Solutions to HW4 Quantum Physics II, Fall 2012

September 27, 2012

 Q_1 :

The z-component of the spin of an electron is measure and the value $\frac{\hbar}{2}$ is found. Immediately afterwards, the spin along a direction making an angle θ with the z-axis is measured. What are the possible outcomes of this second measurement and with which probabilities they arise?

Solution:

As we know, the z-component of spin $S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Its eigenstate and corresponding eigenvalue is $\frac{\hbar}{2}$: $|\uparrow\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$, $-\frac{\hbar}{2}$: $|\downarrow\rangle = \begin{pmatrix} 0\\ -1 \end{pmatrix}$ Since $\frac{\hbar}{2}$ was measured, the state of that moment should be $|\uparrow\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$

For the second measurement, it's easier just to use the eigenstates of the operator S_{θ} which corresponds to the spin measured along the new axis. These eigenstates were derived in class and turn out to be $\frac{\hbar}{2}$: $|\theta, \uparrow\rangle = \begin{pmatrix} \cos\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2} \end{pmatrix}$; $-\frac{\hbar}{2}$: $|\theta, \downarrow\rangle = \begin{pmatrix} e^{-i\phi}\sin\frac{\theta}{2} \\ -\cos\frac{\theta}{2} \end{pmatrix}$, ϕ is the angle formed by the projection of new axis and x-axis in XOY plane.

Now we express the state in basis of the eigenstates of the operator S_{θ} . $\begin{pmatrix} 1\\ 0 \end{pmatrix} = \cos\frac{\theta}{2} \begin{pmatrix} \cos\frac{\theta}{2}\\ e^{i\phi}\sin\frac{\theta}{2} \end{pmatrix} + e^{i\phi}\sin\frac{\theta}{2} \begin{pmatrix} e^{-i\phi}\sin\frac{\theta}{2}\\ -\cos\frac{\theta}{2} \end{pmatrix}$

We see the probability for measuring $P(\frac{\hbar}{2}) = |\cos(\frac{\theta}{2})|^2$, $P(-\frac{\hbar}{2}) = |\sin(\frac{\theta}{2})|^2$ For sure, the total probabilities for this measurement is 1.

Question B(Griffths 4.50):

Suppose two spin-1/2 particles are known to be in the singlet configuration (Equation 4.178). Let $S_a^{(1)}$ be the component of the spin angular momentum of particle a number 1 in the direction defined by the unit vector \hat{a} . Similarly, let $S_b^{(2)}$ be the component of the (2)'s angular momentum in the direction \hat{b} . Show that $\langle S_a^{(1)}S_b^{(2)} \rangle = -\frac{\hbar^2}{4}\cos\theta$, where θ is the angle between \hat{a} and \hat{b} .

Solution:

From Equation 4.178, the singlet configuration is $|00\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle |\downarrow\rangle - |\downarrow\rangle |\uparrow\rangle)$ Then we choose axes so that \hat{a} lies along the z axis and \hat{b} is in the xz plane. $S_a^{(1)} = S_z^{(1)}, S_b^{(2)} = \cos\theta S_z^{(2)} + \sin\theta S_x^{(2)}$

$$\begin{split} S_{a}^{(1)}S_{b}^{(2)}|00\rangle &= \frac{1}{\sqrt{2}}[S_{z}^{(1)}(\cos\theta S_{z}^{(2)} + \sin\theta S_{x}^{(2)})](\uparrow\downarrow - \downarrow\uparrow) \\ &= \frac{1}{\sqrt{2}}[(S_{z}\uparrow)(\cos\theta S_{z}\downarrow) - (S_{z}\downarrow)(\cos\theta S_{z}\uparrow + \sin\theta S_{x}\uparrow)] \\ &= \frac{1}{\sqrt{2}}(\frac{\hbar}{2}\uparrow)[\cos\theta(-\frac{\hbar}{2}\downarrow) + \sin\theta(\frac{\hbar}{2}\uparrow)] - (-\frac{\hbar}{2}\downarrow)[\cos\theta(-\frac{\hbar}{2}\uparrow) + \sin\theta(\frac{\hbar}{2}\downarrow)](usingEq.4.145) = \frac{\hbar^{2}}{4}[\cos\theta\frac{1}{\sqrt{2}}(-\uparrow\downarrow + \downarrow\uparrow) + \sin\theta\frac{1}{\sqrt{2}}(\uparrow\uparrow\uparrow + \downarrow\downarrow)] \\ &= \frac{\hbar^{2}}{4}[-\cos\theta|00\rangle + \sin\theta\frac{1}{\sqrt{2}}(|11\rangle + |1-1\rangle)] \\ &\text{So,} < S_{a}^{(1)}S_{b}^{(2)} >= \langle 00|S_{a}^{(1)}S_{b}^{(2)}|00\rangle \\ &= \frac{\hbar^{2}}{4}\langle 00|[-\cos\theta|00\rangle + \sin\theta\frac{1}{\sqrt{2}}(|11\rangle + |1-1\rangle)] \\ &= -\frac{\hbar^{2}}{4}\cos\theta\langle 00||00\rangle \\ &= -\frac{\hbar^{2}}{4}\cos\theta \end{split}$$