Physics 402
 Spring 2019
 Prof. Belloni
 Discussion Worksheet for March 13, 2019

1. Using Hund's rules, reported below for completeness, find the ground state electron configuration for the following elements (only the non-completely filled shells are reported):
a. $\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}:(n s)^{2}(\mathrm{n}=2,3,4$, respectively)
b. Ne, $\operatorname{Ar}, \mathrm{Kr}:(n s)^{2}(n p)^{6}(\mathrm{n}=2,3,4$, respectively)
c. $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}:(n s)^{2}(n p)^{5}(\mathrm{n}=2,3,4$ respectively)
d. O, S, Se: $(n s)^{2}(n p)^{4}(\mathrm{n}=2,3,4$ respectively)
e. N, P, As: $(n s)^{2}(n p)^{3}(\mathrm{n}=2,3,4$ respectively $)$
f. V: $(4 s)^{2}(3 d)^{3}$
g. Cr: $(4 s)^{1}(3 d)^{5}$ (careful: s orbital not filled!)
h. $\mathrm{Mn}:(4 s)^{2}(3 d)^{5}$
i. $\mathrm{Fe}:(4 s)^{2}(3 d)^{6}$

Hund's rules:
I. The state with the highest total spin will have the lowest energy (make sure this state is allowed by Pauli's exclusion principle - i.e., you can build an antisymmetric spatial wavefunction)
II. For a given spin, the state with the highest total orbital angular momentum L, consistent with Pauli's exclusion principle, will have the lowest energy
III. If a subshell is no more than half filled, the lowest energy level has $\mathrm{J}=|\mathrm{L}-\mathrm{S}|$; if it is more than half filled, then the lowest energy level has $\mathrm{J}=\mathrm{L}+\mathrm{S}$

