s1,s3 =
∑
s2

Ts1,s2Ts2,s3 . (5.61)

If we multiply N matrices together, we obtain:

(TN )s1,sN+1 =
∑
s2

∑
s3

· · ·
∑
sN

Ts1,s2Ts2,s3 · · ·TsN ,sN+1 . (5.62)

This result is very close to what we have in (5.60). To make it identical, we use toroidal boundary
conditions and set sN+1 = s1, and sum over s1:∑

s1

(TN )s1,s1 =
∑
s1

∑
s2

∑
s3

· · ·
∑
sN

Ts1,s2Ts2,s3 · · ·TsN ,s1 = ZN . (5.63)
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Because
∑
s1

(TN )s1,s1 is the definition of the trace (the sum of the diagonal elements) of (TN ),
we have

ZN = trace(TN ). (5.64)

Because the trace of a matrix is independent of the representation of the matrix, the trace in
(5.64) may be evaluated by bringing T into diagonal form:

T =
(
λ+ 0
0 λ−

)
. (5.65)

The matrix TN is diagonal with the diagonal matrix elements λN+ , λN− . If we choose the diagonal
representation fo T in (5.65), we have

trace (TN ) = λN+ + λN− , (5.66)

where λ+ and λ− are the eigenvalues of T. Hence, we can express ZN as

ZN = λN+ + λN− . (5.67)

The fact that ZN is the trace of the Nth power of a matrix is a consequence of our assumption of
toroidal boundary conditions.

The eigenvalues λ± are given by the solution of the determinant equation∣∣∣∣eβ(J+H) − λ e−βJ

e−βJ eβ(J−H) − λ

∣∣∣∣ = 0. (5.68)

The roots of (5.68) are

λ± = eβJ coshβH ±
[
e−2βJ + e2βJ sinh2 βH

]1/2
. (5.69)

It is easy to show that λ+ > λ− for all H and β, and consequently (λ−/λ+)N → 0 as N →∞. In
the thermodynamic limit (N →∞), we obtain from (5.67) and (5.69)

1
N

lnZN (T,H) = lnλ+ + ln
[
1 +

(λ−
λ+

)N ] →
N→∞

lnλ+, (5.70)

and the free energy per spin is given by

1
N
F (T,H) = −kT ln

[
eβJ coshβJ +

(
e2βJ sinh2 βH + e−2βJ

)1/2]
. (5.71)

We can use (5.71) to find the magnetization M at nonzero T and H:

M =
∂F

∂H
= N

sinhβH
(sinh2 βH + e−4βJ)1/2

. (5.72)

A system is paramagnetic if M 6= 0 only for H 6= 0, and is ferromagnetic if M 6= 0 for H = 0.
For the one-dimensional Ising model, we see from (5.72) that M = 0 for H = 0, and there is no
spontaneous magnetization at nonzero temperature. (Recall that sinhx ≈ x for small x.) That
is, the one-dimensional Ising model undergoes a phase transition from the paramagnetic to the
ferromagnetic state only at T = 0. In the limit of low temperature (βJ � 1 and βH � 1),
sinhβH ≈ 1

2e
βH � e−2βJ and m = M/N ≈ 1 for H 6= 0. Hence, at low temperatures only a small

field is needed to produce saturation, corresponding to m = 1.



CHAPTER 5. MAGNETIC SYSTEMS 237

Problem 5.13. Isothermal susceptibility of the Ising chain
More insight into the properties of the Ising chain can be found by calculating the isothermal
susceptibility χT.

(a) Calculate the susceptibility using (5.72).

(b) What is the limiting behavior of the susceptibility in the limit T → 0 for H > 0?

(c) Show that the limiting behavior of the zero field susceptibility in the limit T → 0 is χT ∼ e2βJ .
Express this limiting behavior in terms of the correlation length ξ. Why does χT diverge as
T → 0?

Because the zero field susceptibility diverges as T → 0, the fluctuations in the magnetization
also diverge in this limit. As we will see, the divergence of the fluctuations of the magnetization is
one of the characteristics of the critical point in the Ising model. That is, the phase transition from
a paramagnet (m = 0 for H = 0) to a ferromagnet (m 6= 0 for H = 0) occurs at zero temperature
for the one-dimensional Ising model. We will see that the critical point occurs at T > 0 for the
Ising model in two and higher dimensions.

5.4.5 Absence of a phase transition in one dimension

We learned in Section 5.4.4 that the one-dimensional Ising model does not have a phase transition
for T > 0. We now argue that a phase transition in one dimension is impossible if the interaction
is short-range, that is, if only a finite number of spins interact with one another.

At T = 0 the energy is a minimum with E = −(N − 1)J (for free boundary conditions), and
the entropy S = 0.9 Consider all the excitations at T > 0 obtained by flipping all the spins to the
right of some site (see Figure 5.5(a)). The energy cost of creating such a domain wall is 2J . Because
there are N − 1 sites where the wall may be placed, the entropy increases by ∆S = k ln(N − 1).
Hence, the free energy cost associated with creating one domain wall is

∆F = 2J − kT ln(N − 1). (5.73)

We see from (5.73) that for T > 0 and N → ∞, the creation of a domain wall lowers the free
energy. Hence, more domain walls will be created until the spins are completely randomized and
the net magnetization is zero. We conclude that M = 0 for T > 0 in the limit N →∞.

Problem 5.14. Compare the energy of the configuration in Figure 5.5(a) with the energy of the
configuration shown in Figure 5.5(b) and discuss why the number of spins in a domain in one
dimension can be changed without the cost of energy.

9The ground state for H = 0 corresponds to all spins up or all spins down. It is convenient to break this symmetry
by assuming that H = 0+ and letting T → 0 before setting H = 0.
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(a) (b)

Figure 5.5: A domain wall in one dimension for a system of N = 8 spins. In (a) the energy of the
system is E = −5J for free boundary conditions. The energy cost for forming a domain wall is
2J (recall that the ground state energy is −7J. In (b) the domain wall has moved with no cost in
energy.

(a) (b)

Figure 5.6: (a) The ground state of a 5×5 Ising model. (b) Example of a domain wall. The energy
cost of the domain is 5J assuming free boundary conditions.

5.5 The Two-Dimensional Ising Model

We first give an argument similar to the one that given in Section 5.4.1 to suggest the existence
of a phase transition (to ferromagnetism) in two dimensions. We will show that the mean value of
the magnetization is nonzero at low, but nonzero temperatures and in zero magnetic field.

The key difference between the one and two-dimensional case is that in one dimension, the
existence of one domain wall allows the system to have regions of up and down spins, and the
size of each region can be changed without any cost of energy. So on the average the number of
up and down spins is the same. In two dimensions the existence of one domain does not make
the magnetization zero. The regions of down spins cannot grow at low temperature because their
growth requires longer boundaries and hence more energy.

From Figure 5.6 we see that the energy cost of one domain in two dimensions is given by JL (for
free boundary conditions). Because the domain wall can be at any of the L columns, the entropy is
at least order lnL. Hence the free energy cost of creating one domain is ∆F ∼ JL−T lnL. In the
limit L → ∞, ∆F > 0. Therefore most of the spins will remain positive, and the magnetization
remains positive. Hence M > 0 for T > 0, and the system is ferromagnetic.

We will find in the following that M becomes zero at a critical temperature Tc > 0.
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5.5.1 Onsager solution

The two-dimensional Ising model was solved exactly in zero magnetic field for a rectangular lattice
by Lars Onsager in 1944. Onsager’s calculation was the first exact solution that exhibited a phase
transition in a model with short-range interactions. Before his calculation, some people believed
that statistical mechanics was not capable of yielding a phase transition.

Although Onsager’s solution is of much historical interest, the mathematical manipulations
are very involved. Moreover, the manipulations are special to the Ising model and cannot be
generalized to other systems. For these reasons few workers in statistical mechanics have gone
through the Onsager solution in great detail.10 In the following, we give only the results of the
two-dimensional solution for a square lattice.

The critical temperature Tc is given by

sinh
2J
kTc

= 1, (5.74)

or
kTc/J =

2
ln(1 +

√
2)
≈ 2.269. (5.75)

It is convenient to express the mean energy in terms of the dimensionless parameter κ defined as

κ = 2
sinh 2βJ

(cosh 2βJ)2
. (5.76)

A plot of the parameter κ versus βJ is given in Figure 5.7. Note that κ is zero at low and high
temperatures and has a maximum of unity at T = Tc.

The exact solution for the energy E can be written in the form

E = −2NJ tanh 2βJ −NJ sinh2 2βJ − 1
sinh 2βJ cosh 2βJ

[ 2
π
K1(κ)− 1

]
, (5.77)

where

K1(κ) =
∫ π/2

0

dφ√
1− κ2 sin2 φ

. (5.78)

K1 is known as the complete elliptic integral of the first kind. The first term in (5.77) is similar to
the result (5.38) for the energy of the one-dimensional Ising model with a doubling of the exchange
interaction J for two dimensions. The second term in (5.77) vanishes at low and high temperatures
(because of the term in brackets) and at T = Tc because of the vanishing of the term sinh2 2βJ−1.
The function K1(κ) has a logarithmic singularity at T = Tc at which κ = 1. Hence, the second
term behaves as (T − Tc) ln |T − Tc| in the vicinity of Tc. We conclude that E(T ) is continuous at
T = Tc and at all other temperatures.

10It is probably true that fewer people understand the Onsager solution of the two-dimensional Ising model than
understand Einstein’s theory of general relativity.
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Figure 5.7: Plot of the function κ defined in (5.76) as a function of J/kT .

The heat capacity can be obtained by differentiating E(T ) with respect to temperature. It
can be shown after some tedious algebra that

C(T ) = Nk
4
π

(βJ coth 2βJ)2
[
K1(κ)− E1(κ)

− (1− tanh2 2βJ)
(π

2
+ (2 tanh2 2βJ − 1)K1(κ)

)]
, (5.79)

where

E1(κ) =
∫ π/2

0

dφ

√
1− κ2 sin2 φ. (5.80)

E1 is the complete elliptic integral of the second kind. Near Tc, C is given by

C ≈ −Nk 2
π

(
2J
kTc

)2

ln
∣∣1− T

Tc

∣∣+ constant. (T near Tc) (5.81)

The most important property of the Onsager solution is that the heat capacity diverges loga-
rithmically at T = Tc:

C(T ) ∼ ln |ε|, (5.82)

where the reduced temperature difference is given by

ε = (Tc − T )/Tc. (5.83)

A major test of the approximate treatments that we will develop in Section 5.6 and in Chapter 9
is whether they can yield a heat capacity that diverges as in (5.82).

To know whether the logarithmic divergence of the heat capacity at T = Tc is associated with
a phase transition, we need to know if there is a spontaneous magnetization. That is, is there a
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m

TTc

Figure 5.8: The temperature-dependence of the spontaneous magnetization of the two-dimensional
Ising model.

range of T > 0 such that M 6= 0 for H = 0? Onsager’s solution is limited to zero magnetic field.
To calculate the spontaneous magnetization, we need to calculate the derivative of the free energy
with respect to H for finite H and then let H = 0. The exact behavior of the two-dimensional
Ising model as a function of the magnetic field H is not known. In 1952, Yang was able to
calculate the magnetization for T < Tc and the zero-field susceptibility.11 Yang’s exact result for
the magnetization per spin can be expressed as

m(T ) =

{
0 T > Tc(
1− [sinh 2βJ ]−4

)1/8
T < Tc

(5.84)

A graph of m is shown in Figure 5.8. We see that m vanishes near Tc as m ∼ ε1/8. The magne-
tization m is an example of an order parameter. The order parameter provides a signature of the
order, that is, m = 0 for T > Tc (disordered state) and m 6= 0 for T ≤ Tc (ordered state).

The behavior of the zero-field susceptibility as T → Tc is given by

χT ∼ |ε|−7/4. (5.85)

The most important results of the exact solution of the two-dimensional Ising model are that
the energy (and the free energy and the entropy) are continuous functions for all T , m vanishes
continuously at T = Tc, the heat capacity diverges logarithmically at T = Tc, and the zero-
field susceptibility diverges as a power law. When we discuss phase transitions in more detail
in Chapter 9, we will understand that the paramagnetic ↔ ferromagnetic transition in the two-
dimensional Ising model is continuous. That is, the order parameter m vanishes continuously rather
than discontinuously. Because the transition occurs only at T = Tc and H = 0, the transition
occurs at a critical point.

11The result (5.84) was first announced by Onsager at a conference in 1944 but not published. Yang is the
same person who together with Lee shared the 1957 Nobel Prize in Physics for work on parity violation. See
<nobelprize.org/physics/laureates/1957/>.

http://nobelprize.org/physics/laureates/1957/
<nobelprize.org/physics/laureates/1957/>
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The spin-spin correlation function G(r) cannot be expressed in terms of simple analytical
expressions for all r and all T . However, the general behavior of G(r) for T near Tc is given by

G(r) ∼ 1
rd−2+η

e−r/ξ (r � 1 and |ε| � 1), (5.86)

where d is the spatial dimension and η is another critical exponent. The correlation length ξ
diverges as

ξ ∼ |ε|−ν . (5.87)

The exact result for the critical exponent ν for the two-dimensional Ising model is ν = 1. At
T = Tc, G(r) decays as a power law:

G(r) =
1
rη
. (r � 1, T = Tc, and d = 2) (5.88)

The power-law behavior in (5.88). For the two-dimensional Ising model η = 1/4. The value of
the various critical exponents for the Ising model in two and three dimensions is summarized in
Table 5.1.

quantity exponent d = 2 (exact) d = 3 mean-field
specific heat α 0 (logarithmic) 0.113 0 (jump)
order parameter β 1/8 0.324 1/2
susceptibility γ 7/4 1.238 1
equation of state (T = Tc) δ 15 4.82 3
power law decay at T = Tc η 1/4 0.031 (5) 0
correlation length ν 1 0.629 (4) 1/2

Table 5.1: Values of the static critical exponents for the Ising model in two and three dimensions.

There is a fundamental difference between the exponential behavior of G(r) for T 6= Tc in
(5.86) and the power law behavior of G(r) for T = Tc in (5.88). Systems with correlation functions
that decay as a power law are said to be scale invariant. That is, power laws look the same on
all scales. The replacement x → ax in the function f(x) = Ax−η yields a function g(x) that
is indistinguishable from f(x) except for a change in the amplitude A by the factor a−η. In
contrast, this invariance does not hold for functions that decay exponentially because making the
replacement x → ax in the function e−x/ξ changes the correlation length ξ by the factor a. The
fact that the critical point is scale invariant is the basis for the renormalization group method
considered in Chapter 9.

We stress that the phase transition in the Ising model is the result of the cooperative inter-
actions between the spins. Phase transitions are of special interest in physics. Although phase
transitions are commonplace, they are remarkable from a microscopic point of view. How does
the behavior of the system change so remarkably with a small change in the temperature even
though the interactions between the spins remain unchanged and short-range? The study of phase
transitions in relatively simple systems such as the Ising model has helped us begin to under-
stand phenomena as diverse as the distribution of earthquakes, the shape of snow flakes, and the
transition from a boom economy to a recession.
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5.5.2 Computer simulation of the two-dimensional Ising model

The implementation of the Metropolis algorithm for the two-dimensional model proceeds as in one
dimension. The only difference is that an individual spin interacts with four nearest neighbors on
a square lattice rather than only two nearest neighbors as in one dimension. Simulations of the
Ising model in two dimensions allow us to compare our approximate results with the known exact
results. Moreover, we can determine properties that cannot be calculated analytically. We explore
some of the properties of the two-dimensional Ising model in Problem 5.15.

Problem 5.15. Simulation of the two-dimensional Ising model
Use the applet at <stp.clarku.edu/simulations/ising/ising2d.html> to simulate the two-
dimensional Ising model at a given temperature. First choose N = L2 = 322. Set the external
magnetic field H = 0 and take T = 10. (Remember that we are measuring T in terms of J/k.)
For simplicity, the initial orientation of the spins is all spins parallel.

(a) After equilibrium has been established is the orientation of the spins random, that is, is the
mean magnetization equal to zero? What is a typical size of a domain, a region of parallel
spins?

(b) Choose a low temperature such as T = 0.5. Are the spins still random or do a majority choose
a preferred direction?

(c) Choose L = 4 and T = 2.0. Does the sign of the magnetization change during the simulation?
Choose a larger value of L and observe if the sign of the magnetization changes.

(d) You probably noticed that M = 0 for sufficient high T and is nonzero for sufficiently low T .
Hence, there is an intermediate value of T at which M first becomes nonzero. Choose L = 32
and start with T = 4 and gradually lower the temperature. Note the groups of aligned spins
that grow as T is decreased. Estimate the value of T at which the mean magnetization first
becomes nonzero.

(e) We can use the applet to obtain more quantitative information. Choose L = 32 and set
H = 0. Start from T = 4 and determine the temperature-dependence of the magnetization
M , the zero-field susceptibility χ, the mean energy E, and the specific heat C. Decrease the
temperatures in intervals of 0.2 until about T = 1.6. Describe the qualitative behavior of these
quantities.

∗Problem 5.16. Ising antiferromagnet
So far we have considered only the ferromagnetic Ising model for which the energy of interaction
between two nearest neighbor spins is J > 0. Hence the ground state in the ferromagnetic Ising
model is all spins parallel. In contrast, if J < 0, two nearest neighbor spins need to be antiparallel
to minimize their energy of interaction.

(a) Sketch the ground state of the one-dimensional antiferromagnetic Ising model.

http://stp.clarku.edu/simulations/ising/ising2d.html
<stp.clarku.edu/simulations/ising/ising2d.html>
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a

√3a/2

Figure 5.9: Each spin has six nearest neighbors on a triangular lattice.

?

Figure 5.10: The top spin is frustrated because it cannot be antiparallel to both of its neighbors.

(b) Sketch the ground state of the antiferromagnetic Ising model on a square lattice. Use the
applet/application at <stp.clarku.edu/simulations/ising/antiferromagnetic.html> to
simulate the antiferromagnetic Ising model on a square lattice at various temperatures and
describe its qualitative behavior. Does the system have a phase transition at T > 0?

(c) Consider the Ising antiferromagnetic model on a triangular lattice (see Fig. 5.9). On this
lattice each spin has six nearest neighbors. However, the ground state in this case is not
unique because of frustration (see Fig. 5.10). Convince yourself that there are multiple ground
states. Is the entropy zero or nonzero at T = 0?12 Use the applet/application at <stp.clarku.
edu/simulations/ising/triangularlattice.html> to simulate the antiferromagnetic Ising
model on a triangular lattice at various temperatures and describe its qualitative behavior.
Does this system have a phase transition at T > 0?

5.6 Mean-Field Theory

Because we cannot solve the thermodynamics of the Ising model exactly in three dimensions and
the exact solution of the two-dimensional Ising model is limited to zero external magnetic field, we
need to develop approximate theories. In this section we develop an approximate theory known
as mean-field or Weiss molecular field theory. Mean-field theories are relatively easy to treat and
usually yield qualitatively correct results. We will see that their main disadvantage is that they

12It has been shown rigorously that the entropy at zero temperature is S(T = 0) = 0.3383kN . See G. H. Wannier,
“Antiferromagnetism. The triangular Ising net,” Phys. Rev. 79, 357–364 (1950), errata, Phys. Rev. B 7, 5017
(1973).

http://stp.clarku.edu/simulations/ising/antiferromagnetic.html
<stp.clarku.edu/simulations/ising/antiferromagnetic.html>
http://stp.clarku.edu/simulations/ising/triangularlattice.html
<stp.clarku.edu/simulations/ising/triangularlattice.html>
http://stp.clarku.edu/simulations/ising/triangularlattice.html
<stp.clarku.edu/simulations/ising/triangularlattice.html>
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ignore fluctuations and are insensitive to the spatial dimension. In Section 8.10 we will learn how to
apply similar ideas to gases and liquids and in Section 9.4 we consider more sophisticated versions
of mean-field theory to Ising systems.

In its simplest form mean-field theory assumes that each spin interacts with the same effective
magnetic field. The effective field is due to the external magnetic field plus the internal field due
to all the neighboring spins. That is, spin i “feels” an effective field Heff given by

Heff = J

q∑
j=1

sj +H, (5.89)

where the sum over j in (5.89) is over the q nearest neighbors of i. Because the orientation of the
neighboring spins depends on the orientation of spin i, Heff fluctuates from its mean

Heff = J

q∑
j=1

sj +H = Jqm+H, (5.90)

where sj = m. In mean-field theory, we ignore the deviations of Heff from Heff and assume that
the field at i is Heff , independent of the orientation of si. This assumption is an approximation
because if si is up, then its neighbors are more likely to be up. This correlation is ignored in
mean-field theory.

The form of the mean effective field in (5.90) is the same throughout the system. Hence, the
result of the simple approximation that we have made has reduced the system of N interacting
spins to a system of one spin interacting with an effective field (which depends on all the other
spins).

The partition function for one spin in the effective field Heff is

Z1 =
∑
s1=±1

eβs1Heff = 2 coshβ(Jqm+H). (5.91)

The free energy per spin is

f = − 1
β

lnZ1 = −kT ln
[
2 coshβ(Jqm+H)

]
, (5.92)

and the magnetization is

m = − ∂f
∂H

= tanhβ(Jqm+H). (5.93)

Equation (5.93) is a self-consistent transcendental equation whose solution yields m. We see
that the mean-field that influences the mean value of m depends on the mean value of m.

Problem 5.17. Numerical solutions
Use the applet/application at <stp.clarku.edu/simulations/ising/meanFieldSolution.html>
to find several numerical solutions of (5.93),

http://stp.clarku.edu/simulations/ising/meanFieldSolution.html
<stp.clarku.edu/simulations/ising/meanFieldSolution.html>
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(a) Set H = 0 and q = 4 and determine the value of the mean-field approximation to the critical
temperature Tc of the Ising model on a square lattice. The critical temperature satisfies the
condition that m 6= 0 for T ≤ Tc and m = 0 for T > Tc. Start with T = 10 (β = 0.1) and then
proceed to lower temperatures. Plot the temperature dependence of m.

(b) Choose H = 1 and plot m(T ) by solving (5.93) numerically.

(c) Determine m(T ) for the one-dimensional Ising model (q = 2) and H = 0 and H = 1 and
compare your values with the exact solution in one dimension (see (5.72)).

From Figure 5.11 we find that nonzero solutions for m exist for H = 0 when βqJ ≥ 1. Thus
the critical temperature Tc is given by

kTc = Jq. (5.94)

That is, m 6= 0 for T ≤ Tc and m = 0 for T > Tc for H = 0. Near Tc the magnetization is small,
and we can expand tanhβJqm (tanhx ≈ x− x3/3) to find

m = βJqm− 1
3

(βJqm)3 + . . . (5.95)

Equation (5.95) has two solutions:

m(T > Tc) = 0, (5.96a)

and

m(T < Tc) =
31/2

(βJq)3/2
(βJq − 1)1/2. (5.96b)

The solution in (5.96a) corresponds to the high temperature disordered paramagnetic state (m =
0) and the solution in (5.96b) corresponds to the low temperature ordered ferromagnetic state
(m 6= 0). How do we know which solution to choose? The answer can be found by calculating
the free energy for both solutions and choosing the solution that gives the smaller free energy (see
Problem 5.19).

If we set kTc = Jq in (5.96b) we can write the spontaneous magnetization as

m(T < Tc) = 31/2
( T
Tc

)(Tc − T
Tc

)1/2
. (5.97)

We see from (5.97) that m approaches zero as a power law as T approaches from Tc from below.
As mentioned following (5.84), the quantity m is the order parameter of the system.

In terms of the dimensionless temperature difference ε = |Tc − T |/Tc, we can express the
behavior of the order parameter near Tc as

m(T ) ∼ εβ , (5.98)

where we have introduced the critical exponent β (not to be confused with the inverse temperature).
From (5.97) we see that mean-field theory predicts that β = 1/2. What is the value of β for the
two-dimensional Ising model (see Table 5.1)?
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Figure 5.11: Graphical solution of the self-consistent equation (5.93). The solution m = 0 exists
for all T , but the stable solutions m = ±m0 exists only for T sufficiently small that the initial
slope of tanhβqJ is larger than one.

We now find the behavior of other important physical properties near Tc. The zero field
isothermal susceptibility (per spin) is given by

χT = lim
H→0

∂m

∂H
=

β(1− tanh2 βJqm)
1− βJq(1− tanh2 βJqm)

. (5.99)

As expected, for high temperatures (βJ � 1), we see that χT from (5.99) approaches the Curie
law (5.21) for noninteracting spins. For T > Tc we write

χT =
β(1−m2)

1− βJq(1−m2)
=

1
k(T − Tc)

, (T > Tc, H → 0) (5.100)

where we have used the relation (5.93) with H = 0 and the fact that m = 0 for T > Tc. The
result (5.100) for χT is known as the Curie-Weiss law. For T . Tc we have from (5.97) that
m2 ≈ 3(Tc − T )/Tc, 1−m2 = (3T − 2Tc)/Tc, and

χT ≈
1

k[T − Tc(1−m2)]
=

1
k[T − 3T + 2Tc]

(5.101a)

=
1

2k(Tc − T )
. (T . Tc, H → 0) (5.101b)

We can characterize the divergence of the zero-field susceptibility as the critical point is approached
from either the low or high temperature side as

χT ∼ |ε|−γ . (T ≈ Tc) (5.102)

The mean-field prediction for the critical exponent γ is γ = 1.
The magnetization at Tc as a function of H can be calculated by expanding (5.93) to third

order in H with β = βc = 1/qJ :

m = m+ βcH −
1
3

(m+ βcH)3 + . . . (5.103)
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If we assume that βcH � m, we find

m = (3βcH)1/3, (T = Tc) (5.104)

which is consistent with our assumption that βcH � m. In general, we write

m ∼ H1/δ (T = Tc) (5.105)

The mean-field prediction is δ = 3.
The energy per spin in the mean-field approximation is

E = −1
2
Jqm2, (5.106)

which is the average value of the interaction energy divided by two to account for double counting.
Because m = 0 for T > Tc, the energy vanishes for all T > Tc and thus the heat capacity also
vanishes according to mean-field theory. Below Tc the energy is given by

E = −1
2
Jq
[

tanh(β(Jqm+H))
]2
. (5.107)

The specific heat can be calculated from (5.107) for T < Tc. As shown in Problem 5.108, C →
3k/2 for T → Tc from below. Hence, mean-field theory predicts predicts that there is a jump
(discontinuity) in the specific heat.

Problem 5.18. Specific heat
Use the fact that m2 ≈ 3(Tc − T )/Tc for T . Tc to show that the specific heat according to
mean-field theory is

C(T → T−c ) = 3k/2. (5.108)

∗Problem 5.19. A more formal derivation of mean-field theory
We write sisj as

sisj = (si −m+m)(sj −m+m) (5.109a)

= m2 +m(si −m) +m(sj −m) + (si −m)(sj −m). (5.109b)

Note that we have ordered the terms in (5.109b) in powers of their deviation from the mean. If
we neglect the last term, which is quadratic in the fluctuations from the mean, we obtain

sisj ≈ m2 +m(si −m) +m(sj −m) = −m2 +m(si + sj). (5.110)

Show that we can approximate the energy of interaction in the Ising model as

−J
∑

i,j=nn(i)

sisj = +J
∑

i,j=nn(i)

m2 − Jm
∑

i,j=nn(i)

(si + sj) (5.111a)

=
JqNm2

2
− Jqm

N∑
i=1

si. (5.111b)
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Use the fact that there are qN(N − 1)/2 terms in the sums and N(N − 1)/2→ N2/2 for N � 1.
Show that the partition function Z(T,H,N) can be expressed as

Z(T,H,N) = e−βNqJm
2/2

∑
s1=±1

· · ·
∑

sN =±1

eβ(Jqm+h)
P

i si (5.112a)

= e−βNqJm
2/2
( ∑
σ=±1

eβ(qJm+h)σ
)N

(5.112b)

= e−βNqJm
2/2
[
2 coshβ(qJm+H)

]N
. (5.112c)

Hence, the free energy per spin f(T,H) = − lnZ(T,H,N)β/N is given by

f(T,H) =
1
2
Jqm2 − 1

β
ln
[
2 coshβ(qJm+H)

]
. (5.113)

Problem 5.20. Minima of the free energy

(a) To see the physical meaning of the various solutions, expand the free energy in (5.113) about
m = 0 with H = 0 and show that

f(m) = a+ bJ(1− βqJ)m2 + cm4. (5.114)

Determine a, b, and c.

(b) If H 6= 0 but small, show that there is an additional term −Hm in (5.114).

(c) Show that m = 0 provides a lower free energy for T > Tc, and that m = ±m0, m0 > 0,
provides a lower free energy for T < Tc.

(d) Use the applet at <stp.clarku.edu/simulations/ising/meanFieldSolution.html> to plot
f(m) as a function of m for T > Tc and H = 0. For what value of m does f have a minimum?

(e) Plot f(m) for T = 1 and H = 0. Where are the minima of f(m)? Do they have the same
depth? If so, what is the meaning of this result?

(f) Choose H = 0.5 and T = 1. Do the two minima have the same depth? The equilibrium or
stable phase corresponds to the global minimum. We will explore the significance of the other
(local) free energy minimum in Section 5.9.5.

We now compare the results of mean-field theory near the phase transition with the exact
results for the one and two-dimensional Ising models. The fact that the mean-field result (5.94)
for Tc depends only on q, the number of nearest neighbors, and not the spatial dimension d is one
of the inadequacies of the theory. The simple mean-field theory even predicts a phase transition in
one dimension, which we know is qualitatively incorrect. In Table 5.2 the mean-field predictions
for Tc are compared to the best known estimate of the critical temperatures for the Ising model
on two and three-dimensional lattices. We see that for each dimension the mean-field theory
prediction improves as the number of neighbors increases. Another limitation is that the mean

http://stp.clarku.edu/simulations/ising/meanFieldSolution.html
<stp.clarku.edu/simulations/ising/meanFieldSolution.html>
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lattice d q Tmf/Tc
square 2 4 1.763
triangular 2 6 1.648
diamond 3 4 1.479
simple cubic 3 6 1.330
bcc 3 8 1.260
fcc 3 12 1.225

Table 5.2: Comparison of the mean-field predictions for the critical temperature of the Ising model
with exact results and the best known estimates for different spatial dimensions d and lattice
symmetries.

energy vanishes above Tc, a result that is clearly incorrect. The source of this difficulty is that the
correlation between the spins has been ignored.

In addition to the fact that the predictions of mean-field theory improve with increasing
dimension, mean-field theory predicts that various thermodynamic properties exhibit power law
behavior near Tc as given in (5.98), (5.102), and (5.105) in agreement with the corresponding
exact results and simulations. The mean-field predictions for the critical exponents are β = 1/2,
γ = 1, and δ = 3 respectively (see Table 5.1). These values of the critical exponents do not agree
with the results of the Onsager solution of the two-dimensional Ising model, but are not terribly
wrong. Note that the mean-field results for the critical exponents are independent of dimension.
Also mean-field theory predicts a jump in the specific heat, whereas the Onsager solution predicts
a logarithmic divergence. Similar disagreements are found in three dimensions. However, the
mean-field predictions do yield the correct results for the critical exponents in four and higher
dimensions. In Section 9.4 we discuss more sophisticated treatments of mean-field theory that
yield better results for the temperature and magnetic field dependence of the magnetization and
other thermodynamic quantities. In Section 9.5 we discuss the Landau theory of phase transitions,
a more general version of mean-field theory, which is applicable to a wide variety of systems.
However, all mean-field theories predict the same (incorrect) values for the critical exponents.
In Sections 9.8 and 9.9 we introduce the renormalization group method, a powerful method for
calculating critical exponents and other properties of critical points.

Problem 5.21. Improvement of mean-field theory with dimension
From Table 5.1 we see that the predictions of mean-field theory increase in accuracy with increasing
dimension. Why is this trend reasonable?

When mean-field theory fails∗. We have seen that mean-field theory gives reasonable qual-
itative but not quantitative results. The limitations of mean-field theory can also be seen from
the following qualitative argument. We will see that mean-field theory does not treat fluctuations
consistently, and this failure leads to the demise of mean-field theory near the critical point where
fluctuations become very important.

The main assumption in our development of mean-field theory is that each spin feels the same
effective magnetic field due to all the other spins (and the external magnetic field). That is, we
ignored the fluctuations in the effective field. But if we have ignored fluctuations, why does the
susceptibility diverge near the critical point? (Recall that the susceptibility is a measure of the
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fluctuations of the magnetization.) Because the fluctuations are ignored in one context, but not
another, we see that mean-field theory carries with it the seeds of its own destruction. That is,
mean-field theory does not treat the fluctuations consistently. This inconsistency is unimportant
if the fluctuations are not too important.

A useful criterion for the applicability of mean-field theory is that the fluctuations of the
magnetization M averaged over the distance ξ should be much less than the mean value of M ,
that is,

(∆M)2 �M
2
. (averaged over the distance ξ) (5.115)

It can be shown that the left-hand side of (5.115) is proportional to ξ−dχT. We thus write

ξ−dχ� m2. (5.116)

The inequality in (5.116) is called the Ginzburg criterion. If we substitute m ∼ εβ , χT ∼ ε−γ , and
ξ ∼ ε−ν , we can write (5.116) as

εdν−γ � ε2β , (5.117)

or
ε(d/2)−2 � 1, (5.118)

where we have substituted ν = 1/2, β = 1/2, and γ = 1. We see that the inequality in (5.118) is
always satisfied for d > 4 near the critical point where ε � 1. That is, the mean-field exponents
are exact in dimensions greater than four. (In four dimensions the power law behavior is modified
by logarithmic factors.) The mean-field theory estimates for the critical temperature become exact
only in the limit d→∞ or for an infinite-range interaction.

For d < 4 the inequality (5.118) can be satisfied if ε is not too small. If we include the constants
that we ignored in obtaining (5.118), the criterion (5.116) can be expressed in three dimensions as

[(∆C/k)ξ3
0 ]−1 � ε1/2, (5.119)

where ∆C is the jump in the specific heat (per unit volume) and ξ0 is the correlation length at
T = 0. Some numerical factors have been omitted in (5.119) for simplicity. We define the crossover
(reduced) temperature ε× as

ε2× ∝ [(∆C/k)ξ3
0 ]−2. (5.120)

Hence, mean-field theory is valid provided that |T − Tc| ≥ |T× − Tc|.13

5.7 *Infinite-Range Interactions

We might expect that mean-field theory would become exact in a system for which every spin
interacts equally strongly with every other spin because the fluctuations of the effective field would

13There are systems such as the conventional (BCS) superconductors for which ξ0 is so large and hence ε× is so
small that mean-field theory is applicable at all temperatures that are experimentally accessible. For example, for
tin ξ0 ≈ 2.3 × 10−7 m and ∆C ≈ 800 J/m3. In this case mean-field theory should be applicable until ε becomes
as small as 10−14. There are other systems, such as carbon dioxide and a modified Ising model with longer range
interactions, for which crossover behavior is observed from mean-field behavior to fluctuation-dominated behavior
closer to the critical point.
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go to zero in this limit. We will refer to this model as the infinite-range Ising model, although the
interaction range becomes infinite only in the limit N → ∞. In Problem 5.22 we will show that
for such a system of N spins, the energy is given by

E =
JN
2

(N −M2), (5.121)

where M is the magnetization and JN is the interaction between any two spins. Note that E
depends only on M . In the same problem we will also show that the number of states with
magnetization M is given by

g(M) =
N !

n!(N − n)!
, (5.122)

where n is the number of up spins. As before, n = N/2 +M/2 and N − n = N/2−M/2.

∗Problem 5.22. Energy and density of states of infinite-range Ising model

(a) Show that the energy of a system for which every spin interacts with every other spin is given
by (5.121). One way to do so is to consider a small system, say N = 9 and to work out the
various possibilities. As you do so, you will see how to generalize your results to arbitrary N .

(b) Use similar considerations as in part (a) to find the number of states as in (5.122).

We have to scale the energy of interaction JN to obtain a well-behaved thermodynamic limit.
If we did not, the energy change associated with the flip of a spin would grow linearly with N and
a well-defined thermodynamic limit would not exist. We will choose

JN =
qJ

N
, (5.123)

so that kTc/J = q when N →∞.
Given the energy in (5.121) and the number of states in (5.122), we can write the partition

function as
ZN =

∑
M

N !
(N2 + M

2 )!(N2 −
M
2 )!

e−βJN (N−M2)/2e−βHM , (5.124)

where we have included the interaction with an external magnetic field. For N not too large, we
can evaluate the sum over M numerically. For N � 1 we can convert the sum to an integral. We
write

ZN =
∫ ∞
−∞

Z(M) dM, (5.125)

where
Z(M) =

N !
n!(N − n)!

e−βEeβHM , (5.126)

where n = (M +N)/2. A plot of Z(M) shows that it is peaked about a particular value of M . So
let us do our usual trick of expanding lnZM about its maximum.

We will first find the value of M for which Z(M) is a maximum. We write

lnZ(M) = lnN !− lnn!− ln(N − n)!− βE + βhM. (5.127)
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We then use Stirling’s approximation (3.103) and the fact that d(lnx!)/dx = lnx, dn/dM = 1/2,
and d(N − n)/dM = −1/2 and obtain

d lnZ(M)
dM

= −1
2

lnn+
1
2

ln(N − n) + βJNM + βH (5.128a)

= −1
2

ln
N

2
(1 +m) +

1
2

ln
N

2
(1−m) + qβJm+ βH (5.128b)

= −1
2

ln(1 +m) +
1
2

ln(1−m) + qβJm+ βH = 0. (5.128c)

We set d(lnZ(M))/dM = 0 to find the value of M that maximizes Z(M). We have

1
2

ln
1−m
1 +m

= −β(qJm+H), (5.129)

so that
1−m
1 +m

= e−2β(qJm+H) = x (5.130)

Finally we solve (5.130) for m in terms of x and obtain 1−m = x(1 +m), m(−1− x) = −1 + x,
and hence

m =
1− x
1 + x

=
1− e−2β(Jqm+H)

e−2β(Jqm+H) + 1
(5.131a)

=
eβ(Jqm+H) − e−β(Jqm+H)

e−β(Jqm+H) + eβ(Jqm+H)
(5.131b)

= tanh(β(Jqm+H). (5.131c)

Note that (5.131c) is identical to the mean-field result in (5.93).14

∗Problem 5.23. Show that Z(M) can be written as a Gaussian and then do the integral over M
in (5.125) to find the mean-field form of Z. Use this form of Z to find the mean-field result for the
free energy F .

5.8 *Density of States

The probability that a system in equilibrium with a heat bath at a temperature T has energy E
is given by

P (E, β) = Ω(E)e−βE/Z, (5.132)

where Z is the partition function and Ω(E) is the number of states with energy E. If Ω(E)
were known, we could calculate the mean energy (and other thermodynamic quantities) at any
temperature from the relation

E = (1/Z)
∑
E

EΩ(E)e−βE . (5.133)

14 Mean-field theory corresponds to taking the limit N →∞ before letting the range of interaction go to infinity.
In contrast, the infinite-range Ising model corresponds to taking both limits simultaneously. Although the infinite-
range Ising model gives the same results for m as mean-field theory, the two approaches can yield different results
in other contexts.
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Hence, the quantity Ω(E) is of much interest.
In the following we discuss an algorithm for directly computing Ω(E)for the two-dimensional

Ising model. In this case the energy is a discrete variable and hence the quantity we wish to
compute is the number of spin configurations with the same energy.

Suppose that we were to try to compute Ω(E) by doing a random walk in energy space by
flipping the spins at random and accepting all configurations that we obtain in this way. The
histogram of the energy, H(E), the number of visits to each possible energy E of the system,
would converge to Ω(E) if the walk visited all possible configurations. In practice, it would be
impossible to realize such a long random walk given the extremely large number of configurations.
For example, the Ising model on a L = 10 square lattice has 2100 ≈ 1.3× 1030 spin configurations.

An even more important limitation of doing a simple random walk to determine Ω(E) is that
the walk would spend most of its time visiting the same energy values over and over again and
would not reach the values of E that are less probable. The idea of the Wang-Landau algorithm is
to do a random walk in energy space by flipping single spins at random and accepting the changes
with a probability that is proportional to the reciprocal of the density of states. In this way energy
values that would be visited often using a simple random walk would be visited less often because
they have a larger density of states. There is only one problem – we don’t know the density of
states. We will see that the Wang-Landau algorithm estimates the density of states at the same
time that it does a random walk in phase space.

The algorithm starts with an initial arbitrary spin configuration a guess for the density of
states. The simplest guess is to set Ω(E) = 1 for all possible energies E. The algorithm can be
summarized by the follow steps.

1. Choose a spin at random and make a trial flip. Compute the energy before, E1, and after
the flip, E2, and accept the change with probability

p(E1 → E2) = min(Ω̃(E1)/Ω̃(E2), 1), (5.134)

where Ω̃(E) is the current estimate of Ω(E). Equation (5.134) implies that if Ω̃(E2) ≤
Ω̃(E1), the state with energy E2 is always accepted; otherwise, it is accepted with probability
Ω̃(E1)/Ω̃(E2). That is, the state with energy E2 is accepted if a random number r ≤
Ω̃(E1)/Ω̃(E2).

2. After the trial flip the energy of the system is E. (E = E2 if the change is accepted or
remains at E1 if the change is not accepted.) The other part of the Wang-Landau algorithm
is to multiply the current value of Ω̃(E) by the modification factor f > 1

Ω̃(E) = fΩ̃(E). (5.135)

We also update the existing entry for H(E) in the energy histogram: H(E) → H(E) + 1.
Because Ω̃(E) becomes very large, in practice we must work with the logarithm of the density
of states, so that ln(Ω̃(E)) will fit into double precision numbers. Therefore, each update
of the density of states is implemented as ln(Ω̃(E)) → ln(Ω̃(E)) + ln(f), and the ratio of
the density of states is computed as exp[ln(Ω̃(E1))− ln(Ω̃(E2))]. A reasonable choice of the
initial modification factor is f = f0 = e ≈ 2.71828 . . .. If f0 is too small, the random walk
will need a very long time to reach all possible energies. Too large a choice of f0 will lead to
large statistical errors.
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3. We proceed with the random walk in energy space until a flat histogram H(E) is obtained,
that is, until all the possible energy values are visited an approximately equal number of
times. Because it is impossible to obtain a perfectly flat histogram, we will say that H(E)
is “flat” when H(E) for all possible E is not less than p of the average histogram H(E); p
is chosen according to the size and the complexity of the system and the desired accuracy of
the density of states. For the two-dimensional Ising model on small lattices, p can be chosen
to be as high as 0.95, but for large systems the criterion for flatness may never be satisfied
if p is too close to unity.

4. Once the flatness criterion has been satisfied, we reduce the modification factor f using a
function such as f1 =

√
f0, reset the histogram to H(E) = 0 for all values of E, and begin the

next iteration of the random walk during which the density of states is modified by f1 at each
trial flip. The density of states is not reset during the simulation. We continue performing
the random walk until the histogram H(E) is again flat. We then reduce the modification
factor, fi+ 1 =

√
fi, reset the histogram to H(E) = 0 for all values of E, and continue the

random walk.

5. The simulation is stopped when f is smaller than a predefined value (such as ffinal =
exp(10−8) ≈ 1.00000001). The modification factor acts as a control parameter for the ac-
curacy of the density of states during the simulation and also determines how many Monte
Carlo sweeps are necessary for the entire simulation.

At the end of the simulation, the algorithm provides only a relative density of states. To
determine the normalized density of states Ω(E), we can either use the fact that the total number
of states for the Ising model is ∑

E

Ω(E) = 2N , (5.136)

or that the number of ground states (for which E = −2NJ) is two. The latter normalization
guarantees the accuracy of the density of states at low energies which is important in the calculation
of thermodynamic quantities at low temperatures. If we apply (5.136), we cannot guarantee the
accuracy of Ω(E) for energies at or near the ground state, because the rescaling factor is dominated
by the maximum density of states. We can use one of these two normalization conditions to obtain
the absolute density of states, and use the other normalization condition to check the accuracy of
our result.

∗Problem 5.24. Wang-Landau algorithm
Use the applet/application at <stp.clarku.edu/simulations/ising/wanglandau.html> which
implements the Wang-Landau algorithm for the Ising model on a square lattice.

(a) Choose L = 2. How many states are there for each value of E? Run the simulation and verify
that the computed density of states is close to your exact answer.

(b) Choose larger values of L, for example, L = 16, and describe the qualitative energy dependence
of Ω(E).

(c) The program computes the specific heat as a function of temperature using the estimated value
of Ω̃(E). Describe the qualitative temperature dependence of the specific heat.

http://tp.clarku.edu/simulations/ising/wanglandau.html
<stp.clarku.edu/simulations/ising/wanglandau.html>
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5.9 Supplementary Notes

5.9.1 How does magnetism occur in matter?

Classical electromagnetic theory tells us that magnetic fields are due to electrical currents and
changing electric fields, and that the magnetic fields far from the currents are described by a
magnetic dipole. It is natural to assume that magnetic effects in matter are due to microscopic
current loops created by the motion of electrons in atoms. However, it was shown by Niels Bohr
in his doctoral thesis of 1911 and independently by Johanna H. van Leeuwen in her 1919 doctoral
thesis that diamagnetism does not exist in classical physics (see Problem 6.75). Hence, magnetism
is a quantum phenomena.

In the context of magnetism the most obvious new physics due to quantum mechanics is the
existence of an intrinsic magnetic moment. The intrinsic magnetic moment is proportional to the
intrinsic spin, another quantum mechanical property. The interaction energy between a single spin
and an externally applied magnetic field B is given by

E = −µ ·B. (5.137)

There is a distinction between the magnetic field produced by currents external to the material
and the field produced internally by the magnetic moments within the material. The applied
field is denoted as H and the total field is denoted as B. The fields B and H are related to the
magnetization per unit volume m = M/V by

B = µ0(H + m). (5.138)

The energy due to the external magnetic field H coupled to M is

E = −M ·H. (5.139)

The origin of the interaction energy between magnetic moments must be due to quantum
mechanics. Because the electrons responsible for magnetic behavior are localized near the atoms of
a regular lattice in most magnetic materials, we consider the simple case of two localized electrons.
Each electron has a spin 1/2 which can point either up or down along the axis that is specified by
the applied magnetic field. The electrons interact with each other and with nearby atoms and are
described in part by the spatial wavefunction ψ(r1, r2). This wavefunction must be multiplied by
the spin eigenstates to obtain the actual state of the two electron system. We denote the basis for
these states as

|↑↑〉, |↓↓〉, |↑↓〉, |↓↑〉, (5.140)

where the arrows corresponds to the spin of the electrons. These states are eigenstates of the
z-component of the total spin angular momentum Sz such that Sz operating on any of the states
in (5.140) has an eigenvalue equal to the sum of the spins in the z direction. For example,
Sz| ↑↑〉 = 1| ↑↑〉 and Sz| ↑↓〉 = 0| ↑↓〉. Similarly, Sx or Sy give zero if either operator acts on these
states.

Because electrons are fermions, the basis states in (5.140) are not physically meaningful,
because if two electrons are interchanged, the new wavefunction must either be the same or differ
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by a minus sign. The simplest normalized linear combinations of the states in (5.140) that satisfy
this condition are

1√
2

(|↑↓〉 − |↓↑〉) (5.141a)

|↑↑〉 (5.141b)
1√
2

(|↑↓〉+ |↓↑〉) (5.141c)

|↓↓〉 (5.141d)

The state in (5.141a) is antisymmetric, because interchanging the two electrons leads to minus the
original state. This state has a total spin, S = 0, and is called the singlet state. The collection
of the last three states is called the triplet state and has S = 1. Because the states of fermions
must be antisymmetric, the spin state is antisymmetric when the spatial part of the wavefunction
ψ(r1, r2) is symmetric and vice versa. That is, if the spins are parallel, then ψ(r1, r2) = −ψ(r2, r1).
Similarly, if the spins are antiparallel, then ψ(r1, r2) = +ψ(r2, r1). Hence, when r1 = r2, ψ is zero
for parallel spins and is nonzero for antiparallel spins. We conclude that if the spins are parallel,
the separation between the two electrons will rarely be small and their average electrostatic energy
will be less than it is for antiparallel spins. We denote Etriplet and Esinglet as the triplet energy and
the singlet energy, respectively, and write the interaction energy in terms of the spin operators.
We write

(S1 + S2)2 = S1
2 + S2

2 + 2 S1 ·S2. (5.142)

For spin 1/2, S1
2 = S1(S1 +1) = 3/4 = S2

2. The total spin, S = S1 +S2 equals zero for the singlet
state and is unity for the triplet state. Hence, S2 = S(S + 1) = 0 for the singlet state and S2 = 2
for the triplet state. These results lead to S1 · S2 = −3/4 for the singlet state and S1 · S2 = 1/4
for the triplet state and allows us to write

E =
1
4

(Esinglet + 3Etriplet)− JS1 · S2, (5.143)

where J = Esinglet − Etriplet. The term (5.143) in parenthesis is a constant and can be omitted
by suitably defining the zero of energy. The second term represents a convenient form of the
interaction between two spins.

Can we write the total effective interaction of a system of three spins as −J12 S1 ·S2−J23 S2 ·
S3 − J13 S1 · S3? In general, the answer is no, and we can only hope that this simple form is a
reasonable approximation. The total energy of the most common model of magnetism is based on
the form (5.143) for the spin-spin interaction and is expressed as

Ĥ = −
N∑

i<j=1

Jij Si · Sj − gµ0H·
N∑
i=1

Si, (Heisenberg model) (5.144)

where gµ0 is the magnetic moment of the electron. The exchange interaction Jij can be positive
or negative. The form (5.144) of the interaction energy is known as the Heisenberg model. Note
that S as well as the Hamiltonian Ĥ is an operator, and that the Heisenberg model is quantum
mechanical in nature. The distinction between the operator Ĥ and the magnetic field H will be
clear from the context.
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As we have seen, the Heisenberg model assumes that we can treat all interactions in terms of
pairs of spins. This assumption means that the magnetic ions in the crystal must be sufficiently
far apart that the overlap of their wavefunctions is small. We also have neglected any orbital
contribution to the total angular momentum. In addition, dipolar interactions can be important
and lead to a coupling between the spin degrees of freedom and the relative displacements of the
magnetic ions. In general, it is very difficult to obtain the exact Hamiltonian from first principles,
and the Heisenberg form of the Hamiltonian should be considered as a reasonable approximation
with the details buried into the exchange constant J .

The Heisenberg model is the starting point for most microscopic models of magnetism. We
can go to the classical limit S →∞, consider spins with one, two, or three components, place the
spins on lattices of any dimension and any crystal structure, and allow J to be positive, negative,
random, nearest-neighbor, long-range, etc. In addition, we can include other interactions such as
the interaction of an electron with an ion. The theoretical possibilities are very rich as are the
types of magnetic materials of interest experimentally.

5.9.2 The thermodynamics of magnetism

[xx not written xx]

5.9.3 Low temperature expansion

The existence of exact analytical solutions for systems with nontrivial interactions is the exception.
In general, we must be satisfied with approximate solutions with limited ranges of applicability.
To understand the nature of one class of approximations, we reconsider the one-dimensional Ising
model at low temperatures.

Suppose that we are interested in the behavior of the Ising model at low temperatures in
the presence of a magnetic field H. We know that the state of lowest energy (the ground state)
corresponds to all spins completely aligned. What happens when we raise the temperature slightly
above T = 0? The only way that the system can raise its energy is by flipping one or more spins.
At a given temperature we can consider the excited states corresponding to 1, 2, . . . , f flipped
spins. These f spins may be connected or may consist of disconnected groups.

As an example, consider a system of N = 5 spins with toroidal boundary conditions. The
ground state is shown in Figure 5.12. The energy cost of flipping a single spin is 4J + 2H. (The
energy of interaction of the flipped spin with its two neighbors changes from −2J to +2J .) A
typical configuration with one spin flipped is shown in Figure 5.13. Because the flipped spin can
be at N = 5 different sites, we write

Z = [1 + 5 e−β(4J+2H) + . . .]e−βE0 , (5.145)

where E0 = −5(J +H).
The next higher energy excitation consists of a pair of flipped spins with one contribution

arising from pairs that are not nearest neighbors and the other contribution arising from nearest
neighbor pairs (see Figure 5.14). We will leave it as an exercise (see Problem 5.25) to determine
the corresponding energies and the number of different ways that this type of excitation occurs.
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Figure 5.12: The ground state of N = 5 Ising spins in an external magnetic field. For toroidal
boundary conditions, the ground state energy is E0 = −5J − 5H.

Figure 5.13: The flip of a single spin of N = 5 Ising spins. The corresponding energy cost is
4J + 2H.

Problem 5.25. Low temperature expsnsion for five spins
Use the microstates that were enumerated in Problem 5.5 to find the low temperature expansion
of Z for a system of N = 5 spins in one dimension. Use toroidal boundary conditions. Write your
result for Z in terms of the variables

u = e−2βJ , (5.146)

and
w = e−2βH . (5.147)

∗Problem 5.26. Generalize the low temperature expansion to find higher order contributions to
ZN . Convince yourself that the low temperature series can be summed exactly in one dimension.
(The low temperature series of the Ising model can only be summed approximately in higher
dimensions using what are known as Padé approximants.)

5.9.4 High temperature expansion

At high temperatures for which J/kT � 1, the effects of the interactions between the spins become
small. We can develop a perturbation method that is based on expanding Z in terms of the small
parameter J/kT . For simplicity, we consider the Ising model in zero magnetic field. We write

ZN =
∑
s=±1

∏
i,j=nn(i)

eβJsisj , (5.148)

where the sum is over all states of the N spins, and the product is restricted to nearest neighbor
pairs of sites 〈ij〉 in the lattice. We first apply the identity

eβJsisj = coshβJ + sisj sinhβJ = coshβJ(1 + vsisj), (5.149)

where
v = tanhβJ. (5.150)
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(a) (b)

Figure 5.14: Configurations corresponding to two flipped spins. In (a) the flipped spins are not
nearest neighbors and in (b) the flipped spins are neighbors.

The identity (5.149) can be demonstrated by considering the various cases si, sj = ±1 (see Prob-
lem 5.34). The variable v approaches zero as T →∞ and will be used as an expansion parameter
instead of J/kT for reasons that will become clear later. Equation (5.148) can now be written as

ZN = (coshβJ)p
∑
s

∏
〈ij〉

(1 + vsisj), (5.151)

where p is the total number of nearest neighbor pairs in the lattice, that is, the total number of
interactions. For a lattice with toroidal boundary conditions

p =
1
2
Nq, (5.152)

where q is the number of nearest neighbor sites of a given site; q = 2 for an Ising chain.
To make the above procedure explicit, consider the case N = 3 with toroidal boundary

conditions. For this case p = 3(2)/2 = 3, and there are three factors in the product in (5.151):
(1 + vs1s2)(1 + vs2s3)(1 + vs3s1). If we expand this product in powers of v, we obtain the 2p = 8
terms in the partition function:

ZN=3 = (coshβJ)3
1∑

s1=−1

1∑
s2=−1

1∑
s3=−1

[
1 + v(s1s2 + s2s3 + s3s1)

+ v2(s1s2s2s3 + s1s2s3s1 + s2s3s3s1) + v3s1s2s2s3s3s1

]
. (5.153)

It is convenient to introduce a one-to-one correspondence between each of the eight terms
in the bracket in (5.153) and a diagram on the lattice. The set of eight diagrams is shown in
Figure 5.15. Because v enters into the product in (5.153) as vsisj , a diagram of order vn has n
v-bonds. We can use the topology of the diagrams to help us to keep track of the terms in (5.153).
The term of order v0 is simply 2N=3 = 8. Because

∑
si=±1 si = 0, each of the terms of order v

vanish. Similarly, each of the three terms of order v2 contains at least one of the spin variables
raised to an odd power so that these terms also vanish. For example, s1s2s2s3 = s1s3, and both
s1 and s3 enter to first-order. In general, we have

1∑
si=−1

si
n =

{
2 n even
0 n odd

(5.154)

From (5.154) we see that only terms of order v0 and v3 contribute so that

ZN=3 = cosh3 βJ [8 + 8v3] = 23(cosh3 βJ + sinh3 βJ). (5.155)
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1

3

v0

v1

v2

v3

2

Figure 5.15: The eight diagrams that correspond to the eight terms in the Ising model partition
function for the N = 3 Ising chain. The term sisj is represented by a line is represented by a line
between the neighboring sites i and j.

We now generalize the above analysis to arbitrary N . We have observed that the diagrams
that correspond to nonvanishing terms in Z are those that have an even number of bonds from
each vertex; these diagrams are called closed. The reason is that a bond from site i corresponds
to a product of the form sisj . An even number of bonds from site i implies that si to an even
power enters into the sum in (5.151). Hence, only diagrams with an even number of bonds from
each vertex yield a nonzero contribution to ZN .

For the Ising chain, only two bonds can come from a given site. Hence, we see that although
there are 2N diagrams for a Ising chain of N spins with toroidal boundary conditions, only the
diagrams of order v0 (with no bonds) and of order vN will contribute to ZN . We conclude that

ZN = (coshβJ)N [2N + 2NvN ]. (5.156)

Problem 5.27. Draw the diagrams that correspond to the terms in the high temperature expan-
sion of the Ising model partition function for the N = 4 Ising chain.

Problem 5.28. The form of ZN in (5.156) is not identical to the form of ZN given in (5.28). Use
the fact that v < 1 and take the thermodynamic limit N →∞ to show the equivalence of the two
results for ZN .

5.9.5 Metastable states and nucleation

We first consider the simulations in Problem 5.29 to introduce the concepts of metastability and
nucleating droplets.
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Problem 5.29. Simulations of metastable states

(a) Use the applet at <stp.clarku.edu/simulations/ising/ising2d.html> to simulate the
Ising model on a square lattice. Choose L = 64, T = 1, and H = 0.7. Run the simula-
tion until the systems reaches equilibrium. You will notice that most of the spins are aligned
(up) with the magnetic field.

(b) Pause the simulation and let H = −0.7; we say that we have “flipped” the field. Continue
the simulation after the changed field and watch the configuration of spins. Do the spins align
themselves with the magnetic field immediately after the flip? What is the equilibrium state
of the system?

You probably noticed that spins did not immediately flip to align themselves with the magnetic
field. Instead most of the spins remain up and the mean values of the magnetization and energy
do not change for many Monte Carlo steps per spin. We say that the system is in a metastable
state. The reason that the spins do not flip as soon as the field is flipped is that if the field is not
too large, it costs energy for a spin to flip because it would likely no longer be parallel with its
neighbors. If we wait long enough, we will see isolated “droplets” of spins pointing in the stable)
(down) direction. If a droplet is too small, it will likely shrink and vanish. In contrast, if the
droplet is bigger than a certain critical size (see Figure 5.16), it will grow and the system will
quickly reach its equilibrium state. If the droplet is a certain critical size, then it will grow with
probability 50%. This droplet is called the critical droplet or the nucleating droplet. The initial
decay of the metastable state is called nucleation.

Figure 5.16: Example of a nucleating droplet.

Metastable states occur often in nature and in the laboratory. For example, if you take a
container of distilled (very pure) water with no dirt, pollen, or other impurities), you can super-

http://stp.clarku.edu/simulations/ising/ising2d.html
<stp.clarku.edu/simulations/ising/ising2d.html>
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cool it below the freezing temperature of 0◦C. The supercooled water will remain a liquid unless
there is a spontaneous density fluctuation. More likely, an external disturbance will create the
necessary fluctuation. Search <youtube.com> for supercooled water to see some great demonstra-
tions. Metastable states are important in forming crystalline metals from a molten liquid, and are
important in biological systems, and in the inflationary scenario of the early universe.

Lets consider nucleation at low temperatures so that we can ignore the entropy. A compact
droplet (circular in two dimensions and spherical in three dimensions) minimizes the energy cost
of creating a droplet of down spins. The energy is decreased by aligning the spins of a droplet
with the field. This energy decrease is proportional to the area (volume in three dimensions of the
droplet. Hence,

∆Ebulk = −aHrd, (5.157)

where r is the radius of the droplet, d is the spatial dimension, and a is a constant.
However, creating a surface costs energy. The associated cost energy cost is proportional to

the circumference of the droplet, and hence

∆Esurface = σHrd−1, (5.158)

where σ is the energy cost per spin. This quantity is known as the surface tension.
The total energy cost of creating a droplet of radius r is

∆E = aHrd + σHrd−1. (5.159)

We see that the energy cost of the droplet increases as a function of r until a critical radius rc (see
Figure 5.17).

not done

Figure 5.17: The energy cost of a droplet of radius r.

The radius of the critical droplet can be obtained by determining where E has a maximum:

dE

dr

∣∣∣
r=rc

= −adHrd−1
c + (d− 1)σrd−2

c = 0, (5.160)

or
− adHrc + (d− 1)σ = 0, (5.161)

and

rc =
(d− 1)σ
adH

(5.162)

<youtube.com>
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The energy cost of creating the critical droplet is Ec = bσd/Hd−1, where b depends on d. The
probability of creating the droplet is proportional to e−βEc . The lifetime of the metastable state,
that is the time before the critical droplet occurs, is proportional to the inverse of this probability.

Note that we used equilibrium considerations to estimate the size of the droplet and the
lifetime of the metastable state. This assumption of equilibrium is justified only if the lifetime
of the metastable state is long. Hence, we must have β/H � 1, that is, small fields or low
temperatures.

In Problem 5.20f you found that the free energy of the Ising model has two minima for T < Tc
and H 6= 0. It can be shown that in the thermodynamic limit N → ∞, the system will be found
in the lowest free energy minimum, the global minimum. The other minimum corresponds to the
metastable phase.

Vocabulary

magnetization m, zero field susceptibility χ

Ising model, exchange constant J

correlation function G(r), correlation length ξ, domain wall

order parameter, continuous phase transition, critical point

critical temperature Tc, critical exponents α, β, δ, γ, ν, η

exact enumeration

mean-field theory

low and high temperature expansions

Additional problems

Problem 5.30. Thermodynamics of classical spins
The energy of interaction of a classical magnetic dipole with an external magnetic field B is given
by

E = −µ ·B = −µH cos θ, (5.163)

where θ is the continuously variable angle between µ and B. In the absence of an external
field, the dipoles (or spins as they are commonly called) are randomly oriented so that the mean
magnetization is zero. If H 6= 0, the mean magnetization is given by

M = µNcos θ. (5.164)

The direction of the magnetization is parallel to B. Show that the partition function for one spin
is given by

Z1 =
∫ 2π

0

∫ π

0

eβµH cos θ sin θ dθ dφ. (5.165)
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Table 5.3: Listing of inline problems.

How is cos θ related to Z1? Show that

M = NµL
(
βµH

)
, (5.166)

where the Langevin function L(x) is given by

L(x) =
ex + e−x

ex − e−x
− 1
x

= cothx− 1
x
. (5.167)

For |x| < π, L(x) can be expanded as

L(x) =
x

3
− x3

45
+ . . .+

22nB2n

(2n)!
+ . . . , (x� 1) (5.168)

where Bn is the Bernoulli number of order n (see Appendix A). What is M and the susceptibility
in the limit of high T? For large x, L(x) is given by

L(x) ≈ 1− 1
x

+ 2e−2x. (x� 1) (5.169)

What is the behavior of M in the limit of low T?

Problem 5.31. Arbitrary spin
The magnetic moment of an atom or nucleus is associated with its angular momentum which
is quantized. If the angular momentum is J , the magnetic moment along the direction of B is
restricted to (2J + 1) orientations. We write the energy of an individual atom as

E = −gµ0 J ·B = −gµ0JzB. (5.170)



CHAPTER 5. MAGNETIC SYSTEMS 266

The values of µ0 and g depend on whether we are considering a nucleus, an atom, or an electron.
The values of Jz are restricted to −J,−J + 1,−J + 2, . . . , J − 1, J . Hence, the partition function
for one atom contains (2J + 1) terms:

Z1 =
J∑

m=−J
e−β(−gµ0mH). (5.171)

The summation index m ranges from −J to J in integral steps.
To simplify the notation, we let α = βgµ0B, and write Z1 as a finite geometrical series:

Z1 =
J∑

m=−J
emα, (5.172a)

= e−αJ(1 + eα + e2α + . . .+ e2Jα). (5.172b)

The sum of a finite geometrical series is given by

Sn =
n∑
p=0

xp =
xn+1 − 1
x− 1

. (5.173)

Given that there are (2J + 1) terms in (5.172b), show that

Z = e−αJ
e(2J+1)α − 1
eα − 1

= e−αJ
[1− e(2J+1)α]

1− eα
. (5.174)

Use the above relations to show that

M = Ngµ0JBJ(α), (5.175)

where the Brillouin function BJ(α) is defined as

BJ(α) =
1
J

[
(J + 1/2) coth(J + 1/2)α− 1

2
cothα/2

]
. (5.176)

What is the limiting behavior of M for high and low T for fixed B? What is the limiting behavior
of M for J = 1

2 and J � 1?

Problem 5.32. The five configurations shown in Figure 5.18 for the Ising chain were generated
using the Metropolis algorithm (see Section 5.4.3) at βJ = 1 using toroidal boundary conditions.
On the basis of this limited sample, estimate the mean value of E/J , the specific heat per spin,
and the spin correlation G(r) for r = 1, 2, and 3. For simplicity, take only one of the spins to be
the origin.

Problem 5.33. Use the applet at <stp.clarku.edu/simulations/ising/ising2d.html> to de-
termine P (E), the probability that the system has energy E, for the two-dimensional Ising model.
(For the Ising model the energy is a discrete variable.) What is the approximate form of the
probability distribution at T = 4? What is its width? Then take T = Tc ≈ 2.269. Is the form of
P (E) similar? If not, why?

http://stp.clarku.edu/simulations/ising/ising2d.html
<stp.clarku.edu/simulations/ising/ising2d.html>
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Figure 5.18: Five configurations of the N = 10 Ising chain with toroidal boundary conditions
generated by the Metropolis algorithm at βJ = 1 and H = 0.

Problem 5.34. Verify the validity of the identity (5.149) by considering the different possible
values of sisj and using the identities 2 coshx = ex + e−x and 2 sinhx = ex − e−x.

Problem 5.35. Explore the analogy between the behavior of the Ising model and the behavior
of a large group of people. Under what conditions would a group of people act like a collection
of individuals doing their “own thing?” Under what conditions might they act as a group? What
factors could cause such a transition?

∗Problem 5.36. The demon algorithm and the Ising chain

(a) Write a program that uses the demon algorithm to generate a representative sample of mi-
crostates for the Ising chain at fixed energy. The easiest trial change is to flip a single spin.
Show that for such a flip the possible changes in the energy in zero magnetic field are 0 and ±4J .
Confirm that the possible energies of the spins are E = −NJ, −NJ+4J, −NJ+8J . . . +NJ ,
and that the possible demon energies are Ed = 4nJ , where n = 0, 1, 2, . . .

(b) Calculate the mean demon energy as a function of the temperature of the system.

(c) The most difficult part of the program is choosing the initial state so that it has the desired
energy. (Choose J to be the unit of energy.) One way is to begin with all the spins parallel
and randomly flip spins until the desired energy is reached. (Remember to choose the desired
energy that is compatible with what you found in part (a).)

(d) Choose N = 20 and Ed = 0. Collect data for the mean energy of the system, the mean
demon energy, and the probability P (Ed) that the demon has energy Ed for about ten different
energies. Equilibrate the spins for about 100 flips per spin before taking averages for each value
of the total energy. Average over approximately 1000 flips per spin. Discuss the qualitative
behavior of P (Ed) and show that your results are consistent with what you found in part (b).
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Figure 5.19: Two examples of possible diagrams on the square lattice. The only term that con-
tributes to Z corresponds to the square.

∗Problem 5.37. Consider a one-dimensional Ising-type model defined by the usual Hamiltonian
with H = 0, but with si = 0,±1. Use the transfer matrix method to calculate the dependence of
the energy on T . The solution requires the differentiation of the root of a cubic equation that you
might wish to do numerically.

Problem 5.38. Exact calculation of the partition function
Calculate the partition function for the Ising model on a square lattice for N = 4 and N = 9 in
the presence of an external magnetic field. Assume that the system is in equilibrium with a heat
bath at temperature T . You might find it easier to write a short program to enumerate all the
microstates. Choose either toroidal or open boundary conditions. Calculate the corresponding
values of the mean energy, the heat capacity, and the zero field susceptibility.

Problem 5.39. Low temperature behavior in mean-field theory

(a) Write (5.93) in the form βqJm = tanh−1m = (1/2) ln[(1 +m)/(1−m)] and show that

m(T ) ≈ 1− 2e−βqJ as T → 0. (5.177)

(b) Determine the low temperature behavior of χT. Does it approach zero for T � Tc?

∗Problem 5.40. The high temperature expansion we discussed for the Ising chain in Section 5.9.4
is very general and can be readily applied to the two and three-dimensional Ising model. We write

ZN = (coshβJ)Nq/2 2N
Nq/2∑
b=0

g(b)vb, (5.178)

where g(b) is the number of diagrams with b bonds such that each vertex of the diagram is even.
It is understood that g(0) = 1. The form of (5.178) implies that we have reduced the calculation
of the Ising model partition function to the problem of counting closed diagrams on a lattice. For
the Ising model on the square lattice (q = 4), the first nontrivial contribution to ZN comes from
loops made up of four bonds (see Figure 5.19) and is given by

(coshβJ)2N 2Ng(4)v4, (5.179)
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where g(4) = N . It is possible to sum many terms in the high temperature expansion of ZN and
other quantities and determine the thermodynamic behavior for all temperatures including the
vicinity of the phase transition.

To make the high temperature expansion more explicit, work out the first several terms in
(5.178) for a two-dimensional Ising model with N = 4 and N = 9.
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Noninteracting Particle Systems
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We apply the general formalism of statistical mechanics to classical and quantum systems of
noninteracting particles and discuss the equipartition theorem, the Maxwell velocity distribution,
the Fermi-Dirac and Bose-Einstein distributions, blackbody radiation, the ideal Fermi and Bose
gases, and the specific heat of a crystalline solid among other applications.

6.1 Introduction

Noninteracting systems are important for several reasons. For example, the interactions between
the atoms in a gas can be ignored in the limit of low densities. In the limit of high temperatures,
the interaction between the spins in an Ising model can be neglected because the mean energy
exchanged with the heat bath is much larger than the potential energy of interaction. Another
reason for studying systems of noninteracting particles is that there are many cases for which the
equilibrium properties of a system of interacting particles can be reformulated as a collection of
noninteracting modes or quasiparticles. We will see such an example when we study the harmonic
model of a crystal.

6.2 The Ideal Classical Gas

An ideal (or perfect) gas is an idealized system of identical particles for which the interactions
between them can be neglected.1 In Sections 4.4 and 4.5 we derived the thermodynamic properties
of the ideal classical gas2 using the microcanonical ensemble. If the gas is in thermal equilibrium
with a heat bath at temperature T , it is more natural and convenient to treat the ideal gas in the

1An ideal gas is a good approximation to a real gas at low densities where the mean interparticle distance is
much larger than the range of the interparticle interactions.

2The theme music for this section can be found at <www.classicalgas.com/>.
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canonical ensemble. However, because the particles are not localized, they cannot be distinguished
from each other as were the harmonic oscillators considered in Example 4.4 and the spins in
Chapter 5. Hence, we cannot simply focus our attention on one particular particle. For this reason
we will later find it more convenient to derive the thermodynamic properties of the ideal classical
gas using the grand canonical ensemble (see Section 6.8).

If the temperature is sufficiently high, we expect that we can treat a system of particles
semiclassically. To do so, the de Broglie wavelength associated with the particles must be small.
That is, for the semiclassical description to be valid, the mean de Broglie wavelength λ must be
smaller than any other length in the system. For an ideal gas, the only two lengths are L, the linear
dimension of the system, and the mean distance between particles. As shown in Problem 6.1, the
mean distance between particles in three dimensions is ρ−1/3. Because we are interested in the
thermodynamic limit for which L� λ, the semiclassical limit requires that

λ� ρ−1/3 or ρλ3 � 1. (semiclassical limit) (6.1)

Problem 6.1. Mean distance between particles

(a) Consider a system of N particles confined to a line of length L. What is the definition of
the particle density ρ? The mean distance between particles is N/L. How does this distance
depend on ρ?

(b) Consider a system of N particles confined to a square of linear dimension L. In this case
the mean distance between particles is A/N = L2/N . How does the mean distance between
particles depend on ρ?

(c) Use similar considerations to determine the density dependence of the mean distance between
particles in three dimensions.

To estimate the magnitude of λ, we need to know the typical value of the momentum of a
particle. For a nonrelativistic system we know from (4.65) that p2/2m = 3kT/2. (We will rederive

this result more generally in Section 6.3.) Hence p2 ∼ mkT and λ ∼ h/
√
p2 ∼ h/

√
mkT . We will

find it is convenient to define the thermal de Broglie wavelength λ as

λ =
( h2

2πmkT

)1/2
=
(2π~2

mkT

)1/2
. (thermal de Broglie wavelength) (6.2)

This form of λ with the factor of
√

2π will allow us to express the partition function in a convenient
form (see (6.11)).

The calculation of the partition function of an ideal gas in the semiclassical limit proceeds
as follows. First, we assume that λ � ρ−1/3 so that we could pick out one particle from another
if the particles were distinguishable. (If λ ∼ ρ−1/3, the wave functions of the particles would
overlap.) Of course, identical particles are intrinsically indistinguishable, so we will have to correct
for overcounting later.

With these considerations in mind we now calculate Z1, the partition function for one particle,
in the semiclassical limit. As we found in (4.42), the energy eigenvalues of a particle in a cube of
side L are given by

εn =
h2

8mL2
(nx2 + ny

2 + nz
2), (6.3)
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where the subscript n represents the set of quantum numbers nx, ny, and nz, each of which can
be any nonzero, positive integer. The corresponding partition function is given by

Z1 =
∑
n

e−βεn =
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

e−βh
2(nx

2+ny
2+nz

2)/8mL2
. (6.4)

Because the sum over each quantum number is independent of the other two quantum numbers,
we can rewrite (6.4) as

Z1 =
[ ∞∑
nx=1

e−α
2nx

2
][ ∞∑

ny=1

e−αny
2
][ ∞∑

nz=1

e−αnz
2
]

(6.5a)

= ZxZyZz = Z3
x, (6.5b)

where

α2 =
βh2

8mL2
=
π

4
λ2

L2
, (6.6)

and

Zx =
∞∑

nx=1

e−α
2nx

2
. (6.7)

The functions Zy and Zz have the same form as Zx. (We could have known beforehand that Z1

in (6.5b) would factor into three terms. Why?)
It remains to evaluate the sum over nx in (6.7). Because the linear dimension L of the container

is of macroscopic size, we have λ� L and α in (6.7) is much less than one (unless T is very small).
Hence because the difference between successive terms in the sum is very small, we can convert
the sum in (6.7) to an integral:

Zx =
∞∑

nx=1

e−α
2nx

2
=

∞∑
nx=0

e−α
2nx

2
− 1 →

∫ ∞
0

e−α
2n2

x dnx − 1. (6.8)

We have accounted for the fact that the sum over nx in (6.7) is from nx = 1 rather than nx = 0.
We next make a change of variables and write x2 = α2n2

x. We have that

Zx =
1
α

∫ ∞
0

e−x
2
dx− 1 = L

(2πm
βh2

)1/2
− 1. (6.9)

The Gaussian integral in (6.9) gives a factor of π1/2/2 (see Appendix A). Because the first term
in (6.9) is order L/λ � 1, we can ignore the second term. The expressions for Zy and Zz are
identical, and hence we obtain

Z1 = ZxZyZz = V
(2πm
βh2

)3/2
. (6.10)

The result (6.10) is the partition function associated with the translational motion of one particle
in a box. Note that Z1 can be conveniently expressed as

Z1 =
V

λ3
. (6.11)
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It is straightforward to find the mean pressure and energy for one particle in a box. We take
the logarithm of both sides of (6.10) and find

lnZ1 = lnV − 3
2

lnβ +
3
2

ln
2πm
h2

. (6.12)

Hence the mean pressure due to one particle is given by

p =
1
β

∂ lnZ1

∂V

∣∣∣
T,N

=
1
βV

=
kT

V
, (6.13)

and the mean energy is

e = −∂ lnZ1

∂β

∣∣∣
V,N

=
3

2β
=

3
2
kT. (6.14)

The mean energy and pressure of an ideal gas of N particles is N times that of the corresponding
quantities for one particle. Hence, we obtain for an ideal classical gas the equations of state

PV = NkT, (6.15)

and

E =
3
2
NkT. (6.16)

The heat capacity at constant volume of an ideal gas of N particles is

CV =
∂E

∂T

∣∣∣
V

=
3
2
Nk. (6.17)

We have derived the mechanical and thermal equations of state for an ideal classical gas for
a second time! The derivation of the equations of state is much easier in the canonical ensemble
than in the microcanonical ensemble. The reason is that we were able to consider the partition
function of one particle because the only constraint is that the temperature is fixed instead of the
total energy.

Problem 6.2. The volume dependence of Z1 should be independent of the shape of the box. Show
that the same result for Z1 is obtained if the box has linear dimensions Lx, Ly, and Lz.

Problem 6.3. We obtained the semiclassical limit of the partition function Z1 for one particle in
a box by writing it as a sum over single particle states and then converting the sum to an integral.
Show that the semiclassical partition Z1 for a particle in a one-dimensional box can be expressed
as

Z1 =
∫
dp dx

h
e−βp

2/2m. (one dimension) (6.18)

The integral over p in (6.18) extends from −∞ to +∞.

The entropy of an ideal classical gas of N particles. Although it is straightforward to
calculate the mean energy and pressure of an ideal classical gas by considering the partition function
for one particle, the calculation of the entropy is more subtle. To understand the difficulty, consider
the calculation of the partition function of an ideal gas of three particles. Because there are no
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interactions between the particles, we can write the total energy as a sum of the single particle
energies ε1 + ε2 + ε3, where εi is the energy of the ith particle. The partition function Z3 is

Z3 =
∑

all states

e−β(ε1+ε2+ε3). (6.19)

The sum over all states in (6.19) is over the states of the three particle system. If the three particles
were distinguishable, there would be no restriction on the number of particles that could be in any
single particle state, and we could sum over the possible states of each particle separately. Hence,
the partition function for a system of three distinguishable particles has the form

Z3 = Z3
1 . (distinguishable particles) (6.20)

It is instructive to show the origin of the relation (6.20) for an specific example. Suppose the
three particles are red, white, and blue and are in equilibrium with a heat bath at temperature T .
For simplicity, we assume that each particle can be in one of only three states with energy ε1, ε2,
or ε3. The partition function for one particle is given by

Z1 = e−βε1 + e−βε2 + e−βε3 . (6.21)

In Table 6.2 we show the twenty-seven possible states of the system of three distinguishable par-
ticles. The corresponding partition function is given by

Z3 = e−3βε1 + e−3βε2 + e−3βε3

+ 3
[
e−β(2ε1+ε2) + e−β(ε1+2ε2) + e−β(2ε1+ε3)

+ e−β(2ε2+ε3) + e−β(ε1+2ε3) + e−β(ε2+2ε3)
]

+ 6 e−β(ε1+ε2+ε3). (three distinguishable particles) (6.22)

It is easy to see that Z3 in (6.22) can be factored and expressed as

Z3 = Z3
1 . (6.23)

In contrast, if the three particles are indistinguishable, many of the microstates shown in Ta-
ble 6.2 would be impossible. In this case we cannot assign the states of the particles independently,
and the sum over all states in (6.19) cannot be factored as in (6.20). For example, the state 1, 2,
3 could not be distinguished from the state 1, 3, 2.

As discussed in Section 4.3.7, the semiclassical limit assumes that states with multiple occu-
pancy such as 1, 1, 2 and 1, 1, 1 can be ignored because there are many more single particle states
than there are particles (see Problem 4.19). (In our simple example, each particle can be in one
of only three states and the number of states is comparable to the number of particles.) If we
assume that the particles are indistinguishable and that microstates with multiple occupancy can
be ignored, then Z3 is given by

Z3 = e−β(ε1+ε2+ε3). (indistinguishable, multiple occupancy ignored) (6.24)

However, if the particles are distinguishable, there are 3! states (states 22–27 in Table 6.2) with
energy ε1 + ε2 + ε3 (again ignoring states with multiple occupancy). Thus if we count microstates
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state s red white blue Es
1 ε1 ε1 ε1 3ε1
2 ε2 ε2 ε2 3ε2
3 ε3 ε3 ε3 3ε3
4 ε2 ε1 ε1 2ε1 + ε2
5 ε1 ε2 ε1 2ε1 + ε2
6 ε1 ε1 ε2 2ε1 + ε2
7 ε1 ε2 ε2 ε1 + 2ε2
8 ε2 ε1 ε2 ε1 + 2ε2
9 ε2 ε2 ε1 ε1 + 2ε2

10 ε3 ε1 ε1 2ε1 + ε3
11 ε1 ε3 ε1 2ε1 + ε3
12 ε1 ε1 ε3 2ε1 + ε3
13 ε3 ε2 ε2 2ε2 + ε3
14 ε2 ε3 ε2 2ε2 + ε3
15 ε2 ε2 ε3 2ε2 + ε3
16 ε1 ε3 ε3 ε1 + 2ε3
17 ε3 ε1 ε3 ε1 + 2ε3
18 ε3 ε3 ε1 ε1 + 2ε3
19 ε2 ε3 ε3 ε2 + 2ε3
20 ε3 ε2 ε3 ε2 + 2ε3
21 ε3 ε3 ε2 ε2 + 2ε3
22 ε1 ε2 ε3 ε1 + ε2 + ε3
23 ε1 ε3 ε2 ε1 + ε2 + ε3
24 ε2 ε1 ε3 ε1 + ε2 + ε3
25 ε2 ε3 ε1 ε1 + ε2 + ε3
26 ε3 ε1 ε2 ε1 + ε2 + ε3
27 ε3 ε2 ε1 ε1 + ε2 + ε3

Table 6.1: The twenty-seven microstates of an ideal gas of three distinguishable particles (red,
white, and blue). Each particle can be in one of three states with energy ε1, ε2, or ε3.

assuming that the three particles are distinguishable, we overcount the number of states by the
number of permutations of the particles. Hence, in the semiclassical limit we can write

Z3 =
Z3

1

3!
. (correction for overcounting) (6.25)

In general, if we begin with the fundamental quantum mechanical description of matter, then
identical particles are indistinguishable at all temperatures. However, if we make the assumption
that single particle states with multiple occupancy can be ignored, we can express ZN , the partition
function of N noninteracting identical particles, as

ZN =
Z1

N

N !
. (semiclassical limit) (6.26)
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If we substitute for Z1 from (6.10), we obtain

ZN =
V N

N !

(2πmkT
h2

)3N/2
. (6.27)

If we take the logarithm of both sides of (6.27) and use Stirling’s approximation (3.103), we can
write the free energy of a noninteracting classical gas as

F = −kT lnZN = −kTN
[

ln
V

N
+

3
2

ln
(2πmkT

h2

)
+ 1
]
. (6.28)

In Section 6.8 we will use the grand canonical ensemble to obtain the entropy of an ideal
classical gas without any ad hoc assumptions such as assuming that the particles are distinguishable
and then introducing the factor of N !. That is, in the grand canonical ensemble we will be able to
automatically satisfy the condition that the particles are indistguishable.

Problem 6.4. Equations of state of an ideal gas
Use the result (6.28) to find the pressure equation of state and the mean energy of an ideal gas.
Do these relations depend on whether the particles are indistinguishable or distinguishable?

Problem 6.5. Entropy of an ideal gas

(a) The entropy can be found from the relations, F = E − TS or S = −∂F/∂T . Show that

S(T, V,N) = Nk
[

ln
V

N
+

3
2

ln
(2πmkT

h2

)
+

5
2

]
. (6.29)

The form of S in (6.29) is known as the Sackur-Tetrode equation (see Problem 4.25). Is this
form of S applicable in the limit of low temperatures?

(b) Express kT in terms of E and show that S(E, V,N) can be expressed as

S(E, V,N) = Nk
[

ln
V

N
+

3
2

ln
(4πmE

3Nh2

)
+

5
2

]
, (6.30)

in agreement with the result (4.63) found by using the microcanonical ensemble. The form
(6.30) of S in terms of its natural variables E, V , and N is known as the fundamental relation
for an ideal classical gas.

Problem 6.6. The chemical potential of an ideal classical gas

(a) Use the relation µ = ∂F/∂N and the result (6.28) to show that the chemical potential of an
ideal classical gas is given by

µ = −kT ln
[V
N

(2πmkT
h2

)3/2]
. (6.31)
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(b) We will see in Problem 6.45 that if two systems are placed into contact with different initial
chemical potentials, particles will go from the system with high chemical potential to the
system with low chemical potential. (This behavior is analogous to energy going from high to
low temperatures.) Does “high” chemical potential for an ideal classical gas imply “high” or
“low” density?

(c) Calculate the entropy and chemical potential of one mole of helium gas at standard temperature
and pressure. Take V = 2.24×10−2 m3, N = 6.02×1023, m = 6.65×10−27 kg, and T = 273 K.

Problem 6.7. Entropy as an extensive quantity

(a) Because the entropy is an extensive quantity, we know that if we double the volume and double
the number of particles (thus keeping the density constant), the entropy must double. This
condition can be written formally as S(T, λV, λN) = λS(T, V,N). Although this behavior of
the entropy is completely general, there is no guarantee that an approximate calculation of S
will satisfy this condition. Show that the Sackur-Tetrode form of the entropy of an ideal gas
of identical particles, (6.29), satisfies this general condition.

(b) Show that if the N ! term were absent from (6.27) for ZN , S would be given by

S = Nk
[

lnV +
3
2

ln
(2πmkT

h2

)
+

3
2

]
. (6.32)

Is this form of S proportional to N for V/N constant?

(c) The fact that (6.32) yields an entropy that is not extensive does not indicate that identical
particles must be indistinguishable. Instead the problem arises from our identification of S
with lnZ as discussed in Section 4.6. Recall that we considered a system with fixed N and
made the identification (see (4.105))

dS/k = d(lnZ + βE). (6.33)

It is straightforward to integrate (6.33) and obtain

S = k(lnZ + βE) + g(N), (6.34)

where g(N) is an arbitrary function of N only. Although we usually set g(N) = 0, it is
important to remember that g(N) is arbitrary. What must be the form of g(N) in order that
the entropy of an ideal classical gas be extensive?

Entropy of mixing. Suppose that we have two containers A and B with two different gases (for
example, Argon and Oxygen) at the same temperature T . What is the change of the entropy of
the combined system if we remove the partition separating them and allow the two gases to mix
(see Figure 6.1)? Because particles of type A are different than the particles of type B, we lose
information about the system and therefore the entropy must increase. (We knew initially that the
type A particles were in container A and particles of type B were in container B.) We conclude
that the entropy of mixing satisfies

∆S > 0 (entropy of mixing) (6.35)
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NA, VA NB, VB

Figure 6.1: The composite system is prepared such that there NA particles of type A in container
A and NB particles of type B in container B. The two containers are at the same temperature T .
What is the entropy of mixing if the partition is removed?

Alternatively, we know that there would the entropy must increase because removing the partition
between the two containers is an irreversible process. (Reinserting the partition would not separate
the two gases.)

If the two gases are identical and at originally at the same density, is there any change of
entropy when the partition is removed? Because we lose no information in this case, we should
have ∆S = 0. In the following, we will derive these results for the special case of an ideal gas.

Consider two ideal gases at the same temperature T with NA and NB particles in containers
of volume VA and VB , respectively. The gases are initially separated by a partition. If we use
(6.29) for the entropy, we find

SA = NAk
[

ln
VA
NA

+ f(T )
]
, (6.36a)

SB = NBk
[

ln
VB
NB

+ f(T )
]
, (6.36b)

where the function f(T ) = 3/2 ln(2πmkT/h2) + 5/2. We then allow the particles to mix so that
they fill the entire volume V = VA + VB . If the particles are identical, the total entropy after the
removal of the partition is given by

S = k(NA +NB)
[

ln
VA + VB
NA +NB

+ f(T )
]
, (6.37)

and the change in the value of S, the entropy of mixing, is given by

∆S = k
[
(NA +NB) ln

VA + VB
NA +NB

−NA ln
VA
NA
−NB ln

VB
NB

]
. (identical gases) (6.38)

Problem 6.8. Entropy of mixing

(a) Use (6.38) to show that ∆S = 0 if the two gases have equal densities before separation. Write
NA = ρVA and NB = ρVB .

(b) Why is the entropy of mixing nonzero if the two gases initially have different densities even
though the particles are identical?

If the two gases are not identical, the total entropy after mixing is

S = k
[
NA ln

VA + VB
NA

+NB ln
VA + VB
NB

+ (NA +NB)f(T )
]
. (6.39)
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Then the entropy of mixing becomes

∆S = k
[
NA ln

VA + VB
NA

+NB ln
VA + VB
NB

−NA ln
VA
NA
−NB ln

VB
NB

]
. (entropy of mixing)

(6.40)
For the special case of NA = NB = N and VA = VB = V , we find

∆S = 2Nk ln 2. (6.41)

Problem 6.9. More on mixing

(a) Explain the result (6.41) in simple terms.

(b) What would be the result for the entropy of mixing if we had used the result (6.32) for S
instead of (6.29)? Consider the special case of NA = NB = N and VA = VB = V .

6.3 Classical Systems and the Equipartition Theorem

We have used the microcanonical and canonical ensembles to show that the mean energy of an
ideal classical gas in three dimensions is given by E = 3kT/2. Similarly, we have found that the
mean energy of a one-dimensional harmonic oscillator is given by E = kT in the limit of high
temperatures. These results are special cases of the equipartition theorem which can be stated as
follows:

For a classical system in equilibrium with a heat bath at temperature T , the mean
value of each contribution to the total energy that is quadratic in a coordinate equals
1
2kT .

Note that the equipartition theorem holds regardless of the coefficients of the quadratic terms and
is valid only for a classical system. If all the contributions to the energy are quadratic, the mean
energy is distributed equally to each term (hence the name “equipartition”).

We first consider a single particle in a region with potential U(r) in equilibrium with a heat
bath at temperature T . Because the position and momentum of the particle are continuous vari-
ables, the probability of finding the particle in a small volume d3r about r with a momentum in
a small volume d3p about p is proportional to the Boltzmann factor and the volume d3r d3p in
phase space:

e−β(p2/2m+U(r))d3r d3p. (6.42)

To normalize the probability we have to integrate rather than sum over all the possible values of
r and p.

To derive the equipartition theorem, we generalize these considerations for a single particle to
a system of N particles. We use the canonical ensemble and the fact that the probability density of
a particular microstate is proportional to the Boltzmann probability e−βE , where E is the energy
of a particular microstate. Because a microstate is defined by the positions and momenta of every
particle, we can express the average of any physical quantity f(r,p) in a classical system by

f =
∫
f(r1, . . . , rN ,p1, . . . ,pN ) e−βE(r1,...,rN ,p1,...,pN ) dr1 . . . drN dp1 . . . dpN∫

e−βE(r1,...,rN ,p1,...,pN ) dr1 . . . drN dp1 . . . dpN
. (6.43)



CHAPTER 6. NONINTERACTING PARTICLE SYSTEMS 280

Note that we have replaced the sum over quantum states by an integration over phase space. We
derived a special expression of this idea in Problem 6.3.3

Suppose that the total energy can be written as a sum of quadratic terms. For example, the
kinetic energy of one particle in three dimensions in the nonrelativistic limit can be expressed as
(p2
x+p2

y +p2
z)/2m. Another example is the one-dimensional harmonic oscillator for which the total

energy is p2
x/2m+ kx2/2. Let us consider a one-dimensional system of two particles for simplicity,

and suppose that the energy of the system can be written as

E = ε1(p1) + Ẽ(x1, x2, p2), (6.44)

where ε1 = bp2
1 with b a constant. We have separated out the quadratic dependence of the energy

of particle 1 on its momentum. We use (6.43) and express the mean value of ε1 as

ε1 =

∫∞
−∞ ε1 e

−βE(x1,x2,p1,p2) dx1dx2 dp1dp2∫∞
−∞ e−βE(x1,x2,p1,p2) dx1dx2 dp1dp2

(6.45a)

=

∫∞
−∞ ε1 e

−β[ε1+Ẽ(x1,x2,p2)] dx1dx2 dp1dp2∫∞
−∞ e−β[ε1+Ẽ(x1,x2,p2,p2)] dx1dx2dp1dp2

(6.45b)

=

∫∞
−∞ ε1 e

−βε1dp1

∫
e−βẼ dx1dx2 dp2∫∞

−∞ e−βε1dp1

∫
e−βẼ dx1dx2 dp2

. (6.45c)

The integrals over all the coordinates except p1 cancel, and we have

ε1 =

∫∞
−∞ ε1 e

−βε1 dp1∫∞
−∞e

−βε1 dp1

. (6.46)

We could have written ε1 in the form (6.46) directly without any intermediate steps because
the probability density can be written as a product of two terms – one term that depends only on
p1 and another term that depends on x1, x2, and p2.

As we have done in other contexts, we can write ε1 as

ε1 = − ∂

∂β
ln
(∫ ∞
−∞

e−βε1 dp1

)
. (6.47)

If we substitute ε1 = ap2
1, the integral in (6.47) becomes

Z =
∫ ∞
−∞

e−βε1dp1 =
∫ ∞
−∞

e−βap
2
1 dp1 (6.48a)

= (βa)−1/2

∫ ∞
−∞

e−x
2
dx, (6.48b)

where we have let x2 = βap2. Note that the integral in (6.48b) is independent of β, and its
numerical value is irrelevant. Hence

ε1 = − ∂

∂β
lnZ(β) =

1
2
kT. (6.49)

3We could divide dr1 . . . drN dp1 . . . dpN by h3N in the numerator and denominator so that we would obtain
the correct number of microstates in the semiclassical limit, but this factor cancels.
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Equation (6.49) is an example of the equipartition theorem of classical statistical mechanics.

Problem 6.10. Interpretation of results

(a) Explain why we could have written (6.46) directly.

(b) What is the physical interpretation of the integrand in the numerator and denominator of
(6.46)?

The equipartition theorem is not really a new result, is applicable only when the system can
be described classically, and is applicable only to each term in the energy that is proportional to
a coordinate squared. This coordinate also must take on a continuum of values from −∞ to +∞.

Applications of the equipartition theorem. A system of particles in three dimensions has
3N quadratic contributions to the kinetic energy, three for each particle. From the equipartition
theorem, we know that the mean kinetic energy is 3NkT/2, independent of the nature of the
interactions, if any, between the particles. Hence, the heat capacity at constant volume of an ideal
classical monatomic gas is given by CV = 3Nk/2 as found previously.

Another application of the equipartition function is to the one-dimensional harmonic oscillator
in the classical limit. In this case there are two quadratic contributions to the total energy and hence
the mean energy of a classical harmonic oscillator in equilibrium with a heat bath at temperature
T is kT . In the harmonic model of a crystal each atom feels a harmonic or spring-like force due
to its neighboring atoms. The N atoms independently perform simple harmonic oscillations about
their equilibrium positions. Each atom contributes three quadratic terms to the kinetic energy and
three quadratic terms to the potential energy. Hence, in the high temperature limit the energy of
a crystal of N atoms is E = 6NkT/2 and the heat capacity at constant volume is

CV = 3Nk. (law of Dulong and Petit) (6.50)

The result (6.50) is known as the law of Dulong and Petit. This result was first discovered empiri-
cally and is valid only at sufficiently high temperatures. At low temperatures the independence of
CV on T breaks down and a quantum treatment is necessary. The heat capacity of an insulating
solid at low temperatures is discussed in Section 6.11.

The result (6.49) implies that the heat capacity of a monatomic ideal classical gas is 3NkT/2.
Let us consider a gas consisting of diatomic molecules. Its equation of state is still given by
PV = NkT assuming that the molecules do not interact. Why? However, its heat capacity
differs in general from that of a monatomic gas because a diatomic molecule has additional energy
associated with vibrational and rotational motion. We expect that the two atoms of a diatomic
molecule can vibrate along the line joining them and rotate about their center of mass, in addition
to the translational motion of their center of mass. Hence, we would expect that CV for an ideal
diatomic gas is greater than CV for a monatomic gas. The heat capacity of a diatomic molecule is
explored in Problem 6.47.

We have seen that it is convenient to do calculations for a fixed number of particles for classical
systems. For this reason we usually calculate the heat capacity of a N particle system or the specific
heat per particle. Experimental chemists usually give the specific heat as the heat capacity per
mole and experimental physicists usually give the specific heat as the heat capacity per kilogram
or gram. All three quantities are known as the specific heat and their precise meaning is clear from
their units and the context.
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6.4 Maxwell Velocity Distribution

We now find the distribution of particle velocities in a classical system that is in equilibrium with
a heat bath at temperature T . We know that the total energy can be written as the sum of
two parts: the kinetic energy K(p1, . . . ,pN ) and the potential energy U(r1, . . . , rN ). The kinetic
energy is a quadratic function of the momenta p1, . . . ,pN (or velocities), and the potential energy
is a function of the positions r1, . . . , rN of the particles. The total energy is E = K + U . The
probability density of a configuration of N particles defined by r1, . . . , rN ,p1, . . . ,pN is given in
the canonical ensemble by

p(r1, . . . , rN ; p1, . . . ,pN ) = Ae−[K(p1,p2,...,pN )+U(r1,r2,...,rN )]/kT (6.51a)

= Ae−K(p1,p2,...,pN )/kT e−U(r1,r2,...,rN )/kT , (6.51b)

where A is a normalization constant. As we noted in Section 6.3 the probability density p is a
product of two factors, one that depends only on the particle positions and the other that depends
only on the particle momenta. This factorization implies that the probabilities of the momenta
and positions are independent. The momentum of a particle is not influenced by its position and
vice versa. The probability of the positions of the particles can be written as

f(r1, . . . , rN ) dr1 . . . drN = B e−U(r1,...,rN )/kT dr1 . . . drN , (6.52)

and the probability of the momenta is given by

f(p1, . . . ,pN ) dp1 . . . dpN = C e−K(p1,...,pN )/kT dp1 . . . dpN . (6.53)

For notational simplicity, we have denoted the two probability densities by f , even though their
functional form is different in (6.52) and (6.53). The constants B and C in (6.53) and (6.52) can
be found by requiring that each probability is normalized.

We emphasize that the probability distribution for the momenta does not depend on the
nature of the interaction between the particles and is the same for all classical systems at the
same temperature. This statement might seem surprising because it might seem that the velocity
distribution should depend on the density of the system. An external potential also does not affect
the velocity distribution. These statements do not hold for quantum systems, because in this
case the position and momentum operators do not commute. That is, e−β(K̂+Û) 6= e−βK̂e−βÛ for
quantum systems. (We have denoted operators in quantum mechanics by .̂)

Because the total kinetic energy is a sum of the kinetic energy of each of the particles, the
probability density f(p1, . . . ,pN ) is a product of terms that each depend on the momenta of only
one particle. This factorization implies that the momentum probabilities of the various particles
are independent, that is, the momentum of one particle does not affect the momentum of any
other particle. These considerations imply that we can write the probability that a particle has
momentum p in the range dp as

f(px, py, pz) dpxdpydpz = c e−(p2x+p2y+p2z)/2mkT dpxdpydpz. (6.54)

The constant c is given by the normalization condition

c

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−(p2x+p2y+p2z)/2mkT dpxdpydpz = c
[∫ ∞
−∞

e−p
2/2mkT dp

]3
= 1. (6.55)
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If we use the fact that
∫∞
−∞ e−αx

2
dx = (π/α)1/2 (see Appendix A), we find that c = (2πmkT )−3/2.

Hence the momentum probability distribution can be expressed as

f(px, py, pz) dpxdpydpz =
1

(2πmkT )3/2
e−(p2x+p2y+p2z)/2mkT dpxdpydpz. (6.56)

The corresponding velocity probability distribution is given by

f(vx, vy, vz) dvxdvydvz =
( m

2πkT

)3/2

e−m(v2x+v2y+v2z)/2kT dvxdvydvz. (6.57)

Equation (6.57) is known as the Maxwell velocity distribution. Note that its form is a Gaussian.
The probability distribution for the speed is discussed in Section 6.7.4.

Because f(vx, vy, vz) is a product of three independent factors, the probability of the velocity
of a particle in a particular direction is independent of the velocity in any other direction. For
example, the probability that a particle has a velocity in the x-direction in the range vx to vx+dvx
is

f(vx) dvx =
( m

2πkT

)1/2

e−mv
2
x/2kT dvx. (6.58)

Many textbooks derive the Maxwell velocity distribution for an ideal classical gas and give the
mistaken impression that the distribution applies only if the particles are noninteracting. We stress
that the Maxwell velocity (and momentum) distribution applies to any classical system regardless
of the interactions, if any, between the particles.

Problem 6.11. Is there an upper limit to the velocity?
The upper limit to the velocity of a particle is the velocity of light. Yet the Maxwell velocity
distribution imposes no upper limit to the velocity. Is this contradiction likely to lead to difficulties?

Problem 6.12. Alternative derivation of the Maxwell velocity distribution
We can also derive the Maxwell velocity distribution by making some plausible assumptions. We
first assume that the probability density f(v) for one particle is a function only of its speed |v|
or equivalently v2. We also assume that the velocity distributions of the components vx, vy, vz are
independent of each other.

(a) Given these assumptions, explain why we can write

f(v2
x + v2

y + v2
z) = f(v2

x)f(v2
y)f(v2

z). (6.59)

(b) Show that the only mathematical function that satisfies the condition (6.59) is the exponential
function

f(v2) = c e−αv
2
, (6.60)

where c and α are independent of v.

(c) Determine c in terms of α using the normalization condition 1 =
∫∞
−∞ f(u)du for each compo-

nent. Why must α be positive?

(d) Use the fact that 1
2kT = 1

2mv
2
x to find the result (6.57).
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6.5 Occupation Numbers and Bose and Fermi Statistics

We now develop the formalism necessary for calculating the thermodynamic properties of ideal
quantum systems. The absence of interactions between the particles of an ideal gas enables us to
reduce the problem of determining the energy levels Es of the gas as a whole to determining εk,
the energy levels of a single particle. Because the particles are indistinguishable, we cannot specify
the microstate of each particle. Instead a microstate of an ideal gas is specified by the occupation
numbers nk, the number of particles in each of the single particle energies εk. If we know the value
of the occupation number for each state, we can write the total energy of the system as

Es =
∑
k

nk εk. (6.61)

The set of nk completely specifies a microstate of the system. The partition function for an ideal
gas can be expressed in terms of the occupation numbers as

Z(V, T,N) =
∑
{nk}

e−β
P

k nkεk , (6.62)

where the occupation numbers nk satisfy the condition

N =
∑
k

nk. (6.63)

As discussed in Section 4.3.7 one of the fundamental results of relativistic quantum mechanics
is that all particles can be classified into two groups. Particles with zero or integral spin such as 4He
are bosons and have wave functions that are symmetric under the exchange of any pair of particles.
Particles with half-integral spin such as electrons, protons, and neutrons are fermions and have
wave functions that are antisymmetric under particle exchange. The Bose or Fermi character of
composite objects can be found by noting that composite objects that have an even number of
fermions are bosons and those containing an odd number of fermions are themselves fermions.4 For
example, an atom of 3He is composed of an odd number of particles: two electrons, two protons,
and one neutron each of spin 1

2 . Hence, 3He has half-integral spin making it a fermion. An atom
of 4He has one more neutron so there are an even number of fermions and 4He is a boson. What
type of particle is a hydrogen molecule, H2?

It is remarkable that all particles fall into one of two mutually exclusive classes with different
spin. It is even more remarkable that there is a connection between the spin of a particle and
its statistics. Why are particles with half-integral spin fermions and particles with integral spin
bosons? The answer lies in the requirements imposed by Lorentz invariance on quantum field
theory. This requirement implies that the form of quantum field theory must be the same in all
inertial reference frames. Although most physicists believe that the relation between spin and
statistics must have a simpler explanation, no such explanation yet exists.5

4You might have heard of the existence of Bose-like bound pairs of electrons (Cooper pairs) in what is known as
the BCS theory of superconductivity. However such pairs are not composite objects in the usual sense.

5In spite of its fundamental importance, it is only a slight exaggeration to say that “everyone knows the spin-
statistics theorem, but no one understands it.”
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n1 n2 n3 n4

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Table 6.2: Possible states of a three particle fermion system with four single particle energy states.
The quantity nk represents the number of particles in a single particle state k. Note that we have
not specified which particle is in a particular state.

The difference between fermions and bosons is specified by the possible values of nk. For
fermions we have

nk = 0 or 1. (fermions) (6.64)

The restriction (6.64) states the Pauli exclusion principle for noninteracting particles – two identical
fermions cannot be in the same single particle state. In contrast, the occupation numbers nk for
identical bosons can take any positive integer value:

nk = 0, 1, 2, · · · (bosons) (6.65)

We will see in the following sections that the nature of the statistics of a many particle system can
have a profound effect on its properties.

Example 6.1. Calculate the partition function of an ideal gas of N = 3 identical fermions in
equilibrium with a heat bath at temperature T . Assume that each particle can be in one of four
possible states with energies, ε1, ε2, ε3, and ε4.

Solution. The possible microstates of the system are summarized in Table 6.2. The spin of the
fermions is neglected. Is it possible to reduce this problem to a one body problem as we did for a
noninteracting classical system?

The partition function is given by

Z3 = e−β(ε2+ε3+ε4) + e−β(ε1+ε3+ε4) + e−β(ε1+ε2+ε4) + e−β(ε1+ε2+ε3). (6.66)

Problem 6.13. Calculate n1, the mean number of fermions in the state with energy ε1, for the
system in Example 6.1.

Problem 6.14. Calculate the mean energy of an ideal gas of N = 3 identical bosons in equilibrium
with a heat bath at temperature T , assuming that each particle can be in one of three states with
energies, 0, ∆, and 2∆. Is it possible to reduce this problem to a one body problem as we did for
a noninteracting classical system?

∗Problem 6.15. Consider a single particle of mass m in a one-dimensional harmonic oscillator
potential given by V (x) = 1

2kx
2. As we found in Example 4.4, the partition function is given by

Z1 = e−x/2/(1− e−x), where x = β~ω.



CHAPTER 6. NONINTERACTING PARTICLE SYSTEMS 286

(a) What is the partition function Z2d for two noninteracting distinguishable particles in the same
potential?

(b) What is the partition function Z2f,S=0 for two noninteracting fermions in the same potential
assuming the fermions have no spin?

(c) What is the partition function Z2b for two noninteracting bosons in the same potential? Assume
the bosons have spin zero.

∗Problem 6.16. Calculate the mean energy and entropy in the four cases considered in Prob-
lem 6.15. Plot E and S as a function of T and compare the behavior of E and S in the limiting
cases of T → 0 and T →∞.

6.6 Distribution Functions of Ideal Bose and Fermi Gases

The calculation of the partition function for an ideal gas in the semiclassical limit was straightfor-
ward because we were able to choose a single particle as the system. This choice is not possible for
an ideal gas at low temperatures where the quantum nature of the particles cannot be ignored. So
we need a different strategy. The key idea is that it is possible to distinguish the set of all particles
in a given single particle state from the particles in any other single particle state. For this reason
we choose the system of interest to be the set of all particles that are in a given single particle
state. Because the number of particles in a given quantum state varies, we need to use the grand
canonical ensemble and assume that each system is coupled to a particle reservoir independently
of the other single particle states.

Because we have not yet applied the grand canonical ensemble, we briefly review it here. The
thermodynamic potential in the grand canonical ensemble is denoted by Ω(T, V, µ) and is equal
to −PV (see (2.172)). The connection of thermodynamics to statistical mechanics is given by
Ω = −kT lnZ, where the grand partition function Z is given by

Z =
∑
n

e−β(En−µNn). (6.67)

The goal is to calculate Z, then Ω and the pressure equation of state −PV (in terms of T , V , and
µ), and then determine S from the relation

S = −
(∂Ω
∂T

)
V,µ

, (6.68)

and the mean number of particles from the relation

N = −
(∂Ω
∂µ

)
T,V

(6.69)

The probability of a particular microstate is given by

Pn =
1
Z
e−β(En−µNn). (Gibbs distribution) (6.70)
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We will use these relations in the following.
Because the system of interest is all the particles in the kth single particle state, the first step

is to calculate the grand partition function Zk for this system. We write the energy of the nk
particles in the kth state as nk εk and write Zk as

Zk =
∑
nk

e−βnk(εk−µ), (6.71)

where the sum is over the possible values of nk. For fermions this sum is straightforward because
nk = 0 and 1 (see (6.64)). Hence

Zk = 1 + e−β(εk−µ). (6.72)

The corresponding thermodynamic or Landau potential Ωk is given by

Ωk = −kT lnZk = −kT ln[1 + e−β(εk−µ)]. (6.73)

We use the relation nk = −∂Ωk/∂µ (see (6.69)) to find the mean number of particles in the kth
quantum state. The result is

nk = −∂Ωk
∂µ

=
e−β(µ−εk)

1 + e−β(µ−εk)
, (6.74)

or

nk =
1

eβ(εk−µ) + 1
. (Fermi-Dirac distribution) (6.75)

The result (6.75) for the mean number of particles in the kth state is known as the Fermi-Dirac
distribution.

The integer values of nk are unrestricted for bosons. We write (6.71) as

Zk = 1 + e−β(εk−µ) + e−2β(εk−µ) + · · · =
∞∑

nk=0

[
e−β(εk−µ)

]nk . (6.76)

The geometrical series in (6.76) is convergent for e−β(εk−µ) < 1. Because this condition must be
satisfied for all values of εk, we require that eβµ < 1 or

µ < 0. (bosons) (6.77)

In contrast, the chemical potential may be either positive or negative for fermions. The summation
of the geometrical series in (6.76) gives

Zk =
1

1− e−β(εk−µ)
, (6.78)

and hence we obtain
Ωk = kT ln

[
1− e−β(εk−µ)

]
. (6.79)

The mean number of particles in the kth state is given by

nk = −∂Ωk
∂µ

=
e−β(εk−µ)

1− e−β(εk−µ)
(6.80)

or
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nk =
1

eβ(εk−µ) − 1
. (Bose-Einstein distribution) (6.81)

The form (6.81) is known as the Bose-Einstein distribution.
It is frequently convenient to group the Fermi-Dirac and Bose-Einstein distributions together

and to write

nk =
1

eβ(εk−µ) ± 1
.

{
+ Fermi-Dirac distribution
− Bose-Einstein distribution

(6.82)

The convention is that the upper sign corresponds to Fermi statistics and the lower sign to Bose
statistics.

The classical limit. The Fermi-Dirac and Bose-Einstein distributions must reduce to the classical
limit under the appropriate conditions. In the classical limit nk � 1 for all k, that is, the mean
number of particles in any single particle state must be small. Hence εβ(εk−µ) � 1 and in this limit
both the Fermi-Dirac and Bose-Einstein distributions reduce to

nk = e−β(εk−µ) (Maxwell-Boltzmann distribution) (6.83)

This result (6.83) is known as the Maxwell-Boltzmann distribution.

6.7 Single Particle Density of States

If we sum (6.82) over all single particle states, we obtain the mean number of particles in the
system:

N(T, V, µ) =
∑
k

nk =
∑
k

1
eβ(εk−µ) ± 1

. (6.84)

For a given temperature T and volume V , (6.84) is an implicit equation for the chemical potential
µ in terms of the mean number of particles. That is, the chemical potential determines the mean
number of particles just as the temperature determines the mean energy. Similarly, we can write
the mean energy of the system as

E(T, V, µ) =
∑
k

εk nk. (6.85)

Because the (grand) partition function Z is a product, Z =
∏
k Zk, the Landau potential for the

ideal gas is given by

Ω(T, V, µ) =
∑
k

Ωk = ∓kT
∑
k

ln
[
1± e−β(εk−µ)

]
. (6.86)

For a macroscopic system the number of particles and the energy are well defined, and we will
usually replace n and E by N and E respectively.

Because we have described the microscopic states at the most fundamental level, that is, by
using quantum mechanics, the macroscopic averages of interest such as (6.84), (6.85) and (6.86)
involve sums rather than integrals over the microscopic states. However, because the systems of



CHAPTER 6. NONINTERACTING PARTICLE SYSTEMS 289

interest are macroscopic, the volume of the system is so large that the energies of the discrete
microstates are very close together and for practical purposes indistinguishable from a continuum.
As usual, it is easier to do integrals than to do sums over a very large number of states and we
will replace the sums in (6.84)–(6.86) by integrals. For example, we wish to write for an arbitrary
function f(ε) ∑

k

f(εk)→
∫ ∞

0

f(ε) g(ε)dε, (6.87)

where g(ε) dε is the number of single particle states between ε and ε + dε. The quantity g(ε) is
known as the density of states, although a better term would be the density of single particle states.

6.7.1 Density of states in k-space

Although we already have calculated the density of states g(ε) for a single particle in a box (see
Section 4.3), we review the calculation here to emphasize its generality and the common aspects
of the calculation for blackbody radiation, elastic waves in a solid, and electron waves. For conve-
nience, we choose the box to be a cube of linear dimension L and assume that the wave function
vanishes at the faces of the cube. This condition ensures that we will obtain standing waves. The
condition for a standing wave in one dimension is that the wavelength satisfies the condition

λ =
2L
n

(n = 1, 2, . . .) (6.88)

where n is a nonzero positive integer. It is useful to define the wave number k as

k =
2π
λ
, (6.89)

and write the standing wave condition as k = nπ/L. Because the waves in the x, y, and z directions
satisfy similar conditions, we can treat the wave number as a vector whose components satisfy

k = (nx, ny, nz)
π

L
, (6.90)

where nx, ny, nz are positive integers. Not all values of k are permissible and each combination
of {nx, ny, nz} corresponds to a different state. In the “number space” defined by the three
perpendicular axes labeled by nx, ny, and nz, the possible values of states lie at the centers
of cubes of unit edge length.

Because the energy of a wave depends only on the magnitude of k, we want to know the
number of states between k and k+ dk. As we did in Section 4.3, it is easier to first find Γ(k), the
number of states with wave number less than or equal to k. We know that the volume in n-space
of a single state is unity, and hence the number of states in number space that are contained in
the positive octant of a sphere of radius n is given by Γ(n) = 1

8 (4πn3/3), where n2 = n2
x+n2

y +n2
z.

Because k = πn/L, the number of states with wave vector less than or equal to k is

Γ(k) =
1
8

4πk3/3
(π/L)3

. (6.91)
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If we use the relation

g(k) dk = Γ(k + dk)− Γ(k) =
dΓ(k)
dk

dk, (6.92)

we obtain

g(k) dk = V
k2dk

2π2
, (6.93)

where the volume V = L3. Equation (6.93) gives the density of states in k-space between k and
k + dk.

Although we obtained the result (6.93) for a cube, the result is independent of the shape of
the enclosure and the nature of the boundary conditions (see Problem 6.58). That is, if the box is
sufficiently large, the surface effects introduced by the box do not affect the physical properties of
the system.

Problem 6.17. Find the form of the density of states in k-space for standing waves in a two-
dimensional and in a one-dimensional box.

6.7.2 Photons

The result (6.93) for the density of states in k-space holds for any wave in a three-dimensional
enclosure. Now we wish to find the number of states g(ε) dε as a function of the energy ε. For
simplicity, we adopt the same symbol to represent the density of states in k-space and in ε-space
because the interpretation of g will be clear from the context.

The dependence of g(ε) on ε depends on how the energy depends on k. For electromagnetic
waves of frequency ν, we know that λν = c, ω = 2πν, and k = 2π/λ. Hence, ω = 2πc/λ or

ω = ck. (6.94)

The energy ε of a photon of frequency ω is

ε = ~ω = ~ck. (6.95)

Because k = ε/~c, we find that

g(ε) dε = V
ε2

2π2~3c3
dε. (6.96)

The result (6.96) requires one modification. The state of an electromagnetic wave or photon
depends not only on its wave vector or momentum, but also on its polarization. There are two
mutually perpendicular directions of polarization (right circularly polarized and left circularly
polarized) for each electromagnetic wave of wave number k.6 Thus the number of photon states
in which the photon has a energy in the range ε to ε+ dε is given by

g(ε) dε = V
ε2dε

π2~3c3
. (photons) (6.97)

We will use (6.97) frequently in the following sections.
6In the language of quantum mechanics we say that the photon has spin one and two helicity states. The fact

that the photon has spin S = 1 and two helicity states rather than (2S + 1) = 3 states is a consequence of special
relativity for massless particles.
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6.7.3 Electrons

For a nonrelativistic particle of mass m, we know that

ε =
p2

2m
. (6.98)

From the relations p = h/λ and k = 2π/λ, we find that the momentum p of a particle is related to
its wave vector k by p = ~k. Hence, the energy can be expressed as

ε =
~2k2

2m
, (6.99)

and

dε =
~2k

m
dk. (6.100)

If we use (6.93) and the relations (6.99) and (6.100), we find that the number of states in the
interval ε to ε+ dε is given by

g(ε) dε = ns
V

4π2~3
(2m)3/2 ε1/2 dε. (6.101)

We have included a factor of ns, the number of spin states for a given value of k or ε. Because
electrons have spin 1/2, ns = 2, and we can write (6.101) as

g(ε) dε =
V

2π2~3
(2m)3/2 ε1/2 dε. (electrons) (6.102)

Because it is common to choose units such that ~ = 1, we will express most of our results in the
remainder of this chapter in terms of ~ instead of h.

Problem 6.18. Calculate the energy density of states for a nonrelativistic particle of mass m in
d = 1 and d = 2 spatial dimensions (see Problem 6.17). Sketch g(ε) on one graph for d = 1, 2, and
3 and comment on the dependence of g(ε) on ε for different spatial dimensions.

Problem 6.19. Calculate the energy density of states for a relativistic particle of rest mass m for
which ε2 = p2c2 +m2c4.

Problem 6.20. The relation between the energy and equation of state for an ideal gas
The mean energy E is given by

E =
∫ ∞

0

εn(ε) g(ε) dε (6.103a)

= ns
V

4π2~3
(2m)3/2

∫ ∞
0

ε3/2dε

eβ(ε−µ) ± 1
. (6.103b)
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Use (6.86) for the Landau potential and (6.101) for the density of states of nonrelativistic particles
in three dimensions to show that Ω can be expressed as

Ω = ∓kT
∫ ∞

0

g(ε) ln[1± e−β(ε−µ)] dε, (6.104a)

= ∓kT nsV

4π2~3
(2m)3/2

∫ ∞
0

ε1/2 ln[1± e−β(ε−µ)] dε. (6.104b)

Integrate (6.104b) by parts with u = ln[1± e−β(ε−µ)] and dv = ε1/2 dε and show that

Ω = −2
3
ns

V

4π2~3
(2m)3/2

∫ ∞
0

ε3/2 dε

eβ(ε−µ) ± 1
. (6.105)

The form (6.103b) for E is the same as the general result (6.105) for Ω except for the factor of − 2
3 .

Because Ω = −PV (see (2.172)), we obtain

PV =
2
3
E. (6.106)

The relation (6.106) is exact and holds for an ideal gas with any statistics at any temperature T ,
and depends only on the nonrelativistic relation, ε = p2/2m.

Problem 6.21. The relation between the energy and equation of state for photons
Use similar considerations as in Problem 6.20 to show that for photons:

PV =
1
3
E. (6.107)

Equation (6.107) holds at any temperature and is consistent with Maxwell’s equations which implies
that the pressure due to an electromagnetic wave is related to the energy density by P = u(T )/3.

6.7.4 Distribution of speeds

In Section 6.4 we found that the distribution of velocities in a classical system of particles was
a Gaussian and given by (6.57). To determine the distribution of speeds we need to know the
number of states between v and v + ∆v. As we discussed in Section 6.7.1 this number is 4π(v +
∆v)3/3 − 4πv3/3 =→ 4πv2∆v in the limit ∆v → 0. Hence, the probability that a particle has a
speed between v and v + dv is given by

f(v)dv = 4πAv2e−mv
2/2kT dv, (6.108)

where A is a normalization constant which we calculate in Problem 6.22.

Problem 6.22. Maxwell speed distribution

(a) Compare the form of the Maxwell speed distribution (6.108) with the form of the Maxwell
velocity (6.93).
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(b) Use the fact that
∫∞

0
f(v) dv = 1 to calculate A and show that

f(v)dv = 4πv2
( m

2πkT

)3/2

e−mv
2/2kT dv. (Maxwell speed distribution) (6.109)

(c) Calculate the mean speed v, the most probable speed ṽ, and the root-mean square speed vrms

and discuss their relative magnitudes.

(d) Make the change of variables u = v/
√

(2kT/m) and show that

f(v)dv = f(u)du = (4/
√
π)u2e−u

2
du, (6.110)

where we have again used same the same notation for two different, but physically related
probability densities. The (dimensionless) speed probability density f(u) is shown in Figure 6.2.
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Figure 6.2: The probability density f(u) = 4/
√
πu2e−u

2
that a particle has a speed u. Note the

difference between the most probable speed ũ = 1, the mean speed u ≈ 1.13, and the root-mean-
square speed urms ≈ 1.22 in units of (2kT/m)1/2.

6.8 The Equation of State of an Ideal Classical Gas

We have already seen how to obtain the equation of state and other thermodynamic quantities for
the ideal classical gas in the microcanonical ensemble (fixed E, T , and N) and in the canonical
ensemble (fixed T , V , and N). We now discuss how to use the grand canonical ensemble (fixed
T , V , and µ) to find the analogous quantities under conditions for which the Maxwell-Boltzmann
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distribution is applicable. The calculation in the grand canonical ensemble will automatically
satisfy the condition that the particles are indistinguishable. For simplicity, we will assume that
the particles are spinless.

As an example, we first compute the chemical potential from the condition that the mean
number of particles is given by N . If we use the Maxwell-distribution distribution (6.83) and the
density of states (6.102) for spinless particles of mass m, we obtain

N =
∑
k

nk →
∫ ∞

0

n(ε) g(ε) dε (6.111a)

=
V

4π2

(2m
~2

)3/2∫ ∞
0

e−β(ε−µ) ε1/2 dε. (6.111b)

We make the change of variables x = βε and write (6.111b) as

N =
V

4π2

( 2m
~2β

)3/2
eβµ
∫ ∞

0

e−x x1/2 dx. (6.112)

The integral in (6.112) can be done analytically (make the change of variables x = y2) and has the
value π

1
2 /2 (see Appendix A). Hence, the mean number of particles is given by

N(T, V, µ) = V
( m

2π~2β

)3/2
eβµ. (6.113)

Because we cannot easily measure µ, we are not satisfied with knowing the function N(T, V, µ).
Instead, we can find the value of µ that yields the desired value of N by solving (6.113) for the
chemical potential:

µ = kT ln
[N
V

(2π~2β

m

)3/2]
. (6.114)

What is the difference, if any, between (6.113) and the result (6.31) for µ found in the canonical
ensemble?

Problem 6.23. The chemical potential

(a) Estimate the chemical potential of a monatomic ideal classical gas at room temperature and
show that µ� 0.

(b) Show that N can be expressed as

N =
V

λ3
eβµ, (6.115)

and hence
µ(T, V ) = −kT ln

1
ρλ3

, (6.116)

where ρ = N/V .

(c) In Section 6.2 we argued that the semiclassical limit λ� ρ−1/3 (see (6.1)) implies that nk � 1,
that is, the mean number of particles that are in any single particle energy state is very small.
Use the expression (6.116) for µ and (6.83) for nk to show that the condition nk � 1 implies
that λ� ρ−1/3.
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As we saw in Section 2.21, the chemical potential is the change in each of the thermodynamic
potentials when one particle is added. It might be expected that µ > 0, because it should cost
energy to add a particle. But because the particles do not interact, perhaps µ = 0? So why is
µ� 0 for an ideal classical gas? The reason is that we have to determine how much energy must be
added to the system to keep the entropy and the volume fixed. Suppose that we add one particle
with zero kinetic energy. Because the gas is ideal, there is no potential energy of interaction.
However, because V is fixed, the addition of an extra particle leads to an increase in S. (S is an
increasing function of N and V .) Because S also is an increasing function of the total energy, we
have to reduce the energy.

The calculation of N(T, V, µ) leading to (6.113) was not necessary because we can calculate
the equation of state and all the thermodynamic quantities from the Landau potential Ω. We
calculate Ω from (6.86) by noting that eβµ � 1 and approximating the argument of the logarithm
by ln (1± x) ≈ ±x. We find that

Ω = ∓kT
∑
k

ln
[
1± e−β(εk−µ)

]
(6.117a)

→ −kT
∑
k

e−β(εk−µ). (semiclassical limit) (6.117b)

As expected, the form of Ω in (6.117b) is independent of whether we started with Bose or Fermi
statistics.

As usual, we replace the sum over the single particle states by an integral over the density of
states and find

Ω = −kT eβµ
∫ ∞

0

g(ε) e−βε dε (6.118a)

= −kT V

4π2~3

(2m
β

)3/2
eβµ
∫ ∞

0

x1/2 e−x dx (6.118b)

= −k V

β5/2

( m

2π~2

)3/2
eβµ. (6.118c)

If we substitute λ = (2πβ~2/m)1/2, we find

Ω = −kT V
λ3

eβµ. (6.119)

From the relation Ω = −PV (see (2.172)), we obtain

P =
kT

λ3
eβµ. (6.120)

If we use the thermodynamic relation (6.69), we obtain

N = −∂Ω
∂µ

∣∣∣
V,T

=
V

λ3
eβµ. (6.121)

The classical equation of state, PV = NkT , is obtained by using (6.121) to eliminate µ. The
simplest way of finding the energy is to use the relation (6.106).
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We can find the entropy S(T, V, µ) using (6.119) and (6.68):

S(T, V, µ) = −∂Ω
∂T

∣∣∣
V,µ

= kβ2 ∂Ω
∂β

(6.122a)

= V kβ2
[ 5

2β7/2
− µ

β6/2

]( m

2π~2

)3/2
eβµ. (6.122b)

If we eliminate µ from (6.122b), we obtain the Sackur-Tetrode expression for the entropy of an
ideal gas:

S(T, V,N) = Nk
[5

2
− ln

N

V
− ln

(2π~2

mkT

)3/2]
. (6.123)

We have written N rather than N in (6.123). Note that we did not have to introduce any ex-
tra factors of N ! as we did in Section 6.2, because we already correctly counted the number of
microstates.

Problem 6.24. Complete the missing steps and derive the ideal gas equations of state.

6.9 Blackbody Radiation

We can regard electromagnetic radiation as equivalent to a system of noninteracting bosons (pho-
tons), each of which has an energy hν, where ν is the frequency of the radiation. If the radiation is
in an enclosure, equilibrium will be established and maintained by the interactions of the photons
with the atoms of the wall in the enclosure. Because the atoms emit and absorb photons, the total
number of photons is not conserved.

One of the important observations that led to the development of quantum theory was the
consideration of the frequency spectrum of electromagnetic radiation from a blackbody. If a body in
thermal equilibrium emits electromagnetic radiation, then this radiation is described as blackbody
radiation and the object is said to be a blackbody. This statement does not mean that the body is
actually black. The word “black” indicates that the radiation is perfectly absorbed and re-radiated
by the object. The spectrum of light radiated by such an idealized black body is described by a
universal spectrum called the Planck spectrum, which we will derive in the following (see (6.131)).
The nature of the spectrum depends only on the absolute temperature T of the radiation.

The physical system that most closely gives the spectrum of a black body is the spectrum of
the cosmic microwave background.7 The observed cosmic microwave background spectrum fits the
theoretical spectrum of a blackbody better than the best blackbody spectrum that we can make
in a laboratory! In contrast, a piece of hot, glowing firewood is not really in thermal equilibrium,

7The universe is filled with electromagnetic radiation with a distribution of frequencies given by (6.131) with
T ≈ 2.73 K. The existence of this background radiation is a remnant from a time when the universe was composed
primarily of electrons and protons at a temperature of about 4000 K. This plasma of electrons and protons interacted
strongly with the electromagnetic radiation over a wide range of frequencies, so that the matter and the radiation
reached thermal equilibrium. By the time that the universe had cooled to 3000 K, the matter was primarily in
the form of atomic hydrogen, which interacts with radiation only at the frequencies of the hydrogen spectral lines.
As a result most of the radiation energy was effectively decoupled from matter. Electromagnetic radiation, such
as starlight, radiated by matter since the decoupling, is superimposed on the cosmic blackbody radiation. More
information about the cosmic microwave background can be found at <www.astro.ubc.ca/people/scott/cmb.html>
and at many other sites.

http://www.astro.ubc.ca/people/scott/cmb.html
<www.astro.ubc.ca/people/scott/cmb.html>
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and the spectrum of glowing embers is only a crude approximation to blackbody spectrum. The
existence of the cosmic microwave background spectrum and its fit to the blackbody spectrum is
compelling evidence that the universe experienced a Big Bang.

We can derive the Planck radiation law using either the canonical or grand canonical ensemble
because the photons are continuously absorbed and emitted by the walls of the container and hence
their number is not conserved. Let us first consider the canonical ensemble, and consider a gas of
photons in equilibrium with a heat bath at temperature T . The total energy of the system is given
by E = n1ε1 + n2ε2 + . . ., where nk is the number of photons with energy εk. Because there is no
constraint on the total number of photons, we can write the canonical partition function as

Z(T, V ) =
∑
s

e−βEs =
∞∑

n1,n2,...=0

e−β(n1ε1+n2ε2+ ...) (6.124a)

=
∞∑

n1=0

e−βn1ε1

∞∑
n2=0

e−βn2ε2 . . . (6.124b)

=
∏
k

[ ∞∑
nk=0

e−βnkεk
]
. (6.124c)

The lack of a constraint means that we can do the sum over each occupation number separately.
Because the term in brackets in (6.124c) is a geometrical series, we obtain

Z(T, V ) =
∏
k

[ 1
1− e−βεk

]
. (photon gas) (6.125)

A quantity of particular interest is the mean number of photons in state k. In the canonical
ensemble we have

nk =
∑
s nk e

−βEs∑
s e
−βEs

=

∑
n1,n2,...

nk e
−β(n1ε1+n2ε2+...+nkεk+...)

Z
(6.126a)

=
1
Z

[ ∂

∂(−βεk)

∑
n1,n2,...

e−β(n1ε1+n2ε2+···+nkεk+...)
]

(6.126b)

=
∂ lnZ
∂(−βεk)

. (6.126c)

Because the logarithm of a product of terms equals the sum of the logarithms of each term, we
have from (6.125) and (6.126c)indexblackbody radiation!Planck distribution

nk =
∂

∂(−βεk)

[∑
k′

− ln (1− e−βεk′ )
]

(6.127a)

=
e−βεk

1− e−βεk
, (6.127b)

or

nk =
1

eβεk − 1
. (Planck distribution) (6.127c)
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The result (6.127c) can be understood by simple considerations. As we have mentioned,
equilibrium is established and maintained by the interactions between the photons and the atoms
of the wall in the enclosure. The number N of photons in the cavity cannot be imposed externally
on the system and is fixed by the temperature T of the walls and the volume V enclosed. Hence,
the free energy F for photons cannot depend on N because the latter is not a thermodynamic
variable, and we have µ = ∂F/∂N = 0. If we substitute µ = 0 into the general result (6.81) for
the Bose-Einstein distribution, we find that the mean number of photons in state k is given by

nk =
1

eβhν − 1
, (6.128)

in agreement with (6.127c). That is, the photons in blackbody radiation are bosons whose chemical
potential is zero.

The role of the chemical potential is to set the mean number of particles, just as the temper-
ature sets the mean energy. Because the chemical potential has no role to play for a system of
photons in blackbody radiation, we could have more simply started with (6.81) for nk in the grand
canonical ensemble and set µ = 0.

Planck’s theory of blackbody radiation follows from the form of the density of states for
photons found in (6.97). The number of photons with energy in the range ε to ε+ dε is given by

N(ε) dε = n(ε)g(ε) dε =
V

π2~3c3
ε2 dε

eβε − 1
. (6.129)

For simplicity, we have ignored the polarization of the electromagnetic radiation, and hence the
spin of the photons. If we substitute ε = hν in the right-hand side of (6.129), we find that the
number of photons in the frequency range ν to ν + dν is given by

N(ν) dν =
8πV
c3

ν2 dν

eβhν − 1
. (6.130)

The distribution of radiated energy is obtained by multiplying (6.130) by hν:

E(ν)dν = hνN(ν) dν =
8πhV ν3

c3
dν

eβhν − 1
. (6.131)

Equation (6.131) gives the energy radiated by a blackbody of volume V in the frequency range
between ν and ν + dν. The energy per unit volume u(ν) is given by

u(ν) =
8πhν3

c3
1

eβhν − 1
. (Planck’s radiation law) (6.132)

We can change variables to ε = hν and write the energy density as

u(ε) =
8π

(hc)3

ε3

eε/kT − 1
. (6.133)

The temperature dependence of u(ε) is shown in Figure 6.3.
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Figure 6.3: The Planck spectrum as a function of x = ε/kT . The area under any portion of
the curve multiplied by 8π(kT )4/(hc)3 gives the energy of electromagnetic radiation within the
corresponding energy or frequency range.

Problem 6.25. Wien’s displacement law
The maximum of u(ν) shifts to higher frequencies with increasing temperature. Show that the
maximum of u can be found by solving the equation

(3− x)ex = 3, (6.134)

where x = βhνmax. Solve (6.134) numerically for x and show that

hνmax

kT
= 2.822. (Wien’s displacement law) (6.135)

Problem 6.26. Derivation of the Rayleigh-Jeans and Wien’s laws

(a) Use (6.132) to find the energy emitted by a blackbody at a wavelength between λ and λ+ dλ.

(b) Determine the limiting behavior of your result in part a for long wavelengths. This limit is
called the Rayleigh-Jeans law and is given by

u(λ)dλ =
8πkT
λ4

dλ. (6.136)

Does this form involve Planck’s constant? The result in (6.136) was originally derived from
purely classical considerations.

(c) Classical theory predicts the so-called ultraviolet catastrophe, namely that an infinite amount
of energy is radiated at high frequencies. or short wavelengths. Explain how (6.136) would
give an infinite result for the total energy that would be radiated.
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(d) Determine the limiting behavior for short wavelengths. This behavior is called Wien’s law.

Problem 6.27. Thermodynamic functions of blackbody radiation
Use the various thermodynamic relations to show that

E = V

∫ ∞
0

u(ν) dν =
4σ
c
V T 4. (Stefan-Boltzmann law) (6.137a)

F = −4σ
3c
V T 4. (6.137b)

S =
16σ
3c

V T 3. (6.137c)

P =
4σ
3c
T 4 =

1
3
E

V
. (6.137d)

G = F + PV = 0. (6.137e)

The free energy F in (6.137b) can be calculated from Z starting from (6.125) and using (6.97).
The Stefan-Boltzmann constant σ is given by

σ =
2π5k4

15h3c2
. (6.138)

The integral ∫ ∞
0

x3 dx

ex − 1
=
π4

15
. (6.139)

is evaluated in Appendix A.

The relation (6.137a) between the total energy and T is known as the Stefan-Boltzmann law.
Because G = Nµ and N 6= 0, we again find that the chemical potential equals zero for an ideal
gas of photons.

Problem 6.28. Relations for blackbody radiation

(a) What is the relation between E and PV for blackbody radiation? Why is it not the same as
(6.106) (see Problem 6.21)?

(b) Note that for a quasistatic adiabatic expansion or compression of the photon gas, the product
V T 3 = constant. Why? How are P and V related for a quasistatic adiabatic process?

Problem 6.29. Show that the total mean number of photons in blackbody radiation is given by

N =
V

π2c3

∫ ∞
0

ω2dω

e~ω/kT − 1
=
V (kT )3

π2c3~3

∫ ∞
0

x2dx

ex − 1
. (6.140)

The integral in (6.140) can be expressed in terms of known functions (see Appendix A). The result
is ∫ ∞

0

x2dx

ex − 1
= 2× 1.202. (6.141)

Hence
N = 0.244V

(kT
~c

)3

. (6.142)
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6.10 Ideal Fermi Gas

The properties of metals are dominated by the behavior of the conduction electrons. Given that
there are Coulomb interactions between the electrons as well as interactions between the electrons
and the positive ions of the lattice, it is remarkable that the free electron model in which the
electrons are treated as an ideal gas of fermions near zero temperature is an excellent model of
the conduction electrons in a metal under most circumstances.8 In the following, we investigate
the properties of an ideal Fermi gas and briefly discuss its applicability as a model of electrons in
metals.

As we will see in Problem 6.30, the thermal de Broglie wavelength of the electrons in a typical
metal is much larger than the mean interparticle spacing, and hence we must treat the electrons
using Fermi statistics. When an ideal gas is dominated by quantum mechanical effects, it is said
to be degenerate.

6.10.1 Ground-state properties

We first discuss the noninteracting Fermi gas at T = 0. From (6.75) we see that the zero temper-
ature limit (β →∞) of the Fermi-Dirac distribution is

n(ε) =

{
1 for ε < µ

0 for ε > µ.
(6.143)

That is, all states whose energies are below the chemical potential are occupied, and all states
whose energies are above the chemical potential are unoccupied. The Fermi distribution at T = 0
is shown in Figure 6.4.

The consequences of (6.143) are easy to understand. At T = 0, the system is in its ground
state, and the particles are distributed among the single particle states so that the total energy of
the gas is a minimum. Because we may place no more than one particle in each state, we need
to construct the ground state of the system by adding a particle, one at a time, into the lowest
available energy state until we have placed all the particles. To find the value of µ(T = 0), we
write

N =
∫ ∞

0

n(ε)g(ε) dε −→
T → 0

∫ µ(T=0)

0

g(ε) dε = V

∫ µ(T=0)

0

(2m)3/2

2π2~3
ε1/2 dε. (6.144)

We have substituted the electron density of states (6.102) in (6.144). The chemical potential at
T = 0 is determined by requiring the integral to give the desired number of particles N . Because
the value of the chemical potential at T = 0 will have special importance, it is common to denote
it by εF :

εF ≡ µ(T = 0), (6.145)

where εF , the energy of the highest occupied state, is called the Fermi energy.
8The idea that a system of interacting electrons at low temperatures can be understood as a noninteracting gas of

quasiparticles is called Fermi liquid theory and is due to Lev D. Landau (1908–1968), the same Landau for whom we
named the thermodynamic potential in the grand canonical ensemble. Landau worked in many fields including low
temperature physics, atomic and nuclear physics, condensed matter physics, and plasma physics. He was awarded
the 1962 Nobel Prize for Physics for his work on superfluidity.
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Figure 6.4: The Fermi-Dirac distribution at T = 0 (dotted line) and T � TF (solid line). The
form of n(ε) for T > 0 is based on the assumption that µ is unchanged for T � TF . Also note
that the area under the dotted line (n(ε) at T = 0) is approximately equal to the area under the
solid line (n(ε) for T � TF ).

The integral on the right-hand side of (6.144) gives

N =
V

3π2

(2mεF
~2

)3/2

. (6.146)

From (6.146) we have that

εF =
~2

2m
(3π2ρ)2/3, (Fermi energy) (6.147)

where the density ρ = N/V . It is convenient to εF = p2
F /2m where pF is known as the Fermi

momentum. It follows that the Fermi momentum pF is given by

pF = (3π2ρ)1/3~. (Fermi momentum) (6.148)

Note that the Fermi momentum can be estimated by using the de Broglie relation p = h/λ and
taking λ ∼ ρ−1/3, the mean distance between particles. That is, the particles are “localized” within
a distance of order ρ−1/3.

At T = 0 all the states with momentum less that pF are occupied and all the states above this
momentum are unoccupied. The boundary in momentum space between occupied and unoccupied
states at T = 0 is called the Fermi surface. For an ideal Fermi gas, the Fermi surface is the surface
of a sphere with radius pF .

The chemical potential at T = 0 equals εF and is positive. In contrast, in Section 6.8 we
argued in that µ should be less than zero for an ideal classical gas, because we have to subtract
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energy to keep the entropy from increasing when we add a particle to the system. However, this
argument depends on the possibility of adding a particle with zero energy. In a Fermi system at
T = 0, no particle can be added with energy less than µ(T = 0), and hence µ(T = 0) > 0.

We will find it convenient in the following to introduce a characteristic temperature, the Fermi
temperature TF , by

TF = εF /k. (6.149)

The order of magnitude of TF for typical metals is given in Table 6.3.
A direct consequence of the fact that the density of states in three dimensions is proportional

to ε1/2 is that the mean energy per particle at T = 0 is 3εF /5:

E

N
=

∫ εF
0
ε g(ε) dε∫ εF

0
g(ε) dε

=

∫ εF
0

ε3/2dε∫ εF
0

ε1/2dε
(6.150a)

=
2
5ε

5/2
F

2
3ε

3/2
F

=
3
5
εF . (6.150b)

The total energy is given by

E =
3
5
NεF =

3
5
N(3π2)2/3 ~2

2m
ρ2/3. (6.151)

The pressure can be immediately found from the general relation PV = 2E/3 (see (6.106)) for an
noninteracting, nonrelativistic gas at any temperature. Alternatively, the pressure can be found
either from the relation

P = −∂F
∂V

=
2
3
E

V
, (6.152)

because the the free energy is equal to the total energy at T = 0, or from the Landau potential
Ω = −PV as discussed in Problem 6.31. The result is that the pressure at T = 0 is given by

P =
2
5
ρεF . (6.153)

The fact that the pressure is nonzero even at zero temperature is a consequence of the Pauli
exclusion principle, which allows only one particle to have zero momentum (two electrons if the
spin is considered). All other particles have finite momentum and hence give rise to a zero-point
pressure.

One way to understand the relation (6.153) is to recall the classical pressure equation of
state, P = ρkT . At T = 0 we can effectively replace T by the Fermi temperature TF . Then
P = ρkT → ρkTF = ρεF , which is the same as (6.153) except for a numerical factor.

Problem 6.30. Order of magnitude estimates

(a) Compare the values of TF in Table 6.3 to room temperature.

(b) Given the data in Table 6.3 verify that the electron density for Li and Cu is ρ = 4.7×1028 m−3

and ρ = 8.6× 1028 m−3, respectively.
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element εF (eV) TF (104 K)
Li 4.7 5.5
Na 3.2 3.8
Al 11.7 13.6
Cu 7 8.2
Ag 5.5 6.4

Table 6.3: Values of the Fermi energy and Fermi temperature for several metals at room temper-
ature and atmospheric pressure.

(c) What is the mean distance between the electrons for Li and Cu?

(d) Use the fact that the mass of an electron is 9.1×10−31 kg to estimate the de Broglie wavelength
corresponding to an electron with Fermi energy, λF = h/pF .

(e) Compare your result for de Broglie wavelength which you found in part (d) to the mean
interparticle spacing which found in part (c).

Problem 6.31. The Landau potential for an ideal Fermi gas at arbitrary T can be expressed as

Ω = −kT
∫ ∞

0

g(ε) ln[1 + e−β(ε−µ)] dε. (6.154)

To obtain the T = 0 limit of Ω, we have that ε < µ in (6.154), β →∞, and hence ln[1+e−β(ε−µ)]→
ln e−β(ε−µ = −β(ε− µ). Hence, show that

Ω =
(2m)3/2V

2π2~2

∫ εF

0

dε ε1/2
(
ε− εF

)
. (6.155)

Calculate Ω and determine the pressure at T = 0.

Problem 6.32. Show that the limit (6.143) for n(ε) at T = 0 follows only if µ > 0.

6.10.2 Low temperature thermodynamic properties

One of the greatest successes of the free electron model and Fermi-Dirac statistics is the explanation
of the temperature dependence of the heat capacity of a metal. If the electrons behaved like a
classical noninteracting gas, we would expect a contribution to the heat capacity equal to 3Nk/2,
even in the limit that T → 0. Instead, we typically find a very small contribution to the heat
capacity which is linear in the temperature, a result that cannot be explained by classical statistical
mechanics. Before we derive this result, we first give a qualitative argument for the low temperature
dependence of the heat capacity of an ideal Fermi gas.

As we saw in Table 6.3, the Fermi temperature for the conduction electrons in a metal is
much greater than room temperature, that is, T � TF . Hence, at sufficiently low temperature, we
should be able to understand the behavior of an ideal Fermi gas in terms of its behavior at zero
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temperature. Because there is only one characteristic energy in the system (the Fermi energy),
the criterion for low temperature is that T � TF . Hence the conduction electrons in a metal are
effectively at absolute zero even though the metal is at room temperature.

For 0 < T � TF , the electrons that are within order kT below the Fermi surface have enough
energy to occupy states with energies that are order kT above the Fermi energy. In contrast, the
electrons that are deep within the Fermi surface do not have enough energy to be excited to states
above the Fermi energy. Hence, only a small fraction of order T/TF of the N electrons have a
reasonable probability of being excited, and the remainder of the electrons remain unaffected. This
reasoning leads us to write the heat capacity of the electrons as CV ∼ Neffk, where Neff is the
number of electrons that can be excited by their interaction with the heat bath. For a classical
system, Neff = N , but for a Fermi system at T � TF , we have that Neff ∼ N(T/TF ). Hence, we
expect that the temperature dependence of the heat capacity is given by

CV ∼ Nk
T

TF
. (T � TF ) (6.156)

From (6.156) we see that the contribution to the heat capacity from the electrons is much smaller
than the prediction of the equipartition theorem and is linear in T as is found empirically. As an
example, the measured specific heat of copper for T < 1 K is dominated by the contribution of the
electrons and is given by CV /kN = 0.8× 10−4 T .

Our qualitative argument for the low temperature behavior of CV implicitly assumes that µ(T )
is unchanged for T � TF . We can understand why µ(T ) remains unchanged as T is increased
slightly from T = 0 by the following reasoning. The probability that a state is empty is

1− n(ε) = 1− 1
eβ(ε−µ) + 1

=
1

eβ(µ−ε) + 1
. (6.157)

We see from (6.157) that for a given distance from µ, the probability that a particle is lost from a
previously occupied state below µ equals the probability that an previously empty state is occupied:
n(ε − µ) = 1 − n(µ − ε). This property implies that the area under the step function at T = 0 is
nearly the same as the area under n(ε) for T � TF (see Figure 6.4). That is, n(ε) is symmetrical
about ε = µ. If we make the additional assumption that the density of states changes very little
in the region where n departs from a step function, we see that the mean number of particles lost
from the previously occupied states just balances the mean number gained by the previously empty
states. Hence, we conclude that for T � TF , we still have the correct number of particles without
any need to change the value of µ.

Similar reasoning implies that µ(T ) must decrease slightly as T is increased from zero. Suppose
that µ were to remain constant as T is increased. Because the density of states is an increasing
function of ε, the number of electrons we would add at ε > µ would be greater than the number
we would lose from ε < µ. As a result, we would increase the number of electrons by increasing
T . To prevent such an nonsensical increase, µ has to reduce slightly. In addition, we know that
because µ � 0 for high temperatures where the system behaves like an ideal classical gas, µ(T )
must pass through zero. At what temperature would you estimate that µ(T ) ≈ 0?

In Problem 6.33 we will determine µ(T ) by evaluating the integral in (6.158) numerically. Then
we will evaluate the integral analytically for T � TF and show that µ(T )− µ(T = 0) ∼ (T/TF )2.
Hence to first order in T/TF , µ is unchanged.
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Problem 6.33. Numerical evaluation of the chemical potential
To find the chemical potential for T > 0, we need to find the value of µ that yields the desired
number of particles. We have

N =
∫ ∞

0

n(ε)g(ε)dε =
V (2m)3/2

2π2~3

∫ ∞
0

ε1/2dε

eβ(ε−µ) + 1
, (6.158)

where we have used (6.102) for g(ε). It is convenient to let ε = xεF , µ = µ∗εF , and T ∗ = kT/εF
and rewrite (6.158) as

ρ =
N

V
=

(2m)3/2

2π2~3
ε
3/2
F

∫ ∞
0

x1/2 dx

e(x−µ∗)/T∗ + 1
, (6.159)

or

1 =
3
2

∫ ∞
0

x1/2 dx

e(x−µ∗)/T∗ + 1
, (6.160)

where we have substituted (6.147) for εF . To find the dependence of µ on T (or µ∗ on T ∗), use
the application/applet at <stp.clarku.edu/simulations/idealgas/fermigas.html> to evalu-
ate (6.160) numerically.

(a) Start with T ∗ = 0.2 and find µ∗ such that (6.160) is satisfied. Does µ∗ initially increase or
decrease as T is increased from zero? What is the sign of µ∗ for T ∗ � 1?

(b) At what value of T ∗ is µ∗ ≈ 0?

(c) Given the value of µ(T ∗), the program computes the corresponding numerical value of CV (T ).
Describe the qualitative T -dependence of CV .

We now derive a quantitative expression for C valid for temperatures T � TF .9 The increase
∆E = E(T )− E(T = 0) in the total energy is given by

∆E =
∫ ∞

0

ε n(ε)g(ε) dε−
∫ εF

0

ε g(ε) dε, (6.161a)

which we rewrite as

=
∫ εF

0

ε[n(ε)− 1]g(ε) dε+
∫ ∞
εF

ε n(ε)g(ε) dε. (6.161b)

We multiply the identity

N =
∫ ∞

0

n(ε)g(ε)dε =
∫ εF

0

g(ε) dε (6.162)

by εF and write the integral on the left-hand side as a sum of two contributions to obtain∫ εF

0

εF n(e)g(ε) dε+
∫ ∞
εF

εF n(e)g(ε) dε =
∫ εF

0

εF g(ε) dε, (6.163a)

or
9The following derivation is adapted from Kittel.

http://stp.clarku.edu/simulations/idealgas/fermigas.html
<stp.clarku.edu/simulations/idealgas/fermigas.html>


CHAPTER 6. NONINTERACTING PARTICLE SYSTEMS 307∫ εF

0

εF [n(ε)− 1]g(ε) dε+
∫ ∞
εF

εFn(ε)g(ε) dε = 0. (6.163b)

We can use (6.163b) to rewrite as (6.161b) as

∆E =
∫ ∞
εF

(ε− εF )n(ε)g(ε)dε+
∫ εF

0

(εF − ε)[1− n(ε)]g(ε)dε. (6.164)

The heat capacity is found by differentiating ∆E with respect to T . The only temperature-
dependent term in (6.164) is n(ε). Hence, we can write CV as

CV =
∫ ∞

0

(ε− εF )
dn(ε)
dT

g(ε)dε. (6.165)

For T � TF , the derivative dn/dT is large only for ε near εF . Hence it is a good approximation
to evaluate the density of states g(ε) at ε = εF and take it outside the integral:

CV = g(εF )
∫ ∞

0

(ε− εF )
dn

dT
dε. (6.166)

We can also ignore the temperature-dependence of µ in n(ε) and replace µ by εF . With this
approximation we have

dn

dT
=
dn

dβ

dβ

dT
=

1
kT 2

(ε− εF )eβ(ε−εF )

[eβ(ε−µ) + 1]2
. (6.167)

We next let x = (ε− εF )/kT and use (6.166) and (6.167) to write CV as

CV = k2Tg(εF )
∫ ∞
−βεF

x2ex

(ex + 1)2
dx. (6.168)

We can replace the lower limit by −∞ because the factor ex in the integrand is negligible at
x = −βεF for low temperatures. If we use the integral∫ ∞

−∞

x2 ex

(ex + 1)2
dx =

π2

3
, (6.169)

we can write the heat capacity of an ideal Fermi gas as

C =
1
3
π2g(εF )k2T. (6.170)

It is straightforward to show that

g(εF ) =
3N
2εF

=
3N

2kTF
, (6.171)

and we finally arrive at our desired result

CV =
π2

2
Nk

T

TF
. (T � TF ) (6.172)
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A more detailed discussion of the low temperature properties of an ideal Fermi gas is given in
Section 6.13. For convenience, we summarize the main results here:

Ω = −2
3

21/2V m3/2

π2~3

[2
5
µ5/2 +

π2

4
(kT )2µ1/2

]
. (6.173)

N = −∂Ω
∂µ

=
V (2m)3/2

3π2~3

[
µ3/2 +

π2

8
(kT )2µ−1/2

]
. (6.174)

The results (6.173) and (6.174) are in the grand canonical ensemble in which the chemical potential
is fixed. However, most experiments are done on a sample with a fixed number of electrons, and
hence µ must change with T to keep N fixed. To find this dependence we rewrite (6.174) as

3π2~3ρ

(2m)3/2
= µ3/2

[
1 +

π2

8
(kT )2µ−2

]
, (6.175)

where ρ = N/V . If we raise both sides of (6.175) to the 2/3 power and use (6.147), we have

µ =
32/3π4/3~2ρ2/3

2m

[
1 +

π2

8
(kT )2µ−2

]−2/3

, (6.176a)

= εF

[
1 +

π2

8
(kT )2µ−2

]−2/3

. (6.176b)

In the limit of T → 0, µ = εF as expected. From (6.176b) we see that the first correction for low
temperatures is given by

µ(T ) = εF

[
1− 2

3
π2

8
(kT )2

µ2

]
= εF

[
1− π2

12

( T
TF

)2]
, (6.177)

where we have made the expansion (1 + x)n ≈ 1 + nx and replaced µ on the right-hand side by
εF = kTF .

From (6.177) we see that the chemical potential decreases with temperature to keep N fixed,
but the decrease is second order in T/TF (rather than first order), consistent with our earlier
qualitative considerations. The explanation for the decrease in µ(T ) is that more particles move
from energy states below the Fermi energy to energy states above the Fermi energy as the tem-
perature increases. Because the density of states increases with energy, it is necessary to decrease
the chemical potential to keep the number of particles constant. As we found in Problem 6.33 as
the temperature becomes larger than the Fermi temperature, the chemical potential changes sign
and becomes negative.

Problem 6.34. Low temperature behavior

(a) Fill in the missing steps in (6.161a)–(6.172).

(b) Use (6.173) and (6.177) to show that the mean pressure for T � TF is given by

P =
2
5
ρεF

[
1 +

5π2

12

( T
TF

)2
+ . . .

]
. (6.178)



CHAPTER 6. NONINTERACTING PARTICLE SYSTEMS 309

(c) Use the general relation between E and PV to show that

E =
3
5
NεF

[
1 +

5π2

12

( T
TF

)2
+ . . .

]
. (6.179)

(d) For completeness, show that the low temperature behavior of the entropy is given by

S =
π2

2
Nk

T

TF
. (6.180)

Why is it not possible to calculate S by using the relations Ω = −PV and S = −∂Ω/∂T , with
P given by (6.178)?

We see from (6.172) that the conduction electrons of a metal contribute a linear term to the
heat capacity. In Section 6.11 we shall see that the contribution from lattice vibrations contributes
a term proportional to T 3 to CV at low T . Thus for sufficiently low temperature, the linear term
dominates.

Problem 6.35. Effective electron mass
In Table 6.3 we found that TF = 8.5× 104 K for Copper. Use (6.172) to find the predicted value of
C/NkT for Copper. How does this value compare with the experimental value C/NkT = 8×10−5?
It is remarkable that the theoretical prediction agrees so well with the experimental result based on
the free electron model. Show that the small discrepancy can be removed by defining an effective
mass m∗ of the conduction electrons equal to ≈ 1.3me, where me is the mass of an electron. What
factors might account for the effective mass being greater than me?

Problem 6.36. Consider a system of electrons restricted to a two-dimensional surface of area A.
Show that the mean number of electrons can be written as

N =
mA

π~2

∫ ∞
0

dε

eβ(ε−µ) + 1
. (6.181)

The integral in (6.181) can be evaluated in closed form using∫
dx

1 + aebx
=

1
b

ln
ebx

1 + aebx
+ constant. (6.182)

Show that
µ(T ) = kT ln

[
eρπ~2/mkT − 1

]
, (6.183)

where ρ = N/A. What is the value of the Fermi energy εF = µ(T = 0)? What is the value of µ for
T � TF ? Plot µ versus T and discuss its qualitative dependence on T .

6.11 The Heat Capacity of a Crystalline Solid

The free electron model of a metal successfully explains the temperature dependence of the con-
tribution to the heat capacity from the electrons. What about the contribution from the ions? In
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a crystal each ion is localized about its lattice site and oscillates due to spring-like forces between
nearest-neighbor atoms. Classically, we can regard each atom of the solid as having three degrees
of freedom,10 each of which contributes 1

2kT to the mean kinetic energy and 1
2kT to the mean

potential energy. Hence, the heat capacity at constant volume of a homogeneous isotropic solid
is given by CV = 3Nk, independent of the nature of the solid. This behavior of CV agrees with
experiment remarkably well at high temperatures, where the meaning of high temperature will be
defined later in terms of the parameters of the solid. At low temperatures, the classical behavior
is an overestimate of the experimentally measured heat capacity, and CV is found to be propor-
tional to T 3. To understand this behavior, we first consider the Einstein model and then the more
sophisticated Debye model of a solid.

6.11.1 The Einstein model

The reason why the heat capacity starts to decrease at low temperature is that the oscillations of
the crystal must be treated quantum mechanically rather than classically. The simplest model of
a solid, proposed by Einstein in 1906, is that each atom behaves like three independent harmonic
oscillators each of frequency ω and possible energies ε = (n + 1

2 )~ω. Because the 3N identical
oscillators are independent and are associated with distinguishable sites, we need only to find the
thermodynamic functions of one of them. The partition function for one oscillator in one dimension
is

Z1 = e−β~ω/2
∞∑
n=0

[
e−β~ω]n (6.184a)

=
e−β~ω/2

1− e−β~ω . (6.184b)

(We calculated Z1 in Example 4.4.) Other thermodynamic properties of one oscillator are given
by

f = −kT lnZ1 =
~ω
2

+ kT ln[1− e−β~ω] (6.185)

s = − ∂f
∂T

= −k ln[1− e−β~ω] + β~ω
1

eβ~ω − 1
(6.186)

e = f + Ts = (n+
1
2

)~ω, (6.187)

where

n =
1

eβ~ω − 1
. (6.188)

Note the form of n. To obtain the extensive quantities such as F , S, and E, we multiply the single
particle values by 3N . For example, the heat capacity of an Einstein solid is given by

CV =
(∂E
∂T

)
V

= 3N
( ∂e
∂T

)
V

= 3Nk(β~ω)2 eβ~ω

[eβ~ω − 1]2
. (6.189)

10Our use of the number of degrees of freedom is common, but other definitions of the number are also used.
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It is convenient to introduce the Einstein temperature

kTE = ~ω, (6.190)

and rewrite CV as

CV = 3Nk
(TE
T

)2 eTE/T

[eTE/T − 1]2
. (6.191)

The limiting behavior of CV from (6.189) or (6.191) is

CV → 3Nk, (T � TE) (6.192a)

and

CV → 3Nk
(~ω
kT

)2

e−~ω/kT . (T � TE) (6.192b)

The calculated heat capacity is consistent with the third law of thermodynamics and is not very
different from the heat capacity actually observed for insulating solids. However, it decreases too
quickly at low temperatures and is not consistent with the observed low temperature behavior
satisfied by all solids:

CV ∝ T 3. (6.193)

Problem 6.37. Explain the form of n in (6.188). Why is the chemical potential zero in this case?

Problem 6.38. Derive the limiting behavior of CV given in (6.192).

6.11.2 Debye theory

The Einstein model is based on the idea that each atom behaves like an harmonic oscillator whose
motion is independent of the other atoms. A better approximation was made by Debye (1912) who
observed that solids can carry sound waves. Because waves are inherently a collective phenomena
and are not associated with the oscillations of a single atom, it is better to think of a crystalline
solid in terms of the collective rather than the independent motions of the atoms. The collective or
cooperative motions correspond to the normal modes of the system, each with its own frequency.

There are two independent transverse modes and one longitudinal mode corresponding to
transverse and longitudinal sound waves with speeds, ct and cl, respectively. (Note that ct and cl
are speeds of sound, not light.) Given that the density of states of each mode is given by (6.96),
the density of states of the system is given by

g(ω)dω = (2gt + gl)dω =
V ω2dω

2π2

( 2
c3t

+
1
c3l

)
. (6.194)

It is convenient to define a mean speed of sound c by the relation

3
c3

=
2
c3t

+
1
c3l
, (6.195)

so that the density of states can be written as

g(ω) dω =
3V ω2dω

2π2c3
. (6.196)
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The total energy is given by

E =
∫

~ω n(ω)g(ω) dω,=
3V ~

2π2c3

∫
ω3 dω

eβ~ω − 1
. (6.197)

Equation (6.197) does not take into account the higher frequency modes that do not satisfy the
linear relation ω = kc. However, we do not expect that the higher frequency modes will contribute
much to the heat capacity. After all, we already know that the Einstein model gives the correct
high temperature behavior. Because the low temperature heat capacity depends only on the low
frequency modes, which we have treated correctly using (6.196), it follows that we can obtain a
good approximation to the heat capacity by extending (6.196) beyond its range of validity up to a
cutoff frequency chosen to give the correct number of modes. That is, we assume that g(ω) ∝ ω2

up to a maximum frequency ωD such that

3N =
∫ ωD

0

g(ω) dω. (6.198)

If we substitute (6.196) into (6.198), we find that

ωD = 2πc
( 3ρ

4π

)1/3
. (6.199)

It is convenient to relate the maximum frequency ωD to a characteristic temperature, the Debye
temperature TD, by the relation

~ωD = kTD. (6.200)

The thermal energy can now be expressed as

E =
3V ~

2π2c3

∫ kTD/~

0

ω3 dω

eβ~ω − 1
, (6.201a)

= 9NkT
( T
TD

)3
∫ TD/T

0

x3 dx

ex − 1
. (6.201b)

In the high temperature limit, TD/T → 0, and the important contribution to the integral in
(6.201b) comes from small x. Because the integrand is proportional x2 for small x, the integral is
proportional to (T/TD)−3, and hence the energy is proportional to T . Thus in the high temperature
limit, the heat capacity is independent of the temperature, consistent with the law of Dulong and
Petit. In the low temperature limit TD/T → ∞, and the integral in (6.201b) is independent of
temperature. Hence in the limit T → 0, the energy is proportional to T 4 and the heat capacity is
proportional to T 3, consistent with experimental results at low temperatures.

6.12 Ideal Bose Gas and Bose Condensation

The historical motivation for discussing the noninteracting Bose gas is that this idealized system
exhibits Bose-Einstein condensation. The original prediction of Bose-Einstein condensation by
Satyendra Nath Bose and Albert Einstein in 1924 was considered by some to be a mathematical
artifact or even a mistake. In the 1930s Fritz London realized that superfluid liquid helium could
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be understood in terms of Bose-Einstein condensation. However, the analysis of superfluid liquid
helium is complicated by the fact that the helium atoms in a liquid strongly interact with one
another. For many years scientists tried to create a Bose condensate in less complicated systems.
In 1995 several groups used laser and magnetic traps to create a Bose-Einstein condensate of alkali
atoms at approximately 10−6 K. In these systems the interaction between the atoms is very weak
so that the ideal Bose gas is a good approximation and is no longer only a textbook example.11

Although the form of the Landau potential for the ideal Bose gas and the ideal Fermi gas
differs only superficially (see (6.86)), the two systems behave very differently at low temperatures.
The main reason is the difference in the ground states; that is, for a Bose system there is no limit
to the number of particles in a single particle state.

The ground state of an ideal Bose gas is easy to construct. We can minimize the total energy
by putting all the particles into the single particle state of lowest energy:

ε1 =
π2~2

2mL2
(12 + 12 + 12) =

3π2~2

2mL2
. (6.202)

The energy of the ground state is given by Nε1. For convenience, we will choose the energy scale
such that the ground state energy is zero. The behavior of the system cannot depend on the choice
of the zero of energy.

The behavior of an ideal Bose gas can be understood by considering N(T, V, µ):

N =
∑
k

1
eβ(εk−µ) − 1

→
∫ ∞

0

n(ε)g(ε)dε (6.203)

=
V

4π2~3
(2m)3/2

∫ ∞
0

ε1/2 dε

eβ(ε−µ) − 1
= g V

∫ ∞
0

ε1/2 dε

eβ(ε−µ) − 1
. (6.204)

where g = (2m)3/2/(4π2~3). For simplicity, we will assume that the gas of bosons has zero spin,
the same value of the spin as the helium isotope 4He.

To understand the nature of an ideal Bose gas at low temperatures, we will assume that the
mean density of the system is fixed and consider the effect of lowering the temperature. The correct
choice of µ gives the desired value of ρ when substituted into (6.205).

ρ =
N

V
= g

∫ ∞
0

ε1/2 dε

eβ(ε−µ) − 1
. (6.205)

We study the behavior of µ as a function of the temperature in Problem 6.39.

Problem 6.39. Numerical evaluation of µ
We know that in the high temperature limit, the chemical potential µ is negative and large in mag-
nitude. Let us investigate numerically how µ changes as we decrease the temperature. The applica-
tion/applet at <stp.clarku.edu/simulations/idealgas/bosegas.html> evaluates the integral
on the right-hand side of (6.205) for a given value of β and µ. The goal is to find the value of µ
for a given value of T that yields the desired value of ρ.

11The 2001 Nobel Prize for Physics was awarded to Eric Cornell, Wolfgang Ketterle, and Carl Wieman for achieving
Bose-Einstein condensation in dilute gases of alkali atoms and for early fundamental studies of the properties of the
condensate.

http://stp.clarku.edu/simulations/idealgas/bosegas.html
<stp.clarku.edu/simulations/idealgas/bosegas.html>
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Let ρ∗ = ρ/g = 1 and begin with T = 10. First choose µ = −10 and find the computed
value of the right-hand side. Do you have to increase or decrease the value of µ to make the
computed value of the integral closer to ρ∗ = 1? By using trial and error, you should find that
µ ≈ −33.4. Next choose T = 5 and find the value of µ needed to keep ρ∗ fixed at ρ∗ = 1. Does
µ increase or decrease in magnitude? You can generate a plot of µ versus T by clicking on the
Accept parameters button.

We found numerically in Problem 6.39 that as T is decreased at constant density, |µ| must
decrease. We can understand this dependence by the following argument. We let x = βε, µ = −|µ|,
and rewrite (6.205) as

ρ = gβ−3/2

∫ ∞
0

x1/2dx

ex+|µ| − 1
. (6.206)

As we decrease T we increase β, and because β−3/2 becomes smaller, the integral in (6.206) has
to increase to compensate. Hence β|µ| must become smaller, which implies that |µ| must become
smaller.

Because µ is negative for Bose-Einstein statistics, this dependence implies that µ becomes less
negative. However, this behavior implies that there would be a lower bound for the temperature at
which µ = 0 (the upper bound for µ for Bose systems). We can find the value of this temperature
by solving (6.206) with µ = 0:

ρ = g

∫ ∞
0

ε1/2 dε

eβcε − 1
= g(kTc)3/2

∫ ∞
0

x1/2 dx

ex − 1
, (6.207)

where Tc is the value of T at which µ = 0. The definite integral in (6.207) can be written in terms
of known functions (see Appendix A) and has the value:∫ ∞

0

x1/2 dx

ex − 1
= 2.612

π1/2

2
= κ. (6.208)

We have

kTc =
( ρ
gκ

)2/3
= 4π~2

( 1
2.612

)2/3 ~2

2ma2
, (6.209)

where a = ρ−1/3 is the mean interparticle spacing. We thus obtain the temperature Tc that satisfies
(6.207) for fixed density. The energy ~2/2ma2 in (6.209) can be interpreted as the zero-point energy
associated with localizing a particle of mass m in a volume a3.

Problem 6.40. Show that the maximum density for a given temperature is

ρc =
2.612
λ3

, (6.210)

where λ is given by (6.2).

Problem 6.41. Show that the thermal de Broglie wavelength is comparable to the interparticle
spacing at T = Tc. What is the implication of this result?
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P

T

Figure 6.5: Sketch of the dependence of the pressure P on the temperature T for a typical gas and
liquid.

Problem 6.42. Use <stp.clarku.edu/simulations/idealgas/bosegas.html> to find the nu-
merical value of T at which µ = 0 for ρ∗ = 1. Confirm that your numerical value is consistent with
(6.209).

Of course there is no physical reason why we cannot continue lowering the temperature at
fixed density (or increasing the density at fixed temperature). Before discussing how we can resolve
this difficulty, consider a familiar situation in which an analogous phenomena occurs. Suppose that
we put Argon atoms into a container of fixed volume at a given temperature. If the temperature
is high enough and the density is low enough, Argon will be a gas and obey the ideal gas equation
of state which we write as P = NkT/V . If we now decrease the temperature, we expect that
the pressure will decrease. However at some temperature, this dependence will abruptly break
down, and P will stop changing as indicated in Figure 6.5. We will not study this behavior of
P until Chapter 9, but you might recognize this behavior as a signature of the condensation of
the vapor and the existence of a phase transition. That is, at a certain temperature for a fixed
density, droplets of liquid Argon will begin to form in the container. As the temperature is lowered
further, the liquid droplets will grow, but the pressure will remain constant because most of the
extra particles will go into the denser liquid state.

We can describe the ideal Bose gas in the same terms, that is, in terms of a phase transition.
That is, at a critical value of T , the chemical potential stops increasing and reaches its limit of
µ = 0. Beyond this point, the relation (6.204) is no longer able to keep track of all the particles.

The resolution of the problem lies with the behavior of the three-dimensional density of states
g(ε), which is proportional to ε1/2 (see (6.101)). Because of this dependence on ε, g(ε = 0) = 0,
and hence our calculation of N has ignored all the particles in the ground state. For the classical
and Fermi noninteracting gas, this neglect is of no consequence. In the classical case the mean
number of particles in any state is much less than unity, while in the degenerate Fermi case there
are only two electrons in the lowest kinetic energy state. However, for the noninteracting Bose gas,
the mean number of particles in the ground state is given by

N0 =
1

e−βµ − 1
, (6.211)

http://stp.clarku.edu/simulations/idealgas/bosegas.html
<stp.clarku.edu/simulations/idealgas/bosegas.html>
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(Remember that we have set ε0 = 0.) When T is sufficiently low, N0 will be very large. Hence, the
denominator of (6.211) must be very small, which implies that e−βµ ≈ 1 and the argument of the
exponential −βµ must be very small. Therefore, we can approximate e−βµ as 1− βµ and N0 � 1
becomes

N0 = −kT
µ
. (6.212)

The chemical potential must be such that the number of particles in the ground state approaches
its maximum value which is order N . Hence, if we were to use the integral (6.204) to calculate N
for T < Tc, we would have ignored the particles in the ground state. We have resolved the problem
– the missing particles are in the ground state. The phenomena we have described, macroscopic
occupation of the ground state, is called Bose-Einstein condensation. That is for T < Tc, N0/N is
nonzero in the limit of N →∞.

Now that we know where to find the missing particles, we can calculate the thermodynamics
of the ideal Bose gas. For T < Tc, the chemical potential is zero in the thermodynamic limit, and
the number of particles not in the ground state is given by (6.204):

N ε =
V

4π2~3
(2m)3/2

∫ ∞
0

ε1/2dε

eβε − 1
= N

( T
Tc

)3/2
, (T < Tc) (6.213)

where Tc is defined by (6.209). All of the remaining particles, which we denote as N0, are in
the ground state, that is, have energy ε = 0. Another way of understanding (6.213) is that for
T < Tc, µ must be zero because the number of particles not in the ground state is determined by
the temperature. Thus

N0 = N −N ε = N
[
1−

( T
Tc

)3/2]
. (T < Tc) (6.214)

Note that for T < Tc, a finite fraction of the particles are in the ground state.
Because the energy of the gas is determined by the particles with ε > 0, we have for T < Tc

E =
∫ ∞

0

ε g(ε) dε
eβε − 1

=
V (mkT )3/2 kT

21/2π2~3

∫ ∞
0

x3/2 dx

ex − 1
. (6.215)

The definite integral in (6.215) is given in Appendix A:∫ ∞
0

x3/2 dx

ex − 1
= 1.341

3π1/2

4
. (6.216)

If we substitute (6.216) into (6.215), we can write the energy as

E = 3
1.341

25/2π3/2

V (mkT )3/2kT

~3
= 0.1277V

m3/2(kT )5/2

~3
. (6.217)

Note that E ∝ T 5/2 for T < Tc. The heat capacity at constant volume is

CV =
∂E

∂T
= 3.2V

(mkT )3/2k

~3
, (6.218a)

or
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CV = 1.9Nεk. (6.218b)

Note that the heat capacity has a form similar to an ideal classical gas for which CV = 1.5Nk.
The pressure of the Bose gas for T < Tc can be obtained easily from the general relation

PV = 2E/3 for a nonrelativistic ideal gas. From (6.217) we obtain

P =
1.341

23/2π3/2

m3/2(kT )5/2

~3
= 0.085

m3/2(kT )5/2

~3
. (6.219)

Note that the pressure is proportional to T 5/2 and is independent of the density. This independence
is a consequence of the fact that the particles in the ground state do not contribute to the pressure.
If additional particles are added to the system at T < Tc, the number of particles in the state ε = 0
increases, but the pressure does not increase.

What is remarkable about the phase transition in an ideal Bose gas is that it occurs at all.
That is, unlike all other known transitions, its occurrence has nothing to do with the interactions
between the particles and has everything to do with the nature of the statistics. Depending on
which variables are being held constant, the transition in an ideal Bose gas is either first-order or
continuous. We postpone a discussion of the nature of first-order and continuous phase transitions
until Chapter 9 where we will discuss phase transitions in more detail. It is sufficient to mention
here that the order parameter in the ideal Bose gas can be taken to be the fraction of particles
in the ground state, and this fraction goes continuously to zero as T → Tc from below at fixed
density.

Another interesting feature of the Bose condensate is that for T < Tc, a finite fraction of
the atoms are described by the same quantum wavefunction, which gives the condensate many
unusual properties. In particular, Bose condensates have been used to produce atom lasers – laser-
like beams in which photons are replaced by atoms – and to study fundamental processes such as
superfluidity.

Problem 6.43. Temperature dependence of the pressure

(a) Start from the classical pressure equation of state, PV = NkT , replace N by Neff for an ideal
Bose gas, and give a qualitative argument why P ∝ T 5/2 at low temperatures.

(b) Show that the ground state contribution to the pressure is given by

P0 =
kT

V
ln(N0 + 1). (6.220)

Explain why P0 can be regarded as zero and why the pressure of an Bose gas for T < Tc is
independent of the volume.

Problem 6.44. Estimate of Bose condensation temperature
What is the approximate value of Tc for a noninteracting Bose gas at a density of ρ = 0.14 gm cm−3,
the density of liquid 4He? Take m = 6.65× 10−27 kg.
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6.13 *Low Temperature Expansion of an Ideal Fermi Gas

We derive the low temperature expansion of the thermodynamic properties of an ideal Fermi gas.
For convenience, we first give the formal expressions for the thermodynamic properties of a ideal
Fermi gas at temperature T . The mean number of particles is given by

N =
21/2V m3/2

π2~3

∫ ∞
0

ε1/2 dε

eβ(ε−µ) + 1
. (6.221)

After an integration by parts, the Landau potential Ω is given by (see (6.105))

Ω = −2
3

21/2V m3/2

π2~3

∫ ∞
0

ε3/2 dε

eβ(ε−µ) + 1
. (6.222)

The integrals in (6.221) and (6.222) cannot be expressed in terms of familiar functions for
all T . However, in the limit T � TF (as is the case for almost all metals), it is sufficient to
approximate the integrals. To understand the approximations, we express the integrals (6.221)
and (6.222) in the form

I =
∫ ∞

0

f(ε) dε
eβ(ε−µ) + 1

, (6.223)

where f(ε) = ε1/2 and e3/2, respectively.
The expansion procedure is based on the fact that the Fermi-Dirac distribution function n(ε)

differs from its T = 0 form only in a small range of width kT about µ. We let ε − µ = kTx and
write I as

I = kT

∫ ∞
−βµ

f(µ+ kTx)
ex + 1

dx (6.224a)

= kT

∫ 0

−βµ

f(µ+ kTx)
ex + 1

dx+ kT

∫ ∞
0

f(µ+ kTx)
ex + 1

dx. (6.224b)

In the first integrand in (6.224b) we let x→ −x so that

I = kT

∫ βµ

0

f(µ− kTx)
e−x + 1

dx+ kT

∫ ∞
0

f(µ+ kTx)
ex + 1

dx. (6.224c)

We next write 1/(e−x + 1) = 1− 1/(ex + 1) in the first integrand in (6.224c) and obtain

I = kT

∫ βµ

0

f(µ− kTx) dx− kT
∫ βµ

0

f(µ− kTx)
ex + 1

dx+ kT

∫ ∞
0

f(µ+ kTx)
ex + 1

dx. (6.225)

Equation (6.225) is still exact.
Because we are interested in the limit T � TF or βµ � 1, we can replace the upper limit in

the second integral by infinity. Then after making a change of variables in the first integrand, we
find

I =
∫ µ

0

f(ε) dε+ kT

∫ ∞
0

f(µ+ kTx)− f(µ− kTx)
ex + 1

dx. (6.226)
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The values of x that contribute to the integrand in the second term in (6.226) are order unity, and
hence it is reasonable to expand f(µ± kTx) in a power series in kTx and integrate term by term.
The result is

I =
∫ µ

0

f(ε) dε+ 2(kT )2f ′(µ)
∫ ∞

0

xdx

ex + 1
dx+

1
3

(kT )4f ′′′(µ)
∫ ∞

0

x3dx

ex + 1
dx+ . . . (6.227)

The definite integrals in (6.227) can be evaluated using analytical methods (see Appendix A). The
results are ∫ ∞

0

x dx

ex + 1
=
π2

12
(6.228)∫ ∞

0

x3 dx

ex + 1
=

7π4

120
(6.229)

If we substitute (6.228) and (6.229) into (6.227), we obtain the desired result

I =
∫ µ

0

f(ε) dε+
π2

6
(kT )2f ′(µ) +

7π4

360
(kT )4f ′′′ + . . . (6.230)

Note that although we expanded f(µ−kTx) in a power series in kTx, the expansion of I in (6.230)
is not a power series expansion in (kT )2. Instead (6.230) represents an asymptotic series that is a
good approximation to I if only the first several terms are retained.

To find Ω in the limit of low temperatures, we let f(ε) = ε3/2 in (6.230). From (6.222) and
(6.230) we find that in the limit of low temperatures

Ω = −2
3

21/2V m3/2

π2~3

[2
5
µ5/2 +

π2

4
(kT )2µ1/2

]
. (6.231)

N = −∂Ω
∂µ

=
V (2m)3/2

3π2~3

[
µ3/2 +

π2

8
(kT )2µ−1/2

]
. (6.232)

We we mentioned, the expansions in (6.231) and (6.232) are asymptotic and provide good approx-
imations only if the first few terms are kept. A more careful derivation of the low temperature
behavior of an ideal Fermi gas has been given by Weinstock.
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Listing of inline problems.

Problem 6.45. Suppose that two systems are initially in thermal and mechanical equilibrium,
but not in chemical equilibrium, that is, T1 = T2, P1 = P2, but µ1 6= µ2. Use reasoning similar to
that used in Section 2.12 to show that particles will move from the system with higher density to
the system at lower density.

Problem 6.46. Explain in simple terms why the mean kinetic energy of a classical particle in
equilibrium with a heat bath at temperature T is 1

2kT per quadratic contribution to the kinetic
energy, independent of the mass of the particle.

Problem 6.47. Linear rigid rotator
The atoms we discussed in Section 6.3 were treated as symmetrical, rigid structures capable of
only undergoing translation motion, that is, their internal motion was ignored. Real molecules are



CHAPTER 6. NONINTERACTING PARTICLE SYSTEMS 321

neither spherical nor rigid, and rotate about two or three axes and vibrate with many different
frequencies. For simplicity, consider a linear rigid rotator with two degrees of freedom. The
rotational energy levels are given by

ε(j) = j(j + 1)
~2

2I
, (6.233)

where I is the moment of inertia and j = 0, 1, 2, . . . The degeneracy of each rotational level is
(2j + 1).

(a) Find the partition function Zrot for the rotational states of one molecule.

(b) For T � Tr = ~2/(2kI), the spectrum of the rotational states may be approximated by a
continuum and the sum over j can be replaced by an integral. Show that the rotational heat
capacity is given by CV,rot = Nk in the high temperature limit. Compare this result with the
prediction of the equipartition theorem.

(c) A more accurate evaluation of the sum for Zrot can be made using the Euler-Maclaurin formula
(see Appendix A)

∞∑
i=0

f(x) =
∫ ∞

0

f(x) dx+
1
2
f(0)− 1

12
f ′(0) +

1
720

f ′′′(0) + . . . (6.234)

Show that the corresponding result for CV,rot is

CV,rot = Nk
[
1 +

1
45

(Tr
T

)2

+ . . .
]
. (6.235)

(d) Show that the leading contribution to CV, rot for T � Tr s is

CV,rot = 12Nk
(Tr
T

)2

e−2Tr/T + . . . (6.236)

Problem 6.48. Diatomic gas
In Section 6.3 we found the specific heat of monatomic gases using the equipartition theorem. In
this problem we consider the specific heat of a diatomic gas. A monatomic gas is described by
three independent coordinates and is said to have three degrees of freedom per particle. The total
energy of a diatomic gas is a sum of three terms, a translational, rotational, and vibrational part,
and hence the total specific heat of the gas can be written as

cv = ctr + crot + cvib. (6.237)

The last two terms in (6.237) arise from the internal degrees of freedom, two for rotation and one
for vibration. (Some textbooks state that there are two vibrational degrees of freedom because the
vibrational energy is part kinetic and part potential.) What is the high temperature limit of cv for
a diatomic gas? The values of ~2/2kI and ~ω/k for H2 are 85.5 K and 6140 K, respectively, where
ω is the vibrational frequency. What do you expect the value of cv to be at room temperature?
Sketch the T -dependence of cv in the range 10 K ≤ T ≤ 10000 K.
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not done

Figure 6.6: A schematic representation of a diatomic molecule.

Problem 6.49. What is the probability that a classical nonrelativistic particle has kinetic energy
in the range ε to ε+ dε?

Problem 6.50. Consider an ideal classical gas in equilibrium at temperature T in the presence
of an uniform gravitational field. Find the probability P (z)dz that an atom is at a height between
z and z + dz above the earth’s surface. How do the density and the pressure depend on z?

Problem 6.51. We can write the total energy of a system of N particles in the form

E =
N∑
i=1

p2
i

2m
+

N∑
i=j+1

N∑
j=1

uij (6.238)

where uij = u(|ri − rj |) is the interaction energy between particles i and j. Discuss why the
partition function of a classical system of N particles can be written in the form

ZN =
1

N !h3N

∫
d3Np d3Nr e−β

P
i p

2
i /2m e−β

P
i<j uij . (6.239)

Problem 6.52. Granular systems
A system of glass beads or steel balls is an example of a granular system. In such system the beads
are macroscopic objects and the collisions between the beads is inelastic. Because the collisions in
such a system are inelastic, a gas-like steady state is achieved only by inputting energy, usually
by shaking or vibrating the walls of the container. Suppose that the velocities of the particles are
measured in a direction perpendicular to the direction of shaking. Do you expect the distribution of
the velocities to be given by a Gaussian distribution as in (6.58)? See for example, the experiments
by Daniel L. Blair and Arshad Kudrolli, “Velocity correlations in dense granular gases,” Phys. Rev.
E 64, 050301(R) (2001) and the theoretical arguments by J. S. van Zon and F. C. MacKintosh,
“Velocity distributions in dissipative granular gases,” Phys. Rev. Lett. 93, 038001 (2004).

∗Problem 6.53. In one of his experiments on gravitational sedimentation, Perrin observed the
number of particles in water at T = 293 K and found that when the microscope was raised by
100µm, the mean number of particles in the field of view decreased from 203 to 91. Assume that
the particles have a mean volume of 9.78×10−21 m3 and a mass density of 1351 kg/m3. The density
of water is 1000 kg/m3. Use this information to estimate the magnitude of Boltzmann’s constant.
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Problem 6.54. Maxwell velocity distribution

(a) What is the most probable kinetic energy of an atom in a classical system in equilibrium with
a heat bath at temperature T? Is it equal to 1

2mṽ
2, where ṽ is the most probable speed?

(b) Find the following mean values for the same system: vx, v2
x, v

2
xv

2
y, and vxv2

y. No calculations
are necessary.

Problem 6.55. Mean energy of a nonlinear oscillator
Consider a classical one-dimensional nonlinear oscillator whose energy is given by

ε =
p2

2m
+ ax4, (6.240)

where x, p, and m have their usual meanings; the parameter a is a constant.

(a) If the oscillator is in equilibrium with a heat bath at temperature T , calculate its mean kinetic
energy, mean potential energy, and the mean total energy.

(b) Consider a classical one-dimensional oscillator whose energy is given by

ε =
p2

2m
+

1
2
kx2 + ax4. (6.241)

In this case the anharmonic contribution ax4 is very small. What is the leading contribution
of this term to the mean potential energy?

Problem 6.56. Consider a system consisting of two noninteracting particles connected to a heat
bath at temperature T . Each particle can be in one of three states with energies 0, ε1, and ε2.
Find the partition function for the following cases:

(a) The particles obey Maxwell-Boltzmann statistics and can be considered distinguishable.

(b) The particles obey Fermi-Dirac statistics.

(c) The particles obey Bose-Einstein statistics.

(d) Find the probability in each case that the ground state is occupied by one particle.

(e) What is the probability that the ground state is occupied by two particles?

(f) Estimate the probabilities in (d) and (e) for kT = ε2 = 2ε1.

Problem 6.57. Show that the grand partition function Z can be expressed as

Z =
∞∑
N=0

eβµNZN (6.242)

where ZN is the partition function for a system of N particles. Consider a system of noninteracting
(spinless) fermions such that each particle can be a single particle state with energy 0, ∆, and 2∆.
Find an expression for Z. Show how the mean number of particles depends on µ for T = 0,
kT = ∆/2, and kT = ∆.
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∗Problem 6.58. Assume periodic boundary conditions so that the wave function ψ satisfies the
condition (in one dimension)

ψ(x) = ψ(x+ L). (6.243)

The form of the one particle eigenfunction consistent with (6.243) is given by

ψ(x) ∝ eikxx. (6.244)

What are the allowed values of kx? How do they compare with the allowed values of kx for a particle
in a one-dimensional box? Generalize the form (6.244) to a cube and determine the allowed values
of k. Find the form of the density of states and show that the same result (6.93) is obtained.

Problem 6.59. A system contains N identical noninteracting fermions with 2N distinct single
particle states. Suppose that 2N/3 of these states have energy zero, 2N/3 have energy ∆, and
2N/3 have energy 2∆. Show that µ is independent of T . Calculate and sketch the T -dependence
of the energy and heat capacity.

Problem 6.60. Find general expressions for N , Ω, and E for a highly relativistic ideal gas and
find a general relation between PV and E.

Problem 6.61. Calculate the chemical potential µ(T ) of a noninteracting Fermi gas at low tem-
peratures T � TF for a one-dimensional ideal Fermi gas. Use the result for µ(T ) found for the
two-dimensional case in Problem 6.36 and compare the qualitative behavior of µ(T ) in one, two,
and three dimensions.

Problem 6.62. Discuss the meaning of the Fermi temperature TF and why most metals can be
treated as if they are effectively at low temperatures, even at room temperatures.

Problem 6.63. High temperature limit of the ideal Fermi gas
If T � TF at fixed density, quantum effects can be neglected and the thermal properties of an
ideal Fermi gas reduces to the ideal classical gas.

(a) Does the pressure increase or decrease when the temperature is lowered (at constant density)?
That is, what is the first quantum correction to the classical equation of state? The pressure
is given by (see (6.105))

P =
(2m)3/2

3π2~3

∫ ∞
0

ε3/2 dε

eβ(x−µ) + 1
. (6.245)

In the high temperature limit, eβµ � 1, and we can make the expansion

1
eβ(ε−µ) + 1

= eβ(µ−ε) 1
1 + e−β(ε−µ)

(6.246a)

≈ eβ(µ−ε)[1− e−β(ε−µ)]. (6.246b)
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If we use (6.246b), we obtain

eβµ
∫ ∞

0

x3/2e−x(1− eβµe−x) dx =
3
4
π1/2eβµ[1− 1

25/2
eβµ]. (6.247)

Use (6.247) to show that P is given by

P =
m3/2(kT )5/2

21/2 π3/2~3
eβµ
[
1− 1

25/2
eβµ
]
. (6.248)

(b) Derive a expression for N similar to (6.248). Eliminate µ and show that the leading order
correction to the equation of state is given by

PV = NkT
[
1 +

π3/2

4
ρ~3

(mkT )3/2

]
, (6.249a)

= NkT
[
1 +

1
27/2

ρλ3
]
. (6.249b)

(c) What is the condition for the correction term in (6.249b) to be small? Note that as the tem-
perature is lowered at constant density, the pressure increases. This dependence implies that
quantum effects due to Fermi statistics lead to an effective “repulsion” between the particles.
What do you think would be the effect of Bose statistics in this context (see Problem 6.66)?

Mullin and Blaylock have emphasized that it is misleading to interpret the sign of the correction
term in (6.249b) in terms of an effective repulsive exchange “force,” and stress that the positive
sign is a consequence of the symmetrization requirement for same spin fermions.

Problem 6.64. In the text we gave a simple argument based on the assumption that CV ∼ Neffk
to obtain the qualitative T -dependence of CV at low temperatures for an ideal Bose and Fermi gas.
Use a similar argument based on the assumption that PV = NeffkT to obtain the T -dependence
of the pressure at low temperatures.

∗Problem 6.65. Consider a system of N noninteracting fermions with single particle energies
given by εn = n∆, where n = 1, 2, 3, . . . Find the mean energy and heat capacity of the system.
Although this problem can be treated exactly, it is not likely that you will be able to solve the
problem by thinking about the case of general N . The exact partition function for general N
has been found by several authors including Peter Borrmann and Gert Franke, “Recursion for-
mulas for quantum statistical partition functions,” J. Chem. Phys. 98, 2484–2485 (1993) and K.
Schönhammer, “Thermodynamics and occupation numbers of a Fermi gas in the canonical ensem-
ble,” Am. J. Phys. 68, 1032–1037 (2000).

Problem 6.66. High temperature limit of ideal Bose gas
If T � Tc at fixed density, quantum effects can be neglected and the thermal properties of an
ideal Bose gas reduces to the ideal classical gas. Does the pressure increase or decrease when the
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temperature is lowered (at constant density)? That is, what is the first quantum correction to the
classical equation of state? The pressure is given by (see (6.105))

P =
21/2m3/2(kT )5/2

3π2~3

∫ ∞
0

x3/2 dx

ex−βµ − 1
. (6.250)

Follow the same procedure as in Problem 6.63 and show that

PV = NkT
[
1− π3/2

2
ρ~3

(mkT )3/2

]
. (6.251)

We see that as the temperature is lowered at constant density, the pressure becomes less than its
classical value.

Problem 6.67. Does Bose condensation occur for a one and two-dimensional ideal Bose gas? If
so, find the transition temperature. If not, explain.

Problem 6.68. Discuss why Bose condensation does not occur in a gas of photons in thermal
equilibrium (blackbody radiation).

∗Problem 6.69. Effect of boundary conditions

(a) Assume that N noninteracting bosons are enclosed in a cube of edge length L with rigid walls.
What is the ground state wave function? How does the density of the condensate vary in
space?

(b) Assume instead the existence of periodic boundary conditions. What is the spatial dependence
of the ground state wave function on this case?

(c) Do the boundary conditions matter in this case? If so, why?

∗Problem 6.70. Bose-Einstein condensation in low-dimensional traps
As we found in Problem 6.67, Bose-Einstein condensation does not occur in ideal one and two-
dimensional systems. However, this result holds only if the system is confined by rigid walls. In
the following, we will show that Bose-Einstein condensation can occur if a system is confined by a
spatially varying potential. For simplicity, we will treat the system semiclassically

Let us assume that the confining potential has the form

V (r) ∼ rn. (6.252)

Then the region accessible to a particle with energy ε has a radius L ∼ ε1/n. Show that the
corresponding density of states behaves as

g(ε) ∼ Ldε 1
2d−1 ∼ εd/nε 1

2d−1 ∼ εα, (6.253)

where
α =

d

n
+
d

2
− 1 (6.254)

What is the range of values of n for which Tc > 0 for d = 1 and 2? More information about
experiments on Bose-Einstein condensation can be found in the references.
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Problem 6.71. More on the Debye model

(a) Show that if the volume of the crystal is Na3, where a is the equilibrium distance between
atoms, then the Debye wave number, kD = ωD/c, is about π/a.

(b) Evaluate the integral in (6.201b) numerically and plot the heat capacity versus T/TD over the
entire temperature range.

∗Problem 6.72. Show that the probability P (N) of finding a system in the T, V, µ ensemble with
exactly N particles, regardless of their positions and momenta, is given by

P (N) =
1
Z
eβNµZN (V, T ). (6.255)

Use (6.255) to show that

N =
∞∑
N=0

NP (N) =
z

Z
∂Z
∂z

=
∂ lnZ
∂βµ

, (6.256)

where the activity z is defined as
z = eβµ. (6.257)

Also show that the variance of the number of particles is given by

N2 −N2
= kT

∂N

µ
. (6.258)

∗Problem 6.73. Number fluctuations in a noninteracting classical gas
Show that the grand partition function of a noninteracting classical gas can be expressed as

Z =
∞∑
N=0

(zZ1)N

N !
= ezZ1 . (6.259)

Show that the mean value of N is given by

N = zZ1, (6.260)

and that the probability that there are N particles in the system is given by a Poisson distribution:

PN =
zNZN
Z

=
(zZ1)N

N !Z
=
N
N

N !
e−N . (6.261)

What is the variance, (N −N)2, and the N -dependence of the relative root mean square deviation,
[〈N2〉 −N2

]1/2/N?

∗Problem 6.74. Number fluctuations in a degenerate noninteracting Fermi gas
Use the relation

(N −N)2 = kT
∂N

∂µ
(6.262)
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to find the number fluctuations in the noninteracting Fermi gas for fixed T, V and µ. Show that

(N −N)2 =
kT

2
V (2m)3/2

2π2~3

∫ ∞
0

ε−1/2 dε

eβ(ε−µ) + 1
, (6.263a)

→ 3NT
2TF

. (T � TF ) (6.263b)

Explain why the fluctuations in a degenerate Fermi system are much less than in the corresponding
classical system.

∗Problem 6.75. Absence of classical magnetism
As mentioned in Chapter 5, van Leeuwen’s theorem states that the phenomena of diamagnetism
does not exist in classical physics. Hence, magnetism is an intrinsically quantum mechanical
phenomena. Prove van Leeuwen’s theorem using the following hints.

The proof of this theorem requires the use of classical Hamiltonian mechanics for which the
regular momentum p is replaced by the canonical momentum p −A/c, where the magnetic field
enters through the vector potential, A. Then make a change of variables that eliminates A, and
thus the electric and magnetic fields from the Hamiltonian. Because the local magnetic fields are
proportional to the velocity, they too will vanish when the integral over momenta is done in the
partition function.

∗Problem 6.76. The Fermi-Pasta-Ulam (FPU) problem
The same considerations that make the Debye theory of solids possible also suggest that a molecular
dynamics simulation of a solid at low temperatures will fail. As we noted in Section 6.11, a system
of masses linked by Hooke’s law springs can be represented by independent normal modes. The
implication is that a molecular dynamics simulation of a system of particles interacting via the
Lennard-Jones potential will fail at low temperatures because the simulation will not be ergodic.
The reason is that at low energies, the particles will undergo small oscillations, and hence the
system can be represented by a system of masses interacting via Hooke’s law springs. A initial
set of positions and velocities would correspond to a set of normal modes. Because the system
would remain in this particular set of modes indefinitely, a molecular dynamics simulation would
not sample the various modes and the simulation would not be ergodic.

In 1955 Fermi, Pasta, and Ulam did a simulation of a one-dimensional chain of springs con-
nected by springs. If the force between the springs is not linear, for example, V (x) = kx2/2+κx4/4,
the normal modes will not be an exact representation of the system for κ > 0. Would a molecular
dynamics simulation be ergodic for any value of κ > 0? The answer to this question is nontrivial
and is of continuing interested to physicists and mathematicians. A good place to start is the book
by Weissert.

Suggestions for further reading

More information about Bose-Einstein condensation can be found at <jilawww.colorado.edu/
bec/>, <bec.nist.gov/>, and <cua.mit.edu/ketterle_group/>.

http://jilawww.colorado.edu/bec/
<jilawww.colorado.edu/bec/>
http://jilawww.colorado.edu/bec/
<jilawww.colorado.edu/bec/>
http://bec.nist.gov/
<bec.nist.gov/>
http://ua.mit.edu/ketterle_group/
<cua.mit.edu/ketterle_group/>
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Using Thermodynamics

c©2008 by Harvey Gould and Jan Tobochnik
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7.1 Understanding the chemical potential

Most of our discussion thus far has been concerned with the behavior of systems composed of
one type of particle. However, in many cases we have more than one type of particle interacting
with each other or we have the same type of particle in two or more different phases that are in
contact with each other. An example would be an ice cube in a glass of water. We now discuss
the chemical potential more deeply so that we can more fully appreciate the behavior of these
multi-species systems.

Just as temperature measures the ability of a system to transfer energy to another system
and pressure is a measure of the ability of a system to transfer volume, the chemical potential is
a measure of the ability of a system to transfer particles. Two systems in thermal and particle
equilibrium will not only come to the same temperature, but also will come to the same chemical
potential.

We now discuss some techniques for calculating the chemical potential in computer simulations
as a way of obtaining more insight into the meaning of the chemical potential. Using (2.155) and
(4.101) the chemical potential can be written as

µ =
( ∂F
∂N

)
T,V

= FN+1 − FN = −kT lnZN+1 + kT lnZN = −kT lnZN+1/ZN (7.1)

in the limit N →∞. To understand how we might compute the chemical potential in a standard
Monte Carlo simulation in the canonical ensemble, we need to write µ in terms of an appropriate
average of an N particle system. The probability that the N particle system is in the ith microstate
is Pi = e−βEi/ZN . ZN+1 can be written as

∑
i

∑
j e
−βEie−β∆Eij , where the sum over i is over all

microstates of the N particle system, and the sum over j is over all possible dynamical variables
that characterize the state of the (N+1)st particle. The energy difference ∆Eij is the difference in

330
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energy between the ith state with N particles and the ith state with N particles plus an additional
particle in state j. Thus (7.1) can be written as

µ = −kT ln
∑
i

∑
j

Pie
−β∆Eij . (7.2)

Equation (7.2) states that the ratio ZN+1/ZN is the average of e−β∆E over all possible states of an
added particle with added energy ∆E. Because a Monte Carlo simulation generates configurations
with probability Pi, we can compute the chemical potential by periodically calculating the change
in the energy ∆E that would occur if an imaginary particle were added to an N particle system
at random locations. The added particle is removed once ∆E is calculated. Thus, the chemical
potential is given by

µ = −kT ln〈e−β∆E〉, (7.3)

where the average 〈. . .〉 is over many insertions into many different configurations that are gener-
ated by the Monte Carlo algorithm, and which are thus distributed according to the Boltzmann
distribution Pi. This method of computing the chemical potential is called the Widom insertion
method.

For an ideal classical gas only the momentum degrees of freedom are relevant. Equation (7.3)
with

〈e−β∆E〉 = V

∫
e−βp

2/2md3p/h3 (7.4)

plus a factor of 1/N to account for indistinguishability leads to the usual classical ideal gas ex-
pression for µ given in (6.31). Because the momentum degrees of freedom yield the same result
independent of the inter-particle potential, Monte Carlo simulations only need to include the po-
sition degrees of freedom, and the chemical potential in (7.3) is interpreted as the excess chemical
potential beyond the ideal gas contribution.

We can use (7.3) to understand the behavior of the chemical potential as we change the density
of a fluid. Consider a fluid for which the inter-particle potential consists of a Lennard-Jones type
potential made up of a hard core positive potential at small inter-particle separations and a negative
potential well which vanishes at large inter-particle separations. At very low densities an added
particle will likely land in a region where the inter-particle potential is small and negative and thus
this added particle will contribute a very small negative energy (∆E < 0) to the system. Thus
from (7.3), −β∆E will be small and positive, the exponential will be greater than unity, and thus
the excess chemical potential will be negative. As the density is increased, an added particle is
more likely to land in the potential well and thus ∆E is more likely to be more negative. Thus
the excess chemical potential will decrease (become larger in magnitude, but more negative). As
the density is further increased the added particles will land on the steeply rising positive part
of the potential, and thus more often ∆E will be large and positive, leading to −β∆E < 0, an
exponential less than unity, and thus a positive excess chemical potential. Thus, as a function of
density we would expect a minimum in the excess chemical potential.

One of the reasons that understanding thermodynamic quantities such as the chemical poten-
tial is difficult is that there is no measurement device that directly measures such quantities. For
example, the measurement of temperature is rather complicated and subtle. It relies on finding
a relation between temperature and some physically measurable quantity such as the volume of
mercury in a tube. Then we havene quantify the relation. As discussed in Chapter 2, we rely
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on the ideal gas law to determine the temperature from mechanical measurements on enclosed
gases. Thus, the measurement of temperature does not usually provide much insight into the role
of temperature in nature. In Section 4.9 we discussed the demon algorithm, which is helpful in
understanding how temperature controls the flow of energy between two systems. We can allow
the demon to exchange particles as well as energy and then obtain some further insight into the
chemical potential.

A demon which can exchange both energy and particles will follow the Gibbs distribution
(4.141):

P (Nd, Ed) =
1
Z
e−β(Ed−µNd) , (Gibbs distribution) (7.5)

which tells us the probability of the demon having energy Ed and Nd particles. Here Z is the
grand canonical partition function. We can think of the demon as a system in equilibrium with
our system of interest that acts as a heat path. We can measure both temperature and chemical
potential by plotting the natural log of P (Nd, Ed) versus Ed at fixed Nd and versus Nd at fixed Ed.
In a simulation particles are transferred to and from the demon. When a particle is transferred
the energy of the system we are simulating may change. If that happens, then the transfer is only
accepted if the energy is decreased (the lost energy is given to the demon) or the energy is increased
and the demon has enough energy to supply this increased energy. As the simulation is run the
demon and system come to equilibrium and the demon’s energy and particle number distribution
follows (7.5). The applet/application at <stp.clarku.edu/simulations/latticedemon.html>
implements this algorithm, which is described in an article in the American Journal of Physics.

To understand how the demon algorithm helps us understand the chemical potential, consider
how the algorithm with only energy exchange helps us understand temperature. Imagine a demon
distribution such that energy flows into and out of the demon very easily. Under what circumstances
would this happen? What can you say about the slope of lnP (Ed) versus Ed? The answer to the
latter question is that the slope would be relatively shallow or small and negative, because many
demon energies would have nearly the same probability for occurring as energy can easily come
into and out of the demon. The answer to the first question is that the system would be at a high
temperature if energy easily flows into and out of the system, because we associate high temperature
with large energy fluctuations (the specific heat is proportional to the energy fluctuations, and
specific heat increases with temperature), and thus the system energy can fluctuate easily by
giving and taking energy from the demon. If the system is at a low temperature, then a similar
argument shows that we would expect a steep negative slope for lnP (Ed) versus Ed. This behavior
is independent of the system size because the exchange of energy is a local event between the demon
and a small piece of the system for most materials. This independence of system size explains why
temperature is an intensive quantity.

Now consider the situation for particle transfers. From (7.5) we see that for particle transfers
µ/kT plays the role of 1/kT for energy. Because µ/kT depends on two thermodynamic variables,
it is more subtle to discuss how the chemical potential behaves independent of temperature. We
will assume in what follows that the total energy of the system plus the demon is adjusted so that
the temperature is the same for any two situations we compare, and that the difference in total
energy does not effect our conclusions. These assumptions have been shown to be valid by actually
doing the simulations.

For ease of understanding consider one of the simplest systems, a one-dimensional ideal gas,

http://stp.clarku.edu/simulations/latticedemon.html
<stp.clarku.edu/simulations/latticedemon.html>
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which has a two-dimensional phase space, one dimension for location and one for momentum.
Further assume that phase space is divided into cells of area of the order of Planck’s constant.
This is the standard assumption we used in Chapter 6. Begin with a dilute system and let us
see what we can infer by thinking about the behavior of the demon. We know that the chemical
potential should be negative, which would mean a negative slope for lnP (Nd) versus Nd, which
means that the probability of the demon having Nd particles decreases as Nd increases. Why
is this? Imagine phase space in this system. Particles move in and out of the two-dimensional
phase space. Because the total energy is fixed, the particles will be restricted between some upper
positive momentum and an equivalent negative momentum. Imagine we begin with the particles
randomly placed in phase space so that the total energy (

∑
i p

2
i /2m) is some fixed specified value.

If the system is dilute, then there are many cells in phase space near zero momentum to place
particles. As soon as any particle from one of the higher momentum states comes into the demon,
it will give the demon lots of energy which can then be used to move particles back to the system at
a lower momentum. Once this happens, it will become very difficult for the demon to ever move a
particle back to a high momentum state. Thus, the demon will tend to always have enough energy
to move particles to the system as soon as it gets them. Thus, the probability of the demon having
Nd particles will decrease with Nd and the chemical potential will be negative. This argument is
a concrete illustration of how entropy (which depends on the vast number of spots in phase space
to place particles) is controlling the situation.

In analytical calculations we add a factor of 1/N ! in the partition function to account for
indistinguishability. This factor tells us that the state with particle i in one cell and particle
j in another cell in phase space is the same as swapping the particles and thus should not be
counted twice. However, the factor of 1/N ! counts states where both particles are in the same
spot in phase space, which is not allowed in the simulation we just described. How should the
analytically calculated chemical potential compare with the computed one which does not allow
multiple occupancy? In very large dilute systems the difference is negligible, which is why we don’t
need to be more careful in the analytical calculation. However, in a simulation the system can
be small enough for such finite size effects to be detectable. Because multiple occupancy is not
allowed, we expect that occasionally the demon will try to move a particle to the system and fail
because there is already a particle there. The demon will tend to have more particles than it would
have if it simulated exactly the analytically approach. Thus, in the simulation we will obtain a
larger chemical potential (less negative) than that found analytically, and that is what is found.
We can change the simulation to allow multiple occupancy. This would then make it easier for
the demon to add particles to the system and we would expect the chemical potential to decrease
(become more negative), and that is what happens.

A system which excludes multiple occupancy in phase space is a simulation of a system of
fermions. At very low densities this restriction has little effect, and fermions and bosons behave
similarly at low densities. Once the density becomes high enough that the restriction to single
occupancy in phase space becomes important, then the fermion chemical potential will increase
relative to the boson chemical potential. For the small systems that we can simulate, at high enough
densities the demon will eventually start taking in more and more particles so that lnP (Nd) versus
Nd is no longer linear and the initial slope becomes positive indicating a positive chemical potential,
which is what we expect for dense Fermi systems.

Let us return to dilute systems and discuss the effects of adding an inter-particle potential.
First, let’s simply add a hard core repulsion so that particles can not be in the same cell in phase
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space as before, but also no two particles can have the same location. This clearly makes it more
difficult for the demon to return particles to the system and we would expect the chemical potential
to increase (become less negative) compared to the non-interacting system. If we add an attractive
square well for two particles that are next to each other, then for some particle additions this
lowers the energy of the system giving the demon more energy making it easier to find other places
in phase space to add particles. The result is a lowering of the chemical potential compared to the
hard core system. These trends can be observed in the simulations.

The discussion so far provides some intuition about the behavior of the chemical potential. The
conclusions are sometimes similar to the naive idea that one simply looks at whether an added
particle adds or subtracts energy to determine if the chemical potential is positive or negative,
respectively. Our discussion shows that the situation is more subtle, and it is better to discuss
changes in the chemical potential as the system characteristics are changed, and that thinking about
how easy it is for one system such as the demon to exchange particles with another system is what
is important. Just as temperature is not a measurement of energy, but rather a measurement of
the ability to transfer energy, chemical potential is not a measurement of an additional particle’s
energy but rather a measure of the ease of transferring particles.

7.2 Equilibrium Between Phases

Every substance can exist in qualitatively different forms, called phases. For example, most sub-
stances exist in the form of a gas, liquid, or a solid. The most familiar substance of this type is
water which exists in the form of water vapor, liquid water, and ice.1 The existence of different
phases depends on the pressure and temperature and the transition of one phase to another occurs
at particular temperatures and pressures. For example, water is a liquid at room temperature
and atmospheric pressure, but if it is cooled below 273.15 K, it eventually solidifies , and if heated
above 373.15 K it vaporizes.2 At each of these temperatures, water undergoes dramatic changes in
its properties, and we say that a phase transition occurs. The existence of distinct phases must be
the result of the intermolecular interactions, yet these interactions are identical microscopically in
all phases. Why is the effect of the interactions so different macroscopically? The answer is the
existence of cooperative effects, which we discussed briefly in Section 5.5.1 and will discuss in more
detail in Chapter 8.

7.2.1 Equilibrium conditions

Before we discuss the role of intermolecular interactions, we obtain the conditions for equilibrium
between two phases of a substance consisting of a single type of molecule. We discuss mixtures of
more than one substance in Section 7.4. For example, the phases might be a solid and a liquid or a
liquid and a gas. We know that for any two bodies in thermodynamic equilibrium, the temperatures
T1 and T2 of the two phases must be equal:

T1 = T2. (7.6)
1All of the natural ice on earth is hexagonal, as manifested in six-cornered snow flakes. At lower temperatures

and at pressures above about 108 Pa, many other ice phases with different crystalline structures exist.
2If you were to place a thermometer in a perfectly pure boiling water, the thermometer would not read 100◦ C.

A few degrees of superheating is almost inevitable. Superheating and supercooling are discussed in Section xx.
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We also know that the pressure of the two phases must be equal,

P1 = P2, (7.7)

because the forces exerted by the two phases on each other at their surface of contact must be
equal and opposite.

We show in the following that because the number of particles N1 and N2 of each species can
vary, the chemical potentials of the two phases must be equal:

µ1 = µ2. (7.8)

Because the temperatures and pressures are uniform, we can write (7.8) as

µ1(T, P ) = µ2(T, P ). (7.9)

Note that because µ(T, P ) = g(T, P ), where g is the Gibbs free energy per particle, we can
equivalently write the equilibrium condition (7.9) as

g1(T, P ) = g2(T, P ). (7.10)

We now derive the equilibrium condition (7.10) for the chemical potential. Because T and P
are well defined quantities for a system of two phases, the natural thermodynamic potential is the
Gibbs free energy G = E − TS + PV . Let Ni be the number of particles in phase i and gi(T, P )
be the Gibbs free energy per particle in phase i. Then G can be written as

G = N1g1 +N2g2. (7.11)

Conservation of matter implies that the total number of particles remains constant:

N = N1 +N2 = constant. (7.12)

Suppose we let N1 vary. Because G is a minimum in equilibrium, we have

dG = 0 = g1dN1 + g2dN2 = (g1 − g2)dN1, (7.13)

with dN2 = −dN1. Hence, we find that a necessary condition for equilibrium is

g1(T, P ) = g2(T, P ). (7.14)

7.2.2 Clausius-Clapeyron equation

Usually, the thermodynamics of a simple substance depends on two variables, for example, T and
P . However, if two phases of a substance are to coexist in equilibrium, then only one variable can
be chosen freely. For example, the pressure and temperature of a given amount of liquid water
may be chosen at will, but if liquid water is in equilibrium with its vapor, then the pressure of the
water equals the vapor pressure, which is a unique function of the temperature. If the pressure is
increased above the vapor pressure, the vapor will condense. If the pressure is decreased below the
vapor pressure, the liquid will evaporate.
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Figure 7.1: Derivation of the Clausius-Clapeyron equation.

In general, gi is a well-defined function that is characteristic of the particular phase i. If T
and P are such that g1 < g2, then the minimum value of G corresponds to all N particles in phase
1 and G = Ng1. If T and P are such that g1 > g2, then the minimum value of G corresponds to
all N particles in phase 2 so that G = Ng2. If T and P are such that g1 = g2, then any number
N1 of particles in phase 1 can coexist in equilibrium with N2 = N − N1 of particles in phase 2.
The locus of points (T, P ) such that g1 = g2 is called the phase coexistence curve.

We now show that the equilibrium condition (7.10) leads to a differential equation for the slope
of the phase coexistence curve. Consider two points on the phase coexistence curve, for example,
point a at T, P and nearby point b at T + ∆T and P + ∆P (see Figure 7.1). The equilibrium
condition (7.10) implies that g1(T, P ) = g2(T, P ) and g1(T +∆T, P +∆P ) = g2(T +∆T, P +∆P ).
If we write g(T + ∆T, P + ∆P ) = g(T, P ) + ∆g, we have

∆g1 = ∆g2, (7.15)

or using (2.158)
− s1∆T + v1∆P = −s2∆T + v2∆P. (7.16)

Therefore,
∆P
∆T

=
s2 − s1

v2 − v1
=

∆s
∆v

. (Clausius-Clapeyron equation) (7.17)

The relation (7.17) is called the Clausius-Clapeyron equation. It relates the slope of the phase
coexistence curve at the point T, P to the entropy change ∆s per particle and the volume change
∆v per particle when the curve is crossed at this point. For N particles we have ∆S = N∆s and
∆V = N∆v, and hence (7.17) can be expressed as

dP

dT
=

∆S
∆V

. (7.18)

From the relation (2.200), we can write

T
∂S

∂V
=
∂E

∂V
+ P. (7.19)
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At the phase coexistence curve for a given T and P , we can write

T
S2 − S1

V2 − V1
=
E2 − E1

V2 − V1
+ P, (7.20)

or
T (S2 − S1) = (E2 − E1) + P (V2 − V1). (7.21)

Because the enthalpy H = U + PV , it follows that

L2→1 ≡ T (S2 − S1) = H2 −H1. (7.22)

The energy L required to melt a given amount of a solid is called the enthalpy of fusion.3 The
enthalpy of fusion is related to the difference in entropies of the liquid and the solid phase and is
given by

Lfusion = Hliquid −Hsolid = T (Sliquid − Ssolid), (7.23)

where T is the melting temperature at the given pressure. Similarly, the equilibrium of a vapor
and liquid leads to the enthalpy of vaporization

`vaporization = hvapor − hliquid. (7.24)

where h is the specific enthalpy. The enthalpy of sublimation associated with the equilibrium of
vapor and solid is given by

`sublimation = hvapor − hsolid. (7.25)

We say that if there is a discontinuity in the entropy and the volume at the transition, the
transition is discontinuous or first-order and L = ∆H = T∆S. Thus the Clausius-Clapeyron
equation can be expressed in the form

dP

dT
=

L

T∆V
=

`

T∆v
. (7.26)

7.2.3 Simple phase diagrams

A typical phase diagram for a simple substance is shown in Figure 7.2(a). The lines represent the
phase coexistence curves between the solid and liquid phases, the solid and vapor phases, and the
liquid and vapor phases. The condition g1 = g2 = g3 for the coexistence of all three phases leads
to a unique temperature and pressure that defines the triple point. This unique property of the
triple point makes the triple point of water a good choice for a readily reproducible temperature
reference point. If we move along the liquid-gas coexistence curve toward higher temperatures,
the two phases become more and more alike. At the critical point, the liquid-gas coexistence
curve ends, and the volume change ∆V between a given amount of liquid and gas has approached
zero. Beyond the critical point there is no distinction between a gas and a liquid, and there exists
only a dense fluid phase. Note that a system can cross the phase boundary from its solid phase

3The more familiar name is latent heat of fusion. As we discussed in Chapter 2, latent heat is an archaic term
and is a relic from the time it was thought that there were two kinds of heat: sensible heat, the kind you can feel,
and latent heat, the kind you cannot.
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directly to its vapor without passing through a liquid, a transformation known as sublimination.
An important commercial process that exploits this transformation is called freeze drying.

For most substances the slope of the solid-liquid coexistence curve is positive. The Clausius-
Clapeyron equation shows that this positive slope is due to the fact that most substances expand
on melting and therefore have ∆V > 0. Water is an important exception and contracts when it
melts. Hence, for water the slope of the melting curve is negative (see Figure 7.2)b)).

T

P

melting
curve

solid

gas

liquid
critical
point

triple
point

sublimation
curve

vapor pressure
curve

(a)

Figure 7.2: (a) Typical phase diagram of simple substances, for example, carbon dioxide. The
triple point of CO2 is at illustrates the more common forward slope of the melting point line.
Notice that the triple point of carbon dioxide is well above one atmosphere. Notice also that at
1 atm carbon dioxide can only be the solid or the gas. Liquid carbon dioxide does not exist at 1
atm. Dry ice (solid carbon dioxide) has a temperature of −78.5◦ at room pressure which is why
you can get a serious burn (actually frostbite) from holding it in your hands. (b) Phase diagram
of water which expands on freezing. [xx not done xx]

Example 7.1. Why is the triple-point temperature of water, Ttp = 273.16 K higher than the
ice-point temperature, Tice = 273.15K, especially given that at both temperatures ice and water
are in equilibrium?

Solution. The triple-point temperature T3 is the temperature at which water vapor, liquid water,
and ice are in equilibrium. At T = T3, the vapor pressure of water equals the sublimation pressure
of ice which is equal to P3 = 611 Pa. The ice point is defined as the temperature at which pure ice
and air-saturated liquid water are in equilibrium under a total pressure of 1 atm = 1.013× 105 Pa.
Hence, the triple-point temperature and the ice point temperature differ for two reasons – the total
pressure is different and the liquid phase is not pure water.

Let us find the equilibrium temperature of ice and pure water when the pressure is increased
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from the triple point to a pressure of 1 atm. From (7.26), we have for liquid-solid equilibrium

∆T =
T (vsolid − vliquid)

`fusion
∆P. (7.27)

Because the changes in T and P are very small, we can assume that all the terms in the coefficient
of ∆P are very small. Let Tice be the equilibrium temperature of ice and pure water. If we integrate
the left-hand side of (7.27) from T3 to Tice and the right side from P3 to atmospheric pressure P ,
we obtain

Tice − T3 =
T (vsolid − vliquid)

lfusion
(P − P3). (7.28)

To three significant figures, T = 273 K, P − P3 = 1.01 × 105 Pa, vsolid = 1.09 × 10−3 m3/kg,
vliquid = 1.00 × 10−3 m3/kg, and `fusion = 3.34 × 105 J/kg. If we substitute these values into
(7.28), we find Tice−T3 = −0.0075 K. That is, the ice point temperature of pure water is 0.0075 K
below the temperature of the triple point. Hence, the effect of the dissolved air is to lower the
temperature by 0.0023 K at which the liquid phase is in equilibrium with pure ice at atmospheric
pressure below the equilibrium temperature for pure water.

7.2.4 Pressure dependence of the melting point

We consider the equilibrium between ice and water as an example of the pressure dependence of
the melting point. The enthalpy of fusion of water at 0◦C is

`fusion = 3.35× 105 J/kg. (7.29)

The specific volumes in the solid and liquid phase are

vsolid = 1.09070× 10−3 m3/kg, and vliquid = 1.00013× 10−3 m3/kg, (7.30)

so that ∆v = vliquid − vsolid = −0.0906 × 10−3 m3/kg. If we substitutes these values of ` and ∆v
in (7.26), we find

dP

dT
= − 3.35× 105

273.2× 9.06× 10−5
= −1.35× 107 Pa/K. (7.31)

From (7.31) we see that an increase in pressure of 1.35 × 107 Pa or 133 atmospheres lowers the
melting point by 1◦C.

The lowering of the melting point of ice under pressure is responsible for the motion of glaciers.
The deeper parts of a glacier melt under the weight of ice on top allowing the bottom of a glacier
to flow. The bottom freezes again when the pressure decreases.

Some textbooks state that ice skaters are able to skate freely because the pressure of the ice
skates lowers the melting point of the ice and allows ice skaters to skate on a thin film of water
between the blade and the ice. As soon as the pressure is released, the water refreezes. From the
above example we see that if the ice is at −1◦C, then the pressure due to the skates must be 135
atmospheres for bulk melting to occur. However, even for extremely narrow skates and a large
person, the skates do not exert enough pressure to cause this phenomenon. As an example, we
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take the contact area of the blades to be 10−4 m2 and the mass of the skater to be 100 kg. Then
the pressure is given by

P =
F

A
=
mg

A
≈ 107 Pa ≈ 100 atm. (7.32)

Given that on many winter days, the temperature is lower than a fraction of a degree below
freezing, there must be a mechanism different than pressure-induced melting that is responsible for
ice skating. And how do we explain the slide of a hockey puck, which has a large surface area and
a small weight? The answer appears to be the existence of surface melting, that is, the existence
of a layer of liquid water on the surface of ice that exists independently of the pressure of an ice
skate (see the references).

7.2.5 Pressure dependence of the boiling point

Because ∆v is always positive for the transformation of liquid to gas, increasing the pressure on a
liquid always increases the boiling point. For water the enthalpy of vaporization is

`vaporization = 2.257× 106 J/kg. (7.33)

The specific volumes in the liquid and gas phase at T = 373.15 K and P = 1 atm are

vliquid = 1.043× 10−3 m3/kg and vgas = 1.673 m3/kg. (7.34)

Hence from (7.26) we have

dP

dT
=

2.257× 106

373.15× 1.672
= 3.62× 103 Pa/K. (7.35)

7.2.6 The vapor pressure curve

The Clausius-Clapeyron equation for the vapor pressure curve can be approximated by neglecting
the specific volume of the liquid in comparison to the gas, ∆v = vgas − vliquid ≈ vgas. From (7.34)
we see that for water at its normal boiling point, this approximation introduces an error of less than
0.1 per cent. If we assume that the vapor behaves like an ideal gas, we have that vgas = RT/P for
one mole of the gas. With these approximations, the Clausius-Clapeyron equation can be written
as

dP

P
= `

dT

RT 2
. (7.36)

If we also assume that ` is approximately temperature independent, we can integrate (7.36) to find

lnP (T ) = − `

RT
+ constant (7.37)

or
P (T ) ≈ P0e

−`/RT , (7.38)

where P0 is a constant.
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Example 7.2. In the vicinity of the triple point the liquid-vapor coexistence curve of liquid
ammonia can be represented by lnP = 24.38 − 3063/T , where the pressure is given in Pascals.
The vapor pressure of solid ammonia is lnP = 27.92 − 3754/T . What are the temperature and
pressure at the triple point? What are the enthalpies of sublimation and vaporization? What is
the enthalpy of fusion at the triple point?

Solution. At the triple point, Psolid = Pliquid or 24.38 − 3063/T = 27.92 − 3754/T . The solution
is T = 691/3.54 = 195.2 K. The corresponding pressure is 8.7 Pa. The relation (7.37), lnP =
−`/RT + constant, can be used to find the enthalpy of sublimation and vaporization of ammonia
at the triple point. We have `sublimation = 3754R = 3.12 × 104 J/mol and `vaporization = 3063R =
2.55× 104 J/mol. The enthalpy of melting satisfies the relation `sublimation = `vaporization + `fusion.
Hence, `fusion = (3.12− 2.55)× 104 = 5.74× 103 J/mol.

7.3 The van der Waals Equation

To expand our understanding of phase equilibrium we consider an explicit model. Within the
context of thermodynamics such a model takes the form of equations of state. Here we explore
some of the qualitative features of the van der Waals equations of state, which we repeat here for
convenience:

P =
NkT

V −Nb
− aN2

V 2
, (7.39)

E =
3
2
NkT − aN2

V
. (7.40)

As we have mentioned, the quantity b represents the effective volume of a given particle and the
term a(N/V )2 = aρ2 accounts for the attractive forces between particles. The parameters a and
b depend on the nature of the molecule. For small molecules such as N2 and H2O, a reasonable
value of b is about 6× 10−20 m3 ≈ (4 Å)3. For N2 a ≈ 3× 10−49 Jm3.

Figure 7.3 shows a series of isotherms (curves for P versus V for fixed T ) with temperature
increasing as you move up the figure. Notice that at low temperatures there is a local minimum
and a local maximum, but at high temperatures these local extrema disappear. This structure is
characteristic of a system which has two phases at low temperature, but only one phase at high
temperatures. The transition between the two phase region and the one phase region occurs at a
specific temperature and can be identified with the critical temperature, Tc. At this temperature
there is an inflection point at a specific value of the pressure and volume, which we call the critical
pressure Pc and critical volume Vc. At this inflection point the first and second derivatives of P
with respect to V vanish. Calculating the derivatives the critical values in terms of the parameters
a and b in the van der Waals model are found to be

Vc/N = 3b, (7.41)

Pc =
a

27b2
(7.42)

kTc =
8a
27b

(7.43)

Ec/N =
a

9b
. (7.44)
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Problem 7.1. Derive (7.41) through (7.44).

One of the features of this model is that it predicts the law of corresponding states, which
states that the equations of state of all fluids are identical if the equations of state are written in
terms of the ratio of each thermodynamic variable and its value at the critical point. This “law”
is only approximately true in reality, but it is exactly true in the van der Waals model. To see
this replace T , P , V and E in (7.39) and (7.40) with the reduced variables t = T/Tc, p = P/Pc,
v = V/Vc and e = E/Ec, and use (7.41)–(7.44). The results of these calculations are

p =
8t

3v − 1
− 3
v2
, (7.45)

e = 4t− 3
v
.. (7.46)

Note that in (7.45) and (7.46) there is no reference to the material parameters a and b, and thus
these equations are consistent with the law of corresponding states.

Problem 7.2. Derive (7.45) and (7.46).

not done

Figure 7.3: Isotherms for a van der Waals fluid.

How can we understand the different nature of the P − V diagram curves above and below
Tc. Above Tc there is a unique value of the volume for each value of pressure. This indicates
that a substance at constant temperature can pass from a gas to a liquid and vice versa without
passing through a phase transition where there would be a dramatic change in some thermodynamic
property such as the compressibility. The van der Waals equation (7.45) at fixed p and t is a cubic
equation in v. Above Tc two of the solutions are complex and thus unphysical, and there is only
one physically relevant value of the volume which you can read off from Fig. 7.3. Below Tc there
are three real valued solutions to the cubic, and thus a more sophisticated analysis is needed. What
happens experimentally? Imagine that we are below Tc and at a low pressure such that the system
is a gas. As we increase the pressure the volume will decrease, and then eventually droplets of
liquid will appear. If there is gravity present then the liquid will condense out of the gas and fall
to the bottom of the container. The liquid and gas will coexist in a closed container. This is called
two-phase coexistence. The volume of the gas and the volume of the liquid are two points on the
isotherm at the same pressure. How do we determine the pressure when the two phase coexistence
begins?
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Consider the isotherm for a temperature below Tc (t < 1) shown in Fig. 7.4. We want to find
the value of p1. To do this we consider the Gibb’s free energy. We know that when a system has
a choice between two different phases, it will be found in the phase with the lowest Gibb’s free
energy. For p < p1 this will be the gas phase and for p > p1 it will be a liquid. At p1 the Gibb’s
free energy for the gas and liquid phases will be equal. Thus, we start with a general expression
for the reduced Gibb’s free energy integrated along an isotherm between two pressures p1 and p2:

g(p2, t) = g(p1, t) +
∫ p2

p1

(
∂g

∂p

)
t

dp. (7.47)

Because (∂g∂p )t = v we have

g(p2, t) = g(p1, t) +
∫ p2

p1

vdp. (7.48)

At two phase coexistence the pressures p1 and p2 represent the pressures of the liquid and gas
phases, respectively. They must be equal so that the two phases are in mechanical equilibrium.
Also, the Gibb’s free energies g(p2, t) and g(p1, t) must be equal for diffusive equilibrium. Thus,
(7.48) becomes

0 =
∫ p2

p1

vdp. (7.49)

To understand (7.49) turn Fig. 7.4 90o counter-clockwise so that the pressure axis is horizontal.
Then the integral in (7.49) has a negative contribution from p1 to the minimum value of p, a larger
in magnitude positive contribution from the minimum p back to p1. These two contributions give
a positive value whose magnitude is the area of the bottom shaded region. Continuing the integral
along the isotherm, the contribution from p1 to the maximum value of p is positive, and the rest of
the integral to p2 = p1 has a negative value of larger magnitude. These last two contributions give
a negative value whose magnitude is the area of the top shaded region. The sum of the positive and
negative values must be equal to zero, and thus the two areas must be equal. This construction
is called the Maxwell equal area construction. These computations of the areas can be carried out
numerically.

not done

Figure 7.4: Maxwell equal area construction. The pressure P1 where the two phase coexistence
begins is determined so that the areas above and below the horizontal line in the figure are equal.

The Maxwell equal area construction is equivalent to integrating over v from v1 to v2 and
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subtracting the area under the dashed line in Fig. 7.4:∫ v2

v1

pdv − p1(v2 − v1) = 0. (7.50)

Replacing p by the expression in (7.39) we have∫ v2

v1

(
8t

3v − 1
− 3
v2

)
dv − p1(v2 − v1) = 0. (7.51)

Carrying out the integral we have

8t
3

ln (3v2 − 1) +
3
v2
− 8t

3
ln (3v1 − 1)− 3

v1
− p1(v2 − v1) = 0, (7.52)

or rearranging:

− 8t
3

ln (3v1 − 1)− 3
v1

+ p1v1 = −8t
3

ln (3v2 − 1)− 3
v2

+ p2v2, (7.53)

where we have replaced p1 by p2 on the right-hand side so that all quantities on the right-hand
side are labeled by point 2 and all on the right by point 1. The expression on the left-hand side
is the Gibbs free energy of the liquid up to a function of temperature, and the expression on the
right-hand side is the Gibbs free energy of the gas up to the same function of temperature. The
Gibb’s free energy is a function of temperature and pressure. To convert the right or left-hand side
of (7.53) to the proper functional form, we would need to solve (7.39) for v, however the result
would be three possible solutions and a very messy formula that is not worth writing down. Instead
we show plots of v versus p and g versus p for two temperatures in Fig. 7.5. Note that for t < 1
there is an interval for p where there are three values of v and g. At low pressure the system is a
gas, as the pressure increases the volume decreases until it reaches point A on the graph of g or
the last stable gas point Ag on the graph of v. At this point the system can do one of two things.
It could remain a gas until point B. This corresponds to a supercooled gas, which is a metastable
state. Such a state does not have the lowest free energy, but it is not unstable. The system can
not be in the region from point B to point C because this is unstable. As can be seen from Fig. 7.5
in this region ∂v

∂p > 0, which would mean the system would expand with an increase in pressure,
which is clearly unphysical. Thus, an increase in pressure at point B would cause the system to
immediately jump out of the metastable supercooled state into the stable liquid state. A similar
process occurs as the pressure is lowered from a high pressure liquid. At point Al the system could
continue into the metastable superheated liquid until point C, at which point the system would
jump up to the stable gas phase at higher volume. In actual experiments special precautions are
needed to achieve the metastable states. Usually, one needs very pure substances and the pressure
changes must be made very slowly. For temperatures above the critical temperature, the system
can continuously change from a gas to a liquid with no phase transition as shown by the plots in
Fig. 7.5 for t = 1.1. This is accomplished by increasing the pressure while maintaining a constant
temperature.

Because G = F + pV , we have that the Helmholtz free energy in reduced units f(v, t) is:

f(v, t) = c(T )−NkT (ln (V −Nb)− aN2

V
, (7.54)
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not done

Figure 7.5: (a) Reduced volume and (b) reduced Gibbs free energy for two different temperatures
of the van der Waals model.

where c(T ) is a function of temperature, which we can determine by using the fact that e = ∂βf/∂β,
where for the van der Waals model e is given by (7.46). We have

βF (V, T ) = βf(T )−N ln (V −Nb)− β aN
2

V
, , (7.55)

and thus

E =
∂βF (V, T )

∂β
=
∂βf(T )
∂β

− aN2

V
=

3
2
NkT − aN2

V
, , (7.56)

or
∂βf(T )
∂β

=
3
2
NkT, . (7.57)

Integrating we obtain up to a constant, which we can set to zero:

f(T ) =
3
2
NkT ln kT . (7.58)

Equations (7.54) and (7.58) lead to our final result for the Helmholtz free energy:

F (V, T ) =
3
2
NkT ln kT −NkT ln (V −Nb)− aN2

V
. (7.59)

which is at the end of the phase transition curve in a P -T diagram as shown in Fig. 7.2.

7.4 Mixtures and Chemical Reactions

So far we have considered systems with a single component, that is, all the particles were of the
same species. What happens if we have a mixture of two or more types of particles? Consider a
mixture of two species which do not chemically interact such as a binary alloy or binary fluid with
a fixed number of particles N . Assume that the fraction of species A is xA = NA/N and of B is
xB = NB/N = 1− xA.

Figure 7.6 shows the chemical potential computed using (7.3)in a Monte Carlo simulation of a
binary lattice gas. Notice that the chemical potential of A decreases as the fraction of A particles
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not done

Figure 7.6: Chemical potential of A and B particles from a Monte Carlo simualtion on a 32× 32
lattice with 800 particles such that neighboring like particles have an inter-particle energy of −1 in
reduced units and neighboring unlike particles have an energy of +1. The temperature in reduced
units is T = 4.

increases. This makes physical sense because as you increase the fraction of A particles you are more
likely to encounter a neighboring A particle when inserting another A particle, which contributes
negative energy. Similar reasoning explains why the chemical potential of the B particles increases
as the fraction of A particles increases. Note at xA = 0.5 the two chemical potentials are identical
which must be the case because of the symmetry between A and B particles.

7.4.1 Chemical Reactions

Consider the a chemical reaction such as the production of water from hydrogen and oxygen:

2H2 +O2 
 2H2O, (7.60)

where the symbol 
 indicates that the reaction can go either way depending on the circumstances.
Equation (7.60) says that it takes two molecules of hydrogen and one molecule of oxygen to make
two molecules of water. We rewrite (7.60) in the following general notation

− ν1N1 − ν2N2 
 ν3N3, (7.61)

where N1 is the number of hydrogen molecules, N2 the number of oxygen molecules and N3 the
number of water molecules. The stoichiometric coefficients are ν1 = −2, ν2 = −1 and ν3 = 2. The
negative sign for ν1 and ν2 means that these molecules are on the left-hand side of the equation.
Another way of saying this is that νi is positive for products and negative for reactants.

Now imagine we place some hydrogen, oxygen and water in a container and start the reaction,
perhaps by supplying a spark. Think of the Hindenburg disaster. Some of the hydrogen and oxygen
will be converted to water, such that the number of hydrogen molecules reduced will be twice that
of oxygen, and the number of water molecules produced will be the same as the reduction of
hydrogen molecules. Using our notation we have:

− ν1dN1 − ν2dN2 = ν3dN3. (7.62)
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We can also write:
dN1

ν1
=
dN2

ν2
=
dN3

ν3
≡ dξ, (7.63)

where ξ is called the extent of the reaction, and we now see that the use of positive and negative
values for the νi leads to all terms in (7.63) having the same form. If we define ξ = 0 at the initial
time, then the solutions to the equations in (7.63) are

Ni(ξ) = Ni(0) + νiξ. (7.64)

If we know how much of each substance we have initially and we measure how much we have of
one substance at some later time, we can use (7.64) to determine ξ and then determine how much
we have of all the other substances.

We can now determine the equilibrium conditions. We begin with (2.158) generalized to many
components:

dG = −SdT + V dP +
∑
i

µidNi. (7.65)

Using (7.63) we have
dG = −SdT + V dP + dξ

∑
i

µiνi. (7.66)

At constant pressure and temperature and using the equilibrium condition dG = 0, we have∑
i

µiνi = 0. (7.67)

If the system is not in chemical equilibrium then the sum in (7.67) will not vanish. If the sum
is negative then the reaction proceeds spontaneously toward the products(those molecules on the
right hand side of the reaction equation) and if it is positive the reaction proceeds towards the
reactants.

At this point we need to know something about how the chemical potential of a mixture of
chemicals varies with the concentrations of the materials. For an ideal solution this variation is
given by

µi(T, p,Ni) = µ0
i (T, p) + kT lnni, (7.68)

where µ0
i (T, p) is the chemical potential for a pure system made up of molecules labeled by the

index i, and ni is the fraction of molecules that are of the ith species. Note that the chemical
potential only depends on the fraction of the ith species, and not on the individual fractions of the
other molecules. This is in general not true. Ideal behavior occurs when the compounds that are
mixed are chemically similar, in dilute solutions that do not involve electrolytes or in mixtures of
gases at low pressure or high temperature. Combining (7.67) and (7.68) we obtain the law of mass
action

∆G0(T, p) ≡
∑
i

µ0
i (T, p)νi = −kT lnK, (7.69)

where the equilibrium constant K is defined by

K ≡
∏
i

(ni)νi . (7.70)
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For example, assuming ideal behavior , K for our example reaction would be

K ≡ (nH2O)2

(nH2)2nO2

. (7.71)

If the mixture of compounds is not ideal then the ni are replaced by compound activities ai, which
in general must be measured for each reaction.

What do we learn from this discussion? First, if K is much less than unity then at equilibrium
the products will be present in correspondingly small amounts. One needs to know the chemical
potentials µ0

i (T, p) and even more empirical data for non-ideal reactions to determine the equi-
librium constant, and thus predict equilibrium concentrations. Chemists accumulate data on the
Gibbs free energy of formation of various molecular species under standard conditions from their
elemental constituents. One can use this Gibbs free energy data instead of the chemical potentials,
because these two sets of quantities differ only by the same constant reference energy.

How does the equilibrium constant depend on temperature? To determine this we need to
find out how the chemical potentials of the pure substances change with temperature. Begin with
the fact that the chemical potential is the Gibbs free energy per particle, which is related to the
enthalpy by

g = µ = h− Ts, (7.72)

where the lower case quantities indicate intensive quantities. From the Gibbs-Duhem relation
(2.162) we have that −s = (∂µ/∂T )p, and thus (7.72) becomes

µ = h+ T

(
∂µ

∂T

)
p

, (7.73)

or rearranging and dividing by T 2 gives

− µ

T 2
+

1
T

(
∂µ

∂T

)
p

= − h

T 2
, (7.74)

which can be re-written as
∂

∂T

(
µ

T

)
p

= − h

T 2
, (7.75)

You can check (7.75) by taking the derivatives to obtain (7.74).
Dividing the law of mass action (7.69) by T , taking the temperature derivative and using

(7.75) gives: (
∂ lnK
∂T

)
p,{ni}

=
1
kT 2

∑
i

νih
0
i , (7.76)

where h0
i is the specific enthalpy of the pure ith substance. Similar calculations lead to(

∂ lnK
∂p

)
T,{ni}

= − 1
kT

∑
i

νiv
0
i , (7.77)

which gives us the change in K with pressure in terms of the specific volumes v0
i . If one has

sufficient empirical data for the enthalpies and volumes, one can determine K at any temperature
and pressure.
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Note that from (7.76) that if the right-hand side is positive we call this an endothermic
reaction, which means that the reaction consumes thermal energy to produce the products. If we
add energy to the system by heating, (7.76) indicates that lnK and thus K will increase, which
in turn will consume at least some of the added energy, which in turn will cool the system down.
Similar reasoning says that if the reaction is exothermic (gives off energy when producing products)
then increasing the temperature will decrease the amount of the products and again energy will
be absorbed. Cooling the system will result in energy being produced by the reactions so as to
oppose the cooling. In all cases the system’s behavior after a change in temperature is to oppose
the change. Analogous behavior occurs for pressure changes. If we increase the pressure and the
right-hand side of (7.77) is positive, this means the reactants have more volume than the products
(recall that νi is negative for reactants and positive for products), and K increases. An increase
in K leads to more products, which in turn lowers the volume thus decreasing the pressure. In
all cases the system opposes changes. This general rule is called Le Chatelier’s principle. It works
just like Lenz’s Law in magnetism.

Problem 7.3. Consider the exothermic reaction to produce ammonia:

N2 + 3H2 
 2NH3. (7.78)

To speed this reaction a chemist might increase the temperature. Use Le Chatelier’s principle to
determine whether this will tend to increase or decrease the amount of ammonia

Problem 7.4. Consider the same exothermic reaction in (7.78) and assume that the reactants
and products are gases. Use Le Chatelier’s principle to determine whether increasing the pressure
will produce more or less ammonia.

7.5 Vocabulary

Maxwell relations
free expansion, Joule-Thomson process
phase coexistence curve, phase diagram
triple point, critical point
Clausius-Clapeyron equation
enthalpy of fusion, vaporization, and sublimation

Additional Problems

Problems page
7.1 and 7.2 342
7.3 and 7.4 349

Table 7.1: Listing of inline problems.
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Problem 7.5. Show that the three enthalpy (differences) are not independent, but are related by

`fusion + `vaporization = `sublimation. (7.79)

Interpret this relation in physical terms.

Problem 7.6. Show that

+
(∂CP
∂P

)
T

= −T
(∂2V

∂T 2

)
P
, (7.80)

and (∂CV
∂V

)
T

= T
(∂2P

∂T 2

)
V
. (7.81)

Problem 7.7. Show that
KT

KS
=
CP
CV

, (7.82)

where

KT = − 1
V

(∂V
∂P

)
T

(7.83a)

KS = − 1
V

(∂V
∂P

)
S
. (7.83b)

KS is the adiabatic compressibility. Use (7.83b) and (2.209) to obtain the relation

KT −KS =
TV

CP
α2. (7.84)

Problem 7.8. The inversion temperature for the Joule-Thomson effect is determined by the
relation (∂T/∂V )P = T/V (see (??))). In Section ?? we showed that for low densities and high
temperatures (low pressures) the inversion temperature is given by kTinv = 2a/b. Show that at
high pressures, Tinv is given by

kTinv =
2a
9b

(2±
√

1− 3b2P/a)2. (7.85)

Show that as P → 0, kTinv = 2a/b. For P < a/3b2, there are two inversion points between which
the derivative (∂T/∂P )H is positive. Outside this temperature interval the derivative is negative.
For P > a/3b2 there are no inversion points and (∂T/∂P )H < 0 is negative everywhere. Find the
pressure dependence of the inversion temperature for the Joule-Thomson effect.

Problem 7.9. Use the result (7.35) to estimate the boiling temperature of water at the height of
the highest mountain in your geographical region.

Problem 7.10. A particular liquid boils at 127◦C at a pressure of 1.06× 105 Pa. Its enthalpy of
vaporization is 5000 J/mol. At what temperature will it boil if the pressure is raised to 1.08×105 Pa?

Problem 7.11. A particular liquid boils at a temperature of 105◦C at the bottom of a hill and at
95◦C at the top of the hill. The enthalpy of vaporization is 1000 J/mol. What is the approximate
height of the hill?
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Suggestions for Further Reading

Daan Frenkel and Berend Smit, Understanding Molecular Simulation, Academic Press, San Diego
(1996). This monograph discusses the Widom insertion method as well as many other useful
algorithms.

Horia Metiu, Physical Chemistry: Thermodynamics, Taylor & Francis (2006). This text has a
very clear and easy to follow discussion of the thermodynamics of chemical reactions, and
provides many examples of how to explicitly use chemical data and the results presented in
this chapter to draw further conclusions.

David Lind and Scott P. Sanders, The Physics of Skiing: Skiing at the Triple Point, Springer
(2004). See Technote 1 for a discussion of the thermodynamics of phase changes.

Jan Tobochnik, Harvey Gould, and Jonathan Machta, “Understanding temperature and chemical
potential using computer simulations,” Am. J. Phys. 73 (8), 708–716 (2005).

James D. White, “The role of surface melting in ice skating,” Phys. Teacher 30, 495 (1992).
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