
Lecture 34 Highlights 
 

We are in the process of understanding the unique macroscopic thermodynamic 
properties of liquid 4He at low temperatures.  The liquid is held in a cube of sides 

.  We must now find the energies and degeneracies of the states of the 
system.  Assume that the Helium atoms act like free particles in a box (3-dimensional 
infinite square well).  Assume that ‘weak interactions’ occur between the atoms to enable 
the system to be ergodic (i.e. to explore all microscopic configurations consistent with the 
fixed energy and number constraints).   
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The single particle states are given by solutions to the 
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problem was done in HW #1, problem 4.2.  It is solved by standard separation of 
variables techniques, and using the fact that the wavefunction goes to zero at the walls.  
The resulting single-particle wavefunctions are of the form 
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energy of the state is given by a triplet of integers as 
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are labeled by points on a regular cubic lattice of spacing a/π in k-space. 
We can calculate how many states are within an octant in k-space of radius k as 

follows.  The number of states up to k is: 

3

3

)/(
3
4

8
1

space-kin  stateper  occupied Volume
space-kin octant  of Volume)(

a

k
kG

π

π
== .  Written in terms of energy, 

this becomes
2/3

22

2
6

)( ⎟
⎠
⎞

⎜
⎝
⎛=
h

mEVEG
π

.  The degeneracy is the rate at which new states are 

added as the sphere expands.  This density of states (another name for degeneracy) is 
given by 
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We can now find the chemical potential μ by enforcing the number constraint for 

the particles in the box: ∑∑
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sum, we will make a continuum approximation and convert the (discrete) sum on k to an 
integral on (continuous) energy.  Thus we get:  
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Note that we are taking the ground state of the system ( 1=== nml ) to be at zero 
energy.  Plugging in the density of states yields: 

 1



 ( ) ∫
∞

− −
⎟
⎠
⎞

⎜
⎝
⎛=

0 /

2/1
2/3

2/3

2 1
22 kTxB ee

dxxTk
h
mVN μπ  

The integral can be solved by pulling out the two exponentials in the 
denominator: 
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dxxI μμ .  Note that since μ must be negative (last lecture) 

and x is greater than or equal to zero, the factor is less than 1 in magnitude.  
Therefore the following expansion will converge: 
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 where in this case .   This leads to an 

infinite number of integrals, each of which is closely related to the Gamma function, and 
yields the following result for the number constraint: 
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when it has zero argument, and that value is about 2.61 (see the plot on the web site).  
Equation (2) for the total number of particles gives rise to a crisis in the limit of 
temperature going to zero.  The right hand side of the equation goes to zero because the 
function is bounded above and nothing else is temperature dependent.  This shows that 
there has been a major flaw in the theory up to this point. 
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 The problem was in making the continuum approximation in Equation (1).  The 
continuum version leaves out one very important state – the ground state at E=0.  This 
state takes up the burden of holding all of the particles in the limit as !  The correct 
expression for the particle number becomes: 
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 Note from Eq. (3) that the occupation number of the ground state ( ) can be 
made arbitrarily large by taking the chemical potential very close to 0 (but still 
negative!).  We can estimate the “crisis temperature” as the point at which the function 

1n

)/( Tkf Bμ is forced to take on its maximum value of 2.612.  This gives for the “critical 
temperature” : cT
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For 4He, with N/V = 2 x 1028 /m3, this gives KTc 1.3= , which is remarkably close to the 
experimental value for the λ -transition, KT 2.2=λ .  Similar calculations can be done for 
a gas of cold Na atoms, as found in atom traps.  There the mass of the atom is about 23 
amu and the density that can be achieved experimentally is much lower, on the order of 
N/V =1020 /m3, giving a predicted crisis temperature of KTc μ5.1= .  The observed 
condensation temperature is about Kμ2 . 
 The phenomenon of macroscopic occupation of the ground state in the limit of 
zero temperature in a collection of many identical Bosons with overlapping 
wavefunctions is called Bose-Einstein Condensation (BEC). 

 3


