An introductory lecture on quantum computation

Zohreh Davoudi May 2019

PHys 402
In this lecture, weill learn about: I Qubit (s)
single and multi. quit gates
\square Quantum alganithms
(Deutsch's and Deutsch-Jozsa's)
\square Qubit: A quit is one unit of storage in quantum computing. Despite a classical bit that can take the values of either or 1 , a quit can in principle store infinite amount of information: A quit is a quantum State: a superposition of two states say 10) and (1) :

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

where α and β are any complex number. Since the wavefunction is normalized, the number of independent real paremeters to parametrize $|\gamma\rangle$ is 3 . Also since the phase of the state doesnt matter, two real numbers
do the job. A nice parenctiviation is:

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle
$$

which gives the state a geometric representations. All vectors with unit length ending up on the sphere in the night can correspond to one of x
 the possible values of 14 y . This is called the B6ck sphere representation of a quit. Later me'll see how a gate operates on quit and can visualize it in terms of an operation on the Bloch vector. Infinite number of paints an Blah sphene
\rightarrow Infinite amount of ciformation is a quit can we access this infinite information? unfortunately nat. Measuring the quit leaves os in either 10) or 117. So the outcome looks like if quit was a classical bit. Need a lat of meascnements
to determine α, β, which are probabilities to be in state (0) or 11), respectively. The power of quantum computing is to keep the hinge amount of information in state, manipulate it strongly in parallel with other quits, and only read off informmatron when massive parallel computation is done and stared in the final state.
There are two possibilities:

- multiple quits: The state vector is a direct product of the state of each quit. For twa quits:

$$
|\psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma(10\rangle+\delta|11\rangle[\equiv \alpha|0\rangle+\beta|1\rangle+\gamma|2\rangle+\delta|3\rangle]
$$

with $|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}+|\delta|^{2}=1$. If we make a measurement on the second quit, we are going to get with a probuhlity of $|\alpha|^{2}+|\gamma|^{2}$ and $|1\rangle$ with prababling of $|\beta|^{2}+|\delta|^{2}$. Ending up in $\left|\psi^{\prime}\right|$, $\alpha|00\rangle+\gamma|10\rangle$ Ending up in $\left|\psi^{\prime \prime}\right\rangle \alpha \beta|01\rangle+\delta|11\rangle$
Gates: operations on state are done through gates. A gate is a unitary transformation - any unitary tron:!

- Single-qubit gates: In classical computing, NOT is the only nontrivial single-bit gate:

$$
0 \rightarrow 1,1 \rightarrow 0
$$

In quantum computing, there are infinite son-triv. cal gates since there are infinite 2×2 unitary
transformation. To write down its most general form, we take 4 real parameters and find $u_{1}, v_{2}, v_{3}, v_{4}$ Such that: $u^{+} u=1$, with $u=\left(\begin{array}{ll}v_{1} & v_{2} \\ v_{3} & v_{4}\end{array}\right)$.

$$
\left\{\begin{array}{l}
u_{1}^{+} u_{1}+u_{3}^{+} u_{3}=1 \\
v_{1}^{+} u_{2}+u_{3}^{+} u_{4}=0 \\
u_{2}^{+} u_{1}+v_{4}^{+} u_{3}=0 \\
u_{2}^{+} v_{2}+u_{4}^{+} v_{4}=1
\end{array} \Rightarrow u_{1}, u_{4} \sim \cos r / 2, u_{2} \prime u_{3} \sim \sin \frac{1}{2}\right.
$$

Then besides an overall phase, $e^{i \alpha}$, there remains two more independent phase for each to five subject to conditions above. These could be taken as $\mathrm{\beta} / 2^{ \pm} / \mathrm{z}$:

$$
\begin{aligned}
U & =e^{i \alpha}\left(\begin{array}{cc}
e^{-i(\beta / 2+\delta / 2)} & \cos \gamma / 2 \\
e^{i(-\beta / 2+\delta / 2)} & e^{i(\beta} \gamma / 2 \\
\left.e^{i(-\beta / 2+\delta / 2)} \sin \gamma / 2\right) & e^{i(\beta / 2+\delta / 2)} \\
\cos \gamma / 2
\end{array}\right) \\
& =e^{i \alpha}\left(\begin{array}{cc}
e^{-i \beta / 2} & 0 \\
0 & e^{i \beta / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \gamma / 2 & \sin \gamma / 2 \\
\sin \gamma / 2 & \cos \gamma / 2
\end{array}\right)\left(\begin{array}{cc}
e^{-i \delta / 2} & 0 \\
0 & e^{i \delta / 2}
\end{array}\right) \\
& =e^{i \alpha} R_{z}(\beta) R_{y}(\gamma) R_{z}(\delta)
\end{aligned}
$$

So any unitary transformation on ane quit can be built out of rotations about y and x axis generated by
the corresponding pauli matrices, y and z, and an overall phase-So the elementry 1 -quit gates are: $\left\{\begin{array}{l}\left.X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)[X|\psi\rangle=X(\alpha \mid 0)+\beta|1\rangle)=\beta|0\rangle+\alpha|1\rangle\right] \\ Y=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right) \\ Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\end{array}\right.$
An additional important 1 -quit gate is the Hadamand gate, acting as: $\left\{\begin{array}{l}H \mid 0)=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), 6 \text { has the } \\ H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \text { - } B-\equiv\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right): \text { flo }\end{array}\right.$ mating form: $H=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right)$. Also have: $\left\{\begin{array}{l}-B-\equiv\left(\begin{array}{ll}1 & i\end{array}\right) \cdot \text { gate } \\ -T-\left(\begin{array}{l}1 \\ 0 \\ 0\end{array} e^{i \pi / 4} / 4\right): \pi / 8 \\ \text { gate }\end{array}\right.$ Exercise: what does H do to the Bloch Sphere? $\left[\begin{array}{r}\text { Answer: Rotaing it by } 90^{\circ} \text { around the } \hat{y} \text { axis } \\ \text { and then by } 180^{\circ} \text { around the } \hat{z} \text { axis:. }\end{array}\right.$ -multiple quit gates: It can be shown that wish a few single quit gates and andy 1 two-qubit gate, every unitary transform acting on n-qubit can be constructed. This important
two-qubit gate is a controled-NOT or CNOT gate, acting as: $\left\{\begin{array}{l}\hat{\operatorname{CNOT}}|00\rangle=|00\rangle \text {. In matrix } \\ \hat{N O T}|01\rangle=|01\rangle \\ \hat{\operatorname{NOT}||0\rangle}|=| 11\rangle \\ \operatorname{CNOT}|11\rangle=|10\rangle \\ \text { Control quit }\end{array}\right.$
form: CNOT $=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$

Target quit sum moduli
The most important three-quhit gate is called

Exercise: Try to implement a Toffoh action by using only 1,2 -qubect gater. This is an example of how n-quit gates with $n>2$ can be constructed using the universal set of gates.

Exercise: Is there a aniversal cloning aperation that can copy the state of any quit?

$$
v_{\text {copy }}(|\psi\rangle \otimes|s\rangle)=|\psi\rangle \otimes|\psi\rangle \text { for all }|\psi\rangle \text { ? }
$$

Target Ancillary
transformation State state
The answer is no unless $|\psi\rangle||\psi|$ are orthogonal. This is called no-doring theorem.]
one last point to beep in mind is that all quantum operations via gates are reversible as u^{-1} is also a unitory transformations so the effect of U can be neversed by applying V^{-1} subsequently. This is nat true for some of the dassical logical gates.

Quantum algorithms:
let's look at a few simple algonithons that demonstrate the potential power of quantum computation through quantum parallelism.

- First an example to demonestrate where parallelism come from in a grantum computian:
Consider a simple function $f(x)$ that $\operatorname{maps}\{0,1\}$ to $\{0,1\}$. Consider a archt made of $\underline{2}$ quits that
implements of through a unitary operation $v_{f}(x)$ as shown:

Now with the following initial state: $(n\rangle)=10\rangle \otimes|0\rangle$ and operations shawn =

where guin the propenty of $\left.u_{f}: \mid \tilde{\psi}\right)=\frac{(0)|f(0)\rangle+|1\rangle f f(1)\rangle}{\sqrt{2}}$ so by only ane evaluation of u^{\prime} ' bath values of $f(x)$. are incoded in the final wavefunction! However, this doesint mean we can access $f(0)$ and $f(1)$ at the same time! Once we make a measurement on the second quit, we either get 10) or 117!
Such parallelism can be still useful to gain global information about the function with only 1 evoluation and 1 measwement. This is Deutch's algonithon.

- Dutch's algorithm:

Find the simplest quantum circuit that evaluates
$f(0)+f(1)$ by only 1 evaluation of the corresponding unitary transformation of function f, where f is a simple function mapping $\{0,1\}$ to $\{0,1\}$. The circuit that implements this task is the following:
 where u_{f} is some unitary imphmentaction that implements $x, y \rightarrow x, y \oplus f(x)$

Example: Find the unitary transformation corresponding to $x, y \rightarrow x, y \oplus f(x)$ with $f(x)=x,\{0,1\} \rightarrow\{0,1\}$. Since the transformation makes:

The corresponding u_{f} is : $u_{f}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$ which is a CNOT gate!

Now let's see what this circuit actually does.

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle=|01\rangle \\
& \left|\psi_{1}\right\rangle=H^{(1)}|0\rangle H^{(2)}|1\rangle=\left[\frac{|0\rangle+11\rangle}{\sqrt{2}}\right]\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \\
& \left\lvert\, \psi_{2}=u_{f}\left(\psi_{1}\right\rangle=\left\{\begin{array}{l}
\pm\left[\frac{|0\rangle++1\rangle}{\sqrt{2}}\right]\left[\frac{|0\rangle-11\rangle}{\sqrt{2}}\right], f(0)=f(1) \\
\pm\left[\frac{|0\rangle-11\rangle}{\sqrt{2}}\right]\left[\frac{|0\rangle-11\rangle}{\sqrt{2}}\right], f(0) \neq f(1)
\end{array}\right.\right.
\end{aligned}
$$

Nate that: $\left\{\begin{array}{l}U_{f}|x\rangle|0\rangle=|x\rangle|f(x)\rangle=|x\rangle|0\rangle \text { or }|x\rangle|1\rangle \\ \left.u_{f}|x\rangle|1\rangle=|x\rangle| | \oplus f(x)\right\rangle=|x\rangle|1\rangle \text { or }|x\rangle|0\rangle\end{array}\right.$ So the action of u_{f} on $|x\rangle H^{(2)}|1\rangle$ is:

$$
u_{f}(x)\left[\frac{(0\rangle-|1\rangle}{\sqrt{2}}\right]=(-1)^{f(x)}|x\rangle\left[\frac{|0\rangle-11\rangle}{\sqrt{2}}\right]
$$

And therefore of $f(0)=f(1)$, u_{f} acting on $\left|\psi_{1}\right\rangle$ does nat change the relative sign between (a). and 113 in the first quit, and it does so if $f(0) \neq f(1)$, hence relation above for $u\left|\mathcal{T}_{1}\right\rangle$.

$$
\left.\left|\left.\right|_{3}\right\rangle=H^{(1)} \cup_{f} \mid \psi_{1}\right)= \begin{cases} \pm|0\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right], f(0)=f(1) \\ \pm|1\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right], f(0) \neq f(1)\end{cases}
$$

Now it is abviaus. that by measuring only once the first quit, we read off the value
of $f(0) \oplus f(1)$ as if $\left\{\begin{array}{l}f(0)=f(1), f(0) \oplus f(1)=0 \text { ! Nate } \\ f(0) \neq f(1), f(0) \oplus f(1)=1\end{array}\right.$
that classically, we needed two operations that evaluate the value of f at each a, 1 separately, but quantum mechanically, only one operation of gate if was required (well could argue that the state prep. and meas. (Itadamand gates) should be considered as the cost of the operations but the whole paint of this simple example is that if $f(x)$ was truly complicated such that the cost of its evaluation surpasses that of state prep. and meas., then the quarturn algorithm wouldine given some speed up-Still in that case, it might be that a complicated of require many simple unitary operations and in the end one doesn't
gain anything. These ane all legitimate concerns. In fact, it is known that quantum number factoring algorithm by p. shore is the only quantum algorithm in market with true exponential speed up 6 mpared with classical algonthms.

- The Deutsch-jozsa algorithm

This is another algorithm related to Deutsch's algorthin that we talk about last tine that signifies the quantum parallelism.
Consider Alice in London and Bob in DC. Alice mails in a letter a number from 0 to $2^{n}-1$. Bob take the number he recieves from Alice, evaluates the function $f(x),\left\{0, \ldots, 2^{n-1}\right\} \rightarrow\{0,1\}$ at that x value and mails back the result to Alice. Bob only uses one of there functions:

Find a quantum circuit that allows Alice to infer whether f is const. ar balanced with only ane Communication with Bob!!

Let's see what is possible classically. Here Alice needs to send at least $2^{n} / 2+1$ distinct x to Bub to say with certainty if f is constant ar balance. For example she can get $2^{n} / 2$ zeros before getting 1 proving that f was nat constant after all (the worst lase scenario). Qurtum mechanically such information can be inferred by only one apenation through the fallowing circuit:

Let's see what these gates do on the initial State:

$$
\begin{aligned}
& \left.\left|\psi_{0}\right\rangle=\mid 0\right)^{\otimes n}|1\rangle \\
& \left|\psi_{1}\right\rangle=H^{\otimes n}\left|\psi_{0}^{n}\right\rangle H|1\rangle=\sum_{x=0}^{2^{n}-1} \frac{|x\rangle}{\sqrt{2^{n}}}\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]
\end{aligned}
$$

Nate that: $H|0\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}$

$$
\begin{gathered}
H(0) H|0\rangle=\frac{|0\rangle|0\rangle+|0\rangle|1\rangle+|1\rangle|0\rangle+|1\rangle|1\rangle}{(\sqrt{2})^{2}}
\end{gathered}
$$

So $\mathrm{H}^{\text {On }}$ makes an equal superposition of all the basis vector of an n quit system when acted

$$
\begin{aligned}
& \text { an state }|0\rangle^{\otimes n}=H^{\otimes n}|0\rangle^{\otimes n}=\sum_{x=0}^{2 n-1} \frac{|x\rangle}{\sqrt{2^{n}}} \cdot \\
& \left|\psi_{2}\right\rangle=U^{n}\left|\psi_{1}\right\rangle=\sum_{x=0}^{2^{n-1}} \frac{(-1)^{(f(x)}|x\rangle}{\sqrt{2^{n}}}\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \\
& \left|\psi_{3}\right\rangle=H^{(1 n}\left|\psi_{2}\right\rangle=\sum_{x, x} \frac{(-1)^{x \cdot 2}+f(x)}{2^{n}}|x\rangle\left[\frac{|0\rangle-|1\rangle\rangle}{\sqrt{2}}\right]
\end{aligned}
$$

This comes from the following relation:

$$
\left.H^{\otimes n} \mid x\right) \equiv H^{\otimes\left|x_{1} x_{2} \cdots x_{n}\right\rangle}=\sum_{\mathbb{2}} \frac{(-1)^{3 x_{1}+\cdots+z_{n} x_{n}}}{\sqrt{2^{n}}}\left|z_{1} z_{2} \cdots z_{n}\right\rangle
$$

Binary natation: $x_{i}=0$ or 1
which is easy to verify by induction. Nate that the natation we have used $x \cdot x$ means the incr produt of the two vector in their binary representation. $\left|\psi_{3}\right|$ is a really interesting state. At this point Alice performs a measurement to find out what the state of her n-qubit system is. The cool thing is that if she find her quits to be in $\mid 00 \cdots 0) \equiv|0\rangle$ state, shell know Bob has used a constant function and if she measures anything but $100 . . .0 \geqslant$ shell know Bob has used a balanced function!! The reason is that according to $1 \psi_{3}$, form the probability anylitude for Alicels quits to be in State 100...0) is: $\sum_{x=0}^{2^{n}-1} \frac{(-1)^{f}(x)}{2^{n}}$. So with maximum probability (1)) Alicés quits end up is state 100.0 .0$)$ if $f(x)$
always notum 0 or 1. Since this probability is exhausted for state $100 \cdots 0\rangle$ if Alice measures anything but $100 \cdots 0)$, the knows the function could've nat been a constant as there would hare nemaired to possibility for her quits to end up anything else. So this is another example that the quit correlations can keep information about the global properties of a function as all the function values are evaluated at once and in parallel!
If you are intrigued enangl to Learn more about quantum computation, here are a few possibilitie offered by a quantum computer:

1) Cuyptograplyy: The key idea is in exponenttial speed up in quantum FT, and subsequent application in shore's algorithm for factoring
numbers.
2) Quantum teleportation: Again the key Idea is is the possibility of teleporting information in a parallel manner using quantum entanglement.
3) Quantum simulation of physical systems.:

Quantum many-bady prablem is a comptatianally complex problem as the Hilbert space grows exponerctially (or faster with the number of partides. Since there are 2^{n} amplitudes to Store info about the wavefunction with only n quits certain quantum many-bady problems Can be sped up wit QCs.
4) Quantum aptionization: There are adiabatic and non-adiabatic algarithons that allows minimum of a Cost function ("energy") to be found mane efficiently.

And many move tapies, including theoretical aspects of quantum information theory.
Finally, if you are truly intrigued, and want to get your hands dirty, done wait t! There are quantum caul Sencices you can log into, write your own quantuss circuits and have it mun on as actual quantum computer! Check out for example "IBM Quantum Experience".

