Physics 402 Spring 2019 Prof. Belloni Discussion Worksheet for March 13, 2019

- 1. Using Hund's rules, reported below for completeness, find the ground state electron configuration for the following elements (only the non-completely filled shells are reported):
 - a. Be, Mg, Ca: $(ns)^2$ (n=2, 3, 4, respectively)
 - b. Ne, Ar, Kr: $(ns)^2(np)^6$ (n=2, 3, 4, respectively)
 - c. F, Cl, Br: $(ns)^2(np)^5$ (n=2, 3, 4 respectively)
 - d. O, S, Se: $(ns)^2(np)^4$ (n=2, 3, 4 respectively)
 - e. N, P, As: $(ns)^2(np)^3$ (n=2, 3, 4 respectively)
 - f. V: $(4s)^2(3d)^3$
 - g. Cr: $(4s)^1(3d)^5$ (careful: *s* orbital not filled!)
 - h. Mn: $(4s)^2(3d)^5$
 - i. Fe: $(4s)^2(3d)^6$

Hund's rules:

- I. The state with the highest total spin will have the lowest energy (make sure this state is allowed by Pauli's exclusion principle -i.e., you can build an anti-symmetric spatial wavefunction)
- II. For a given spin, the state with the highest total orbital angular momentum L, consistent with Pauli's exclusion principle, will have the lowest energy
- III. If a subshell is no more than half filled, the lowest energy level has J=|L-S|; if it is more than half filled, then the lowest energy level has J=L+S