QuTiP: Quantum Toolbox in Python
Release 4.7.0

P.D. Nation, J.R. Johansson, A.J.G. Pitchford, C. Granade, A.L. (

Apr 13, 2022

Contents

1 Frontmatter
1.1~ About This Documentation i e e
1.2 Citing This Project L e
1.3 Funding e e e e e e e
1.4 About QuTiP e
1.5 QuTiPPlugins L e e e e
1.6 Libraries Using QuTiP e
1.7 Contributing to QuTiP e
2 Installation
2.1 Quick Start e e e e e e
2.2 General Requirements e e e
2.3 Installing withconda L e e e e e e e e
2.3.1 Adding the conda-forge channel
232 Newcondaenvironmentsot v ittt e
2.4 Installing from Source e e e e e
24.1 PEPS517SourceBuilds e
2.4.2 Direct Setuptools Source Builds e
2.5 Installation on Windows L L e
2.6 Verifying the Installation L e
2.7 Checking Version Information o Lo
3 Users Guide
3.1 Guide OVEIrVIEW o v it i e e e e e e e e e e e
311 Organization e e e e e e e e e e e e e e
3.2 Basic Operations on Quantum Objects L
3.2.1 Firstthings first o o e e e e e e e e e e
3.2.2 Thequantumobjectclass o i e e e e e e e
3.2.3 Functions operatingon Qobjclass L o o
3.3 Manipulating States and Operators oo
3.3.1 Introduction e e e e e e e e e e
3.3.2 State Vectors (ketsorbras)
3.3.3 Density MatriCeS . . v v v v v v e
3.3.4 Qubit (two-level) systems L e e e e e
33,5 Expectationvalues L e
3.3.6 Superoperators and Vectorized Operatorso ..o e e
3.3.7 Choi, Kraus, Stinespring and x Representations
3.3.8 Properties of Quantum Maps e e e e e e e
3.4 Using Tensor Products and Partial Traces
341 Tensorproducts e e e e e
3.4.2 Example: Constructing composite Hamiltonians
343 Partialtrace e e
3.4.4 Superoperators and Tensor Manipulations,
3.5 Time Evolution and Quantum System Dynamics
3.5.1 Dynamics Simulation Results e
3.5.2 Lindblad Master Equation Solver o
353 Monte CarloSolver e

3.6

3.7

3.8

39

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.5.4 Stochastic Solver - Photocurrent 62

3.5.5 Stochastic Solver 63
3.5.6 Solving Problems with Time-dependent Hamiltonians 66
3.5.7 Bloch-Redfield master equation Lo oL 84
3.5.8 Floquet Formalism 91
3.59 Permutational Invariance 102
3.5.10 Setting Options for the Dynamics Solvers 103
Hierarchical Equations of Motion 0 e 106
3.6.1 Introduction e e 106
3.6.2 Bosonic Environmentso e 107
3.6.3 Fermionic Environments L e 113
3.6.4 Previous implementations u i e e e e e e e 123
3.6.5 References e e 123
Solving for Steady-State Solutions L 123
37.1 Introduction o .. e e e e e e e e e e e e e 123
3.7.2 Steady State solvers in QuTiP oL 124
3.7.3 Using the Steadystate Solver e 124
3.7.4 Additional Solver Arguments e e e e e e e e e e e 125
3.7.5 Example: Harmonic Oscillator in Thermal Bath 126
Two-time correlation functions L. oL e 128
3.8.1 Steadystate correlation function o oo o L 129
3.8.2 EmiSSiOn SPEeCtrtm v v v v e e e e e e e e e e e e e e e e 131
3.8.3 Non-steadystate correlation function o e 133
Quantum Optimal Control e e e e e e e 137
39.1 Introduction L. e e e 137
39.2 Closed Quantum SyStemso 137
39.3 The GRAPE algorithm 138
394 The CRAB Algorithm e 139
3.9.5 Optimal Quantum Control in QuTiP 140
3.9.6 Using the pulseoptim functions e 141
Plotting on the Bloch Sphere o 141
3.10.1 Introduction o .. e e e e 141
3.10.2 The Bloch and Bloch3d Classes, 141
3.10.3 Configuring the Blochsphere 154
3.10.4 Animating with the Blochsphere 156
Visualization of quantum states and processes oo 158
3.11.1 Fock-basis probability distribution L 158
3.11.2 Quasi-probability distributions 159
3.11.3 Visualizing Operators v v v i i e e e e e e e e e e e e e e e e e e 162
3.11.4 Quantum process tomography o .. e e e e 164
Parallel computation e e e 166
3.12.1 Parallel map and parallel for-loop o oL o 166
3.12.2 [IPython-based parallel_map 169
Saving QuTiP Objects and Data Sets i e 169
3.13.1 Storing and loading QuTiP objects e 169
3.13.2 Storing and loading datasets oL o 170
Generating Random Quantum States & Operators 178
3.14.1 Random objects with a given eigen spectrumol 180
3.14.2 Composite random objects e e 181
Modifying Internal QuTiP Settings e 181
3.15.1 User Accessible Parameters Lo e 181
3.15.2 Example: Changing Settings e 181
3.15.3 Persistent Settingso 182
Quantum Information Processing L 182
3.16.1 Quantum Information Processing 182
3.16.2 Operator-level circuit simulation e 187
3.16.3 Pulse-level circuit simulation oL o 192
Measurement of Quantum Objects oL Lo 202

3.17.1 Introduction e e e e e e e 202
3.17.2 Performing a basic measurement (Observable) 202
3.17.3 Performing a basic measurement (Projective) 203
3.17.4 Obtaining measurement statistics(Observable) 204
3.17.5 Obtaining measurement statistics(Projective) 205

4 Gallery 207
4.1 Quantum Information Processing L o oo 207
4.1.1 Basicuse of Processor 207

4.1.2 T2Relaxation e e e 209

4.1.3 Control Amplitude NOiSe o i it e e e e e e 210

5 API documentation 213
510 CIaSSES . v v v v v i e e e e e e e e e e e 213
ST Qobj .o e e 213

512 QobjJEvo. . . . e 223

513 0 @SEIeS . . v v i e e e e e e e e e e e e 227

5.1.4 Blochsphere e 228

5.1.5 Distributions e e e e e 231

5.1.6 Cubic Spline e e 232

5.1.7 Non-Markovian Solvers e 232

5.1.8 Solver Optionsand Results 246

5.1.9 Permutational Invariance L L e e 250
5.1.10 One-Dimensional Lattice 254

5.1.11 Distribution functions L e 257
5.1.12 Quantum information processing it et e e e e 259
5.1.13 Optimalcontrol e e 306

5.2 Functions i e e e e e e e e e 327
5.2.1 Manipulation and Creation of States and Operators 327

5.2.2 Functions acting on states and Operatorso e e e e e e 359

523 Measurement i it e e e e e e e e e e e e e e e e 367

524 Dynamics and Time-Evolution 369

525 Lattice vt i e e e e e e e e e e e e e e 405

5.2.6 Visualization L e e e e 406

5.2.7 Quantum Information Processing 417

5.2.8 Non-Markovian Solvers e 425

5.29 Optimalcontrol e e e e e e e e e e e 426
5.2.10 Utlity Functions e 439

6 Change Log 447
6.1 Version 4.7.0 (April 13,2022) e e e e e e e 447
6.1.1 Improvements e e 447

6.1.2 BugFixes e 448

6.1.3 Documentation Improvements o L 449

6.1.4 Developer Changes o v i i i e e e e e e e e 449

6.2 Version 4.6.3 (February 9,2022) e e e e e 449
6.2.1 Improvements e e e e 450

6.22 BugFixes 450

6.2.3 Documentation Improvementso 451

6.2.4 Developer Changes o o i v i i et e e e e e e e e e 451

6.3 Version4.6.2 (June 2,2021) e e e e e 452
6.3.1 Improvements L. e e e e 452

6.3.2 BugFixes e 452

6.3.3 Developer Changes e 452

6.4 Version4.6.1 May 4,2021) 452
6.4.1 IMProvements v v vt e e e e e e e e e e e e e e e e e e e 452

6.42 BugFixes e e 453

6.4.3 Developer Changes e 453

6.5 Version 4.6.0 (April 11,2021) e 453

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.5.1 IMProvements v vt e e e e e e e e e e e e e e e e e e 453

6.52 BugFixes e e e e e 454
6.5.3 Deprecations e e e e e e e e e e e e e e e 454
6.54 Developer Changes e 454
Version 4.5.3 (February 19,2021) e 455
6.6.1 Improvements e e e e e e 455
Version 4.5.2 (July 14,2020) o 0 e e e e e e e e e 455
6.7.1 IMProvements v vt e e e e e e e e e e e e e e e e e e e 455
6.7.2 BugFixes e e 455
6.7.3 Developer Changes e 455
Version 4.5.1 (May 15,2020) o i i e 455
6.8.1 IMProvements o vt e e e e e e e e e e e e e e e e e e e 455
6.8.2 BugFixes e e e e e 456
6.8.3 Deprecations e e e e e e e e e e e e 456
6.84 Developer Changes e 456
Version 4.5.0 (January 31,2020) oL e 456
6.9.1 IMProvements v vt e 456
6.9.2 BugFixes e e e e e e 457
Version 4.4.1 (August 29,2019) L e e e 457
6.10.1 Improvements e 457
6.10.2 BugFixes e 457
Version 4.4.0 (July 03,2019) o o e e 458
6.11.1 TImProvements v v v v v i e 458
6.11.2 BugFixes o e e e e e e 458
Version 4.3.0 (July 14,2018) o 0 e e e 458
6.12.1 Improvements e 458
6.12.2 BugFixes 459
Version 4.2.0 (July 28, 2017) o o o i e e e e e e e 459
6.13.1 TImpProvements v vt e 459
6.13.2 BugFixes e e 459
Version 4.1.0 (March 10,2017) e e e e 460
6.14.1 Improvements Lt e e e e e e e e e 460
6.142 BugFixes e e 460
Version 4.0.2 (January 5, 2017) o . e e e e e e e e 460
6.15.1 BugFixes e e 460
Version 4.0.0 (December 22,2016) e e e 460
6.16.1 Improvements 460
6.16.2 BugFixes e e 461
Version 3.2.0 (Never officially released) e 461
6.17.1 New Features e e 461
6.17.2 Improvements e e e e e 461
6.17.3 BugFixes e 463
Version 3.1.0 (January 1,2015) o . e 463
6.18.1 New Features e 463
6.18.2 BugFixes e e e e 464
Version 3.0.1 (Aug 5,2014) e e 464
6.19.1 BugFixes e 464
Version 3.0.0 (July 17,2014) e 464
6.20.1 New Features i i i e e e e e e e 464
6.20.2 IMProvements v v v v v e 465
Version 2.2.0 March 01, 2013) e e e e e e 466
6.21.1 New Features e e e 466
6.21.2 BugFixes e 466
Version 2.1.0 (October 05, 2012) e e e e e 466
6.22.1 New Features e e 466
6.22.2 BugFixes e e e e e e 467
Version 2.0.0 (June 01, 2012) e e e e e e 467
6.23.1 New Features e 467

6.24 Version 1.1.4 (May 28,2012) e e
6.24.1 BugFixes e e e e e e e
6.25 Version 1.1.3 (November 21, 2011) e e e e e
6.25.1 New Functions e e e e
6.252 BugFixes
6.26 Version 1.1.2 (October 27,2011) e e e
6.26.1 BugFixes e e e e e e e e e
6.27 Version 1.1.1 (October 25,2011) o e e e e e e
6.27.1 New Functions e e e e
6.27.2 BugFixes e e e
6.28 Version 1.1.0 (October 04, 2011) e e
6.28.1 New Functions e
6.28.2 BugFixes e e e e e
6.29 Version 1.0.0 July 29,2011) o e e e e e
7 Developers
7.1 Lead Developers o o v i i e e e e e e e e e e e e e e e e
7.2 PastLead Developers e
7.3 ContribUtOrs o e e e e e e e e e e e e e e e
8 Development Documentation
8.1 Contributing to QuTiP Development e
8.1.1 Quick Start e e e e e
8.1.2 Core Library: qutip/qutip o o v it e e e e e
8.1.3 Documentation: qutip/qutip (doc directory)o e
8.2 QuTiP Development Roadmap o o i e e e
8.2.1 Preamble e e
8.2.2 Library package structureot e e e e e e e e e
8.2.3 Development Projects e
824 QuTiPmajorreleaseroadmap o v i i e e e
8.3 Ideas for future QuTiP development e
8.3.1 QuTiPInteractive e e e e e e e e e e e e e e e e
8.3.2 Pulse level description of quantum circuits 0oL L.
8.3.3 TensorFlow Data Backend
8.3.4 Quantum Error Mitigation L e
8.3.5 GPU implementation of the Hierarchical Equations of Motion
8.4 Working with the QuTiP Documentation
8.4.1 DIrectives o v i i e e e e e e e e e e e e
8.5 Release and Distribution Lo e e e
85.1 Preamble
8.5.2 SettingUp TheRelease Branch
8.5.3 Build Release Distributionand Deploy
8.5.4 Getting the Built Documentation
8.5.5 MakingaReleaseon GitHub L L o
85.6 Website e
8.5.7 CondaForge @ i e e e e e e e
9 Bibliography
10 Copyright and Licensing
10.1 License Terms for Documentation Text
10.2 License Terms for Source Code of QuTiP and Code Samples
11 Indices and tables
Bibliography
Python Module Index

471
472
472
472

503

505
505
509

511

513

515

Index 517

vi

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Contents 1

QuTiP: Quantum Toolbox in Python, Release 4.7.0

2 Contents

Chapter 1

Frontmatter

1.1 About This Documentation

This document contains a user guide and automatically generated API documentation for QuTiP. A PDF version
of this text is available at the documentation page.

For more information see the QuTiP project web page.
Author J.R. Johansson
Author P.D. Nation
Author Alexander Pitchford
Author Arne Grimsmo
Author Chris Grenade
Author Nathan Shammah
Author Shahnawaz Ahmed
Author Neill Lambert
Author FEric Giguere
Author Boxi Li
Author Jake Lishman
Author Simon Cross
release 4.7.0

copyright The text of this documentation is licensed under the Creative Commons Attribution 3.0
Unported License. All contained code samples, and the source code of QuTiP, are licensed under
the 3-clause BSD licence. Full details of the copyright notices can be found on the Copyright
and Licensing page of this documentation.

https://www.qutip.org/documentation.html
https://www.qutip.org

QuTiP: Quantum Toolbox in Python, Release 4.7.0

1.2 Citing This Project

If you find this project useful, then please cite:

J. R. Johansson, P.D. Nation, and F. Nori, “QuTiP 2: A Python framework for the dynamics of open quantum

systems”, Comp. Phys. Comm. 184, 1234 (2013).

or

J. R. Johansson, P.D. Nation, and F. Nori, “QuTiP: An open-source Python framework for the dynamics of open
quantum systems”, Comp. Phys. Comm. 183, 1760 (2012).

which may also be downloaded from https://arxiv.org/abs/1211.6518 or https://arxiv.org/abs/1110.0573, respec-

tively.

1.3 Funding

QuTiP is developed under the auspice of the non-profit organizations:

NUMFOCUS

OPEN CODE = BETTER SCIENCE

LiniEary
Fund

QuTiP was partially supported by

BHARSHTIRFS

Japan Society for the Promotion of Science

F&WEN

Adedtitul

KOREA UNIVERSITY

&F

Chapter 1. Frontmatter

https://arxiv.org/abs/1211.6518
https://arxiv.org/abs/1110.0573

QuTiP: Quantum Toolbox in Python, Release 4.7.0

10 6UANTIOUE

UNIVERSITE DE SHERBROOKE

1.4 About QuTiP

Every quantum system encountered in the real world is an open quantum system. For although much care is
taken experimentally to eliminate the unwanted influence of external interactions, there remains, if ever so slight,
a coupling between the system of interest and the external world. In addition, any measurement performed on
the system necessarily involves coupling to the measuring device, therefore introducing an additional source of
external influence. Consequently, developing the necessary tools, both theoretical and numerical, to account
for the interactions between a system and its environment is an essential step in understanding the dynamics of
practical quantum systems.

In general, for all but the most basic of Hamiltonians, an analytical description of the system dynamics is not pos-
sible, and one must resort to numerical simulations of the equations of motion. In absence of a quantum computer,
these simulations must be carried out using classical computing techniques, where the exponentially increasing
dimensionality of the underlying Hilbert space severely limits the size of system that can be efficiently simu-
lated. However, in many fields such as quantum optics, trapped ions, superconducting circuit devices, and most
recently nanomechanical systems, it is possible to design systems using a small number of effective oscillator and
spin components, excited by a limited number of quanta, that are amenable to classical simulation in a truncated
Hilbert space.

The Quantum Toolbox in Python, or QuTiP, is an open-source framework written in the Python programming lan-
guage, designed for simulating the open quantum dynamics of systems such as those listed above. This framework
distinguishes itself from other available software solutions in providing the following advantages:

* QuTiP relies entirely on open-source software. You are free to modify and use it as you wish with no
licensing fees or limitations.

e QuTiP is based on the Python scripting language, providing easy to read, fast code generation without the
need to compile after modification.

* The numerics underlying QuTiP are time-tested algorithms that run at C-code speeds, thanks to the Numpy,
Scipy, and Cython libraries, and are based on many of the same algorithms used in propriety software.

¢ QuTiP allows for solving the dynamics of Hamiltonians with (almost) arbitrary time-dependence, including
collapse operators.

» Time-dependent problems can be automatically compiled into C++-code at run-time for increased perfor-
mance.

» Takes advantage of the multiple processing cores found in essentially all modern computers.

* QuTiP was designed from the start to require a minimal learning curve for those users who have experience
using the popular quantum optics toolbox by Sze M. Tan.

* Includes the ability to create high-quality plots, and animations, using the excellent Matplotlib package.

For detailed information about new features of each release of QuTiP, see the Change Log.

1.4. About QuTiP 5

https://numpy.org
https://scipy.org
https://cython.org
https://matplotlib.org

QuTiP: Quantum Toolbox in Python, Release 4.7.0

1.5 QuTiP Plugins

Several libraries depend on QuTiP heavily making QuTiP a super-library
Matsubara Matsubara is a plugin to study the ultrastrong coupling regime with structured baths

QNET QNET is a computer algebra package for quantum mechanics and photonic quantum net-
works

1.6 Libraries Using QuTiP

Several libraries rely on QuTiP for quantum physics or quantum information processing. Some of them are:

Krotov Krotov focuses on the python implementation of Krotov’s method for quantum optimal con-
trol

pYEPR pyEPR interfaces classical distributed microwave analysis with that of quantum structures
and hamiltonians by providing easy to use analysis function and automation for the design of
quantum chips

scQubits scQubits is a Python library which provides a convenient way to simulate superconducting
qubits by providing an interface to QuTiP

SimulaQron SimulaQron is a distributed simulation of the end nodes in a quantum internet with the
specific goal to explore application development

QInfer Qlnfer is a library for working with sequential Monte Carlo methods for parameter estimation
in quantum information

QPtomographer QPtomographer derive quantum error bars for quantum processes in terms of the
diamond norm to a reference quantum channel

QuNetSim QuNetSim is a quantum networking simulation framework to develop and test protocols
for quantum networks

qupulse qupulse is a toolkit to facilitate experiments involving pulse driven state manipulation of
physical qubits

Pulser Pulser is a framework for composing, simulating and executing pulse sequences for neutral-
atom quantum devices.

1.7 Contributing to QuTiP

We welcome anyone who is interested in helping us make QuTiP the best package for simulating quantum systems.
There are detailed instructions on how to contribute code and documentation in the developers’ section of this
guide. You can also help out our users by answering questions in the QuTiP discussion mailing list, or by raising
issues in the main GitHub repository if you find any bugs. Anyone who contributes code will be duly recognized.
Even small contributions are noted. See Contributors for a list of people who have helped in one way or another.

6 Chapter 1. Frontmatter

https://matsubara.readthedocs.io/en/latest/
https://qnet.readthedocs.io/en/latest/readme.html
https://qucontrol.github.io/krotov/v1.2.0/01_overview.html
https://pyepr-docs.readthedocs.io/en/latest/index.html
https://scqubits.readthedocs.io/en/latest/
https://softwarequtech.github.io/SimulaQron/html/index.html
http://qinfer.org/
https://qptomographer.readthedocs.io/en/latest/
https://tqsd.github.io/QuNetSim/_build/intro.html
https://qupulse.readthedocs.io/en/latest/
https://pulser.readthedocs.io/en/latest/
https://groups.google.com/g/qutip
https://github.com/qutip/qutip

Chapter 2

Installation

2.1 Quick Start

From QuTiP version 4.6 onwards, you should be able to get a working version of QuTiP with the standard

’ pip install qutip

It is not recommended to install any packages directly into the system Python environment; consider using pip
or conda virtual environments to keep your operating system space clean, and to have more control over Python
and other package versions.

You do not need to worry about the details on the rest of this page unless this command did not work, but do also
read the next section for the list of optional dependencies. The rest of this page covers installation directly from
conda, installation from source, and additional considerations when working on Windows.

2.2 General Requirements

QuTiP depends on several open-source libraries for scientific computing in the Python programming language.
The following packages are currently required:

Package | Version | Details
Python 3.6+

NumPy 1.16+
SciPy 1.0+ Lower versions may have missing features.

In addition, there are several optional packages that provide additional functionality:

Package Version Details

matplotlib 1.2.1+ Needed for all visualisation tasks.

cython 0.29.20+ Needed for compiling some time-dependent Hamiltonians.

CVXPY 1.0+ Needed to calculate diamond norms.

C++ Compiler GCC 4.7+, MS | Needed for compiling Cython files, made when using
VS 2015 string-format time-dependence.

pytest, 5.3+ For running the test suite.

pytest-rerunfailuresg

LaTeX TeXLive 2009+ | Needed if using LaTeX in matplotlib figures, or for nice

circuit drawings in IPython.

In addition, there are several additional packages that are not dependencies, but may give you a better programming
experience. [Python provides an improved text-based Python interpreter that is far more full-featured that the

https://ipython.org/

QuTiP: Quantum Toolbox in Python, Release 4.7.0

default interpreter, and runs in a terminal. If you prefer a more graphical set-up, Jupyter provides a notebook-style
interface to mix code and mathematical notes together. Alternatively, Spyder is a free integrated development
environment for Python, with several nice features for debugging code. QuTiP will detect if it is being used within
one of these richer environments, and various outputs will have enhanced formatting.

2.3 Installing with conda

QuTiP is designed to work best when using the Anaconda or Intel Python distributions that support the conda
package management system. It is still possible to use pip to install QuTiP while using conda, but uniformly
using conda will make complete dependency management easier.

If you already have your conda environment set up, and have the conda-forge channel available, then you can
install QuTiP using:

conda install qutip

This will install the minimum set of dependences, but none of the optional packages.

2.3.1 Adding the conda-forge channel

To install QuTiP from conda, you will need to add the conda-forge channel. The following command adds this
channel with lowest priority, so conda will still try and install all other packages normally:

conda config --append channels conda-forge

If you want to change the order of your channels later, you can edit your .condarc (user home folder) file
manually, but it is recommended to keep defaults as the highest priority.

2.3.2 New conda environments

The default Anaconda environment has all the Python packages needed for running QuTiP installed already, so
you will only need to add the conda-forge channel and then install the package. If you have only installed
Miniconda, or you want a completely clean virtual environment to install QuTiP in, the conda package manager
provides a convenient way to do this.

To create a conda environment for QuTiP called qut ip-env:

’conda create —-n qutip-env python qutip

This will automatically install all the necessary packages, and none of the optional packages. You activate the new
environment by running

conda activate qutip-env

You can also install any more optional packages you want with conda install, for example matplotlib,
ipython or jupyter.

8 Chapter 2. Installation

https://jupyter.org/
https://www.spyder-ide.org/
https://www.anaconda.com/products/individual
https://software.intel.com/en-us/python-distribution

QuTiP: Quantum Toolbox in Python, Release 4.7.0

2.4 Installing from Source

Official releases of QuTiP are available from the download section on the project’s web pages, and the latest
source code is available in our GitHub repository. In general we recommend users to use the latest stable release
of QuTiP, but if you are interested in helping us out with development or wish to submit bug fixes, then use the
latest development version from the GitHub repository.

You can install from source by using the Python-recommended PEP 517 procedure, or if you want more control
or to have a development version, you can use the low-level build procedure with setuptools.

2.4.1 PEP 517 Source Builds

The easiest way to build QuTiP from source is to use a PEP-517-compatible builder such as the build package
available on pip. These will automatically install all build dependencies for you, and the pip installation step
afterwards will install the minimum runtime dependencies. You can do this by doing (for example)

pip install build
python -m build <path to qutip>
pip install <path to qutip>/dist/qutip-<version>.whl

The first command installs the reference PEP-517 build tool, the second effects the build and the third uses pip to
install the built package. You will need to replace <path to qutip> with the actual path to the QuTiP source
code. The string <version> will depend on the version of QuTiP, the version of Python and your operating
system. It will look something like 4.6.0-cp39-cp39-manylinuxl_ x86_64, but there should only be
one .whl file in the dist/ directory, which will be the correct one.

2.4.2 Direct Setuptools Source Builds

This is the method to have the greatest amount of control over the installation, but it the most error-prone and not
recommended unless you know what you are doing. You first need to have all the runtime dependencies installed.
The most up-to-date requirements will be listed in pyproject . toml file,inthe build-system.requires
key. As of the 4.6.0 release, the build requirements can be installed with

pip install setuptools wheel packaging 'cython>=0.29.20"' 'numpy>=1.16.6,<1.20"
—'scipy>=1.0"

or similar with conda if you prefer. You will also need to have a functional C++ compiler installed on your
system. This is likely already done for you if you are on Linux or macOS, but see the section on Windows
installations if that is your operating system.

To install QuTiP from the source code run:

’python setup.py install

To install OpenMP support, if available, run:

’python setup.py install --with-openmp

This will attempt to load up OpenMP libraries during the compilation process, which depends on you having
suitable C++ compiler and library support. If you are on Linux this is probably already done, but the compiler
macOS ships with does not have OpenMP support. You will likely need to refer to external operating-system-
specific guides for more detail here, as it may be very non-trivial to correctly configure.

If you wish to contribute to the QuTiP project, then you will want to create your own fork of the QuTiP git
repository, clone this to a local folder, and install it into your Python environment using:

python setup.py develop

2.4. Installing from Source 9

https://qutip.org/download.html
https://github.com/qutip/qutip
https://github.com/qutip/qutip
https://github.com/qutip/qutip

QuTiP: Quantum Toolbox in Python, Release 4.7.0

When you do import qutip in this environment, you will then load the code from your local fork, enabling
you to edit the Python files and have the changes immediately available when you restart your Python interpreter,
without needing to rebuild the package. Note that if you change any Cython files, you will need to rerun the build
command.

You should not need to use sudo (or other superuser privileges) to install into a personal virtual environment; if
it feels like you need it, there is a good chance that you are installing into the system Python environment instead.

2.5 Installation on Windows

As with other operating systems, the easiest method is to use pip install qutip, or use the conda proce-
dure described above. If you want to build from source or use runtime compilation with Cython, you will need to
have a working C++ compiler.

You can download the Visual Studio IDE from Microsoft, which has a free Community edition containing a
sufficient C++ compiler. This is the recommended compiler toolchain on Windows. When installing, be sure to
select the following components:

* Windows “X” SDK (where “X” stands for your version: 7/8/8.1/10)
¢ Visual Studio C++ build tools

You can then follow the installation from source section as normal.

Important: In order to prevent issues with the PATH environment variable not containing the compiler and
associated libraries, it is recommended to use the developer command prompt in the Visual Studio installation
folder instead of the built-in command prompt.

The Community edition of Visual Studio takes around 10GB of disk space. If this is prohibitive for you, it is also
possible to install only the build tools and necessary SDKs instead, which should save about 2GB of space.

2.6 Verifying the Installation

QuTiP includes a collection of built-in test scripts to verify that an installation was successful. To run the suite of
tests scripts you must also have the pytest testing library. After installing QuTiP, leave the installation directory,
run Python (or IPython), and call:

import qutip.testing
qutip.testing.run/()

This will take between 10 and 30 minutes, depending on your computer. At the end, the testing report should
report a success; it is normal for some tests to be skipped, and for some to be marked “xfail” in yellow. Skips may
be tests that do not run on your operating system, or tests of optional components that you have not installed the
dependencies for. If any failures or errors occur, please check that you have installed all of the required modules.
See the next section on how to check the installed versions of the QuTiP dependencies. If these tests still fail,
then head on over to the QuTiP Discussion Board or the GitHub issues page and post a message detailing your
particular issue.

10 Chapter 2. Installation

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/visual-cpp-build-tools/
https://groups.google.com/group/qutip
https://github.com/qutip/qutip/issues

QuTiP: Quantum Toolbox in Python, Release 4.7.0

2.7 Checking Version Information

QuTiP includes an “about” function for viewing information about QuTiP and the important dependencies installed
on your system. To view this information:

import qutip
qutip.about ()

2.7. Checking Version Information 11

QuTiP: Quantum Toolbox in Python, Release 4.7.0

12 Chapter 2. Installation

Chapter 3

Users Guide

3.1 Guide Overview

The goal of this guide is to introduce you to the basic structures and functions that make up QuTiP. This guide
is divided up into several sections, each highlighting a specific set of functionalities. In combination with the
examples that can be found on the project web page https://qutip.org/tutorials.html, this guide should provide a
more or less complete overview of QuTip. We also provide the API documentation in API documentation.

3.1.1 Organization

QuTiP is designed to be a general framework for solving quantum mechanics problems such as systems composed
of few-level quantum systems and harmonic oscillators. To this end, QuTiP is built from a large (and ever growing)
library of functions and classes; from qutip.states.basis to qutip.wigner. The general organization
of QuTiP, highlighting the important API available to the user, is shown in the figure below.

13

https://qutip.org/tutorials.html

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Fig. 1: Tree-diagram of the 468 user accessible functions and classes in QuTiP 4.6. A vector image of the code
tree is in qutip_tree.pdf.

3.2 Basic Operations on Quantum Objects

3.2.1 First things first

Warning: Do not run QuTiP from the installation directory.

To load the qutip modules, first call the import statement:

from qutip import =

This will load all of the user available functions. Often, we also need to import the NumPy and Matplotlib libraries
with:

import numpy as np

import matplotlib.pyplot as plt

14 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

In the rest of the documentation, functions are written using qutip.module.function() notation which links to the
corresponding function in the QuTiP API: Functions. However, in calling import *, we have already loaded all of
the QuTiP modules. Therefore, we will only need the function name and not the complete path when calling the
function from the interpreter prompt, Python script, or Jupyter notebook.

3.2.2 The quantum object class

Introduction

The key difference between classical and quantum mechanics is the use of operators instead of numbers as vari-
ables. Moreover, we need to specify state vectors and their properties. Therefore, in computing the dynamics
of quantum systems, we need a data structure that encapsulates the properties of a quantum operator and ket/bra
vectors. The quantum object class, qut ip. Qob 7, accomplishes this using matrix representation.

To begin, let us create a blank Qob J:

print (Qobj())

QOutput:

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =
[[0.]]

where we see the blank Qobj object with dimensions, shape, and data. Here the data corresponds to a 1x1-
dimensional matrix consisting of a single zero entry.

Hint: By convention, the names of Python classes, such as Qobj (), are capitalized whereas the names of
functions are not.

We can create a Qob j with a user defined data set by passing a list or array of data into the Qob Jj:

print (Qobj([[1], [2], [3],[4],[51]))

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[1.]

[2.]
[3.1]
[4.]
[5.1]

x = np.array([[1, 2, 3, 4, 511)
print (Qobj (x))

Output:

Quantum object: dims = [[1], [5]], shape = (1, 5), type = bra
Qobj data =
[[1. 2. 3. 4. 5.]1]

r = np.random.rand (4, 4)
print (Qobj (r))

QOutput:

3.2. Basic Operations on Quantum Objects 15

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Quantum object:

Qobj data =
[[0.37454012

[0.15601864
[0.60111501
[0

o O O O

.83244264

dims =

.95071431
.15599452
.70807258
.21233911

(041, [411,
.73199394
.05808361
.02058449
.18182497

o O O O
o O O O

shape = (4,
.59865848
.86617615
.96990985
.18340451

4), type = oper, isherm = False

]

Notice how both the dims and shape change according to the input data. Although dims and shape appear to be
the same, dims keep track of the shapes for individual components of a multipartite system, while shape does not.
We refer the reader to the section fensor products and partial traces for more information.

Note: If you are running QuTiP from a python script you must use the print function to view the Qobj attributes.

States and operators

Manually specifying the data for each quantum object is inefficient. Even more so when most objects correspond
to commonly used types such as the ladder operators of a harmonic oscillator, the Pauli spin operators for a two-
level system, or state vectors such as Fock states. Therefore, QuTiP includes predefined objects for a variety of

states and operators:

States Command (# | Inputs
means optional)
Fock state ket vector basis (N, N = number of levels in Hilbert space, m = level con-

#m)/fock (N, #m)

taining excitation (0 if no m given)

Fock density matrix (outer

product of basis)

fock_dm (N, #p)

same as basis(N,m) / fock(N,m)

Coherent state

coherent (N,

alpha = complex number (eigenvalue) for requested co-

alpha) herent state
Coherent density matrix | coherent_dm (N, | same as coherent(N,alpha)
(outer product) alpha)

Thermal density matrix (for

n particles)

thermal_dm (N,
n)

n = particle number expectation value

16

Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Operators

Command
means optional)

(#

Inputs

Charge operator

charge (N, M=-N)

Diagonal operator with entries from M..0..N.

Commutator commutator (4, Kind = ‘normal’ or ‘anti’.
B, kind)
Diagonals operator gdiags (N) Quantum object created from arrays of diagonals at

given offsets.

Displacement

operator

displace (N,

N=number of levels in Hilbert space, alpha = complex

(Single-mode) alpha) displacement amplitude.

Higher spin operators jmat (J, #s) j = integer or half-integer representing spin, s = ‘x’, ‘y’,
‘2, ‘47, or ‘-

Identity geye (N) N = number of levels in Hilbert space.

Lowering (destruction) | destroy (N) same as above

operator

Momentum operator

momentum (N)

same as above

Number operator

num (N)

same as above

mode)

Phase operator (Single-

phase (N, phi0)

Single-mode Pegg-Barnett phase operator with ref phase
phi0.

Position operator

position (N)

same as above

tor

Raising (creation) opera-

create (N)

same as above

Squeezing
(Single-mode)

operator

squeeze (N, sp)

N=number of levels in Hilbert space, sp = squeezing pa-
rameter.

Squeezing operator (Gen-

squeezing (ql,

ql,q92 = Quantum operators (Qobj) sp = squeezing pa-

eralized) a2, sp) rameter.
Sigma-X sigmax ()
Sigma-Y sigmay ()
Sigma-Z sigmaz ()
Sigma plus sigmap ()
Sigma minus sigmam ()

Tunneling operator

tunneling (N, m)

Tunneling operator with elements of the form |[N ><
N +m|+|N+m >< N|.

As an example, we give the output for a few of these functions:

>>> basis (5, 3)

Quantum object:
Qobj data
[[0

o B O O

-1
[0.1]
[0.1]
[1.1]
[0.11

>>> coherent (5,0.5-0.57)

Quantum object:
Qobj data
[[0.7788017 +0.
38939142-0.

-0.
07898617-0.
04314271+0.

[O.
[O.
[-0.
[-0.

>>> destroy (4)

Quantum object:

Qobj data =
[[O. 1.
[0. 0.

dims = [[5], [1]], shape = (5, 1), type = ket

dims = [[5], [1]], shape = (5, 1), type = ket

J]

389391427]

275458957]

0789861773]

J 11

dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False

0. 0.]

1.41421356 0.

]

(continues on next page)

3.2. Basic Operations on Quantum Objects

17

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

[O. 0. 0. 1.73205081]
[0. 0. 0. 0. 1]

>>> sigmaz ()
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. =-1.1]

>>> qmat (5/2.0, '+")

Quantum object: dims = [[6], [6]], shape = (6, 6), type = oper, isherm = False
Qobj data =

[[0. 2.23606798 0. 0. 0 0.]

[0. 0. 2.82842712 0. 0 0.]

[O. 0. 0. 3. 0. 0.]

[O. 0. 0. 0. 2.82842712 0.]

[O. 0. 0. 0. 0 2.23606798]

[O. 0. 0. 0. 0 0. 11

Qobj attributes

We have seen that a quantum object has several internal attributes, such as data, dims, and shape. These can be
accessed in the following way:

>>> g = destroy (4)

>>> g.dims
(4], [41]

>>> g.shape
(4, 4)

In general, the attributes (properties) of a Qob j object (or any Python object) can be retrieved using the Q.attribute
notation. In addition to the those shown with the print function, an instance of the Qob 7 class also has the
following attributes:

Property | At- Description
tribute

Data 0. Matrix representing state or operator
data

Dimen- Q. List keeping track of shapes for individual components of a multipartite system (for

sions dims tensor products and partial traces).

Shape Q. Dimensions of underlying data matrix.
shape

is Hermi- | Q. Is the operator Hermitian or not?

tian? isherm

Type Q. Is object of type ‘ket, ‘bra’, ‘oper’, or ‘super’?
type

18 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Fig. 2: The Qobj Class viewed as a container for the properties needed to characterize a quantum operator or
state vector.

For the destruction operator above:

>>> qg.type
'oper"'

>>> g.isherm
False

>>> g.data
<4x4 sparse matrix of type '<class 'numpy.complexl128'>"
with 3 stored elements in Compressed Sparse Row format>

The data attribute returns a message stating that the data is a sparse matrix. All Qob j instances store their data as a
sparse matrix to save memory. To access the underlying dense matrix one needs to use the qutip.Qobj. full
function as described below.

Qobj Math

The rules for mathematical operations on Qob j instances are similar to standard matrix arithmetic:

>>> g = destroy(4)
>>> x = sigmax ()

>>> g + 5

Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =

[[5. 1. 0. 0.]

[0. 5. 1.41421356 0.]

[0. 0. 5. 1.73205081]

[0 0. 0. 5. 1]

>>> X x X

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =

[[1. 0.]

[0. 1.]]

>>> g k* 3
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =

(continues on next page)

3.2. Basic Operations on Quantum Objects 19

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

[[O 0. 0 2.44948974]
[0 0. 0 0.]
[0 0. 0 0.]
[0 0. 0 0. 11
>>> x / np.sqrt (2)
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.70710678]

[0.70710678 0. 1]

Of course, like matrices, multiplying two objects of incompatible shape throws an error:

>>> print (g * x)

TypeError Traceback (most recent call last)
<ipython-input-33-0b599f41213e> in <module>
—-——=> 1 print (g * x)

~/Documents/qutip_dev/qutip/qutip/qobj.py in _ _mul__ (self, other)

553
554 else:
-—> 555 raise TypeError ("Incompatible Qobj shapes")
556
557 elif isinstance (other, np.ndarray) :

TypeError: Incompatible Qobj shapes

In addition, the logic operators “is equal” == and “is not equal” /= are also supported.

3.2.3 Functions operating on Qobj class

Like attributes, the quantum object class has defined functions (methods) that operate on Qob 7 class instances.
For a general quantum object Q:

20 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Function Command Description

Check Her- | Q.check_herm() Check if quantum object is Hermitian
micity

Conjugate Q.conj() Conjugate of quantum object.

Cosine Q.cosm() Cosine of quantum object.

Dagger (ad- | Q.dag() Returns adjoint (dagger) of object.
joint)

Diagonal Q.diag() Returns the diagonal elements.
Diamond Q.dnorm() Returns the diamond norm.

Norm

Eigenenergies | Q.eigenenergies () Eigenenergies (values) of operator.
Eigenstates Q.eigenstates|() Returns eigenvalues and eigenvectors.
Eliminate Q. Returns quantum object with states in list inds removed.
States eliminate_states (inds)

Exponential Q.expm () Matrix exponential of operator.
Extract States | Q. Qobj with states listed in inds only.

extract_states (inds)

Full Q.full () Returns full (not sparse) array of Q’s data.
Groundstate Q.groundstate () Eigenval & eigket of Qobj groundstate.
Matrix Ele- | Q. Matrix element <bralQlket>
ment matrix_element (bra,

ket)
Norm Q.norm() Returns L2 norm for states, trace norm for operators.
Overlap Q.overlap (state) Overlap between current Qobj and a given state.

Partial Trace

Q.ptrace(sel)

Partial trace returning components selected using ‘sel” pa-
rameter.

Permute Q.permute (order) Permutes the tensor structure of a composite object in the
given order.
Projector Q.proj() Form projector operator from given ket or bra vector.
Sine Q.sinm() Sine of quantum operator.
Sqrt Q.sgrtm() Matrix sqrt of operator.
Tidyup Q.tidyup () Removes small elements from Qobj.
Trace Q.tr() Returns trace of quantum object.
Transform Q.transform(inpt) A basis transformation defined by matrix or list of kets
‘inpt’ .
Transpose Q.trans () Transpose of quantum object.
Truncate Neg Q.trunc_neg () Truncates negative eigenvalues
Unit Q.unit () Returns normalized (unit) vector Q/Q.norm().
>>> basis (5, 3)
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.]
(0.]
[0.]
(1.]
[0.11]
>>> basis (5, 3).dag/()
Quantum object: dims = [[1], [5]], shape = (1, 5), type = bra
Qobj data =
[[0. 0. 0. 1. 0.1]
>>> coherent_dm(5, 1)
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True

Qobj data =

[[0.36791117 0.36774407 0.26105441 0.14620658 0.08826704]

(continues on next page)

3.2. Basic Operations on Quantum Objects

21

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

[0.36774407 0.36757705 0.26093584 0.14614018 0.08822695]
[0.26105441 0.26093584 0.18523331 0.10374209 0.06263061]
[0.14620658 0.14614018 0.10374209 0.05810197 0.035077]
[0.08826704 0.08822695 0.06263061 0.035077 0.0211765 1]

>>> coherent_dm(5, 1).diag()
array ([0.36791117, 0.36757705, 0.18523331, 0.05810197, 0.0211765 1)

>>> coherent_dm(5, 1).full()

array ([[0.36791117+0.3, 0.36774407+0.73, 0.26105441+0.3, 0.14620658+0. 7,
0.08826704+0.731,
[0.36774407+0.73, 0.36757705+0.3, 0.26093584+0.73, 0.14614018+0.7,
0.08822695+0.73],
[0.26105441+0.3, 0.26093584+0.73, 0.18523331+0.7j, 0.10374209+0.7,
0.06263061+0.71,
[0.14620658+0.3, 0.14614018+0.73, 0.10374209+0.7j, 0.05810197+0.7,
0.035077 +0.31,
[0.08826704+0.73, 0.08822695+0.3, 0.06263061+0.3, 0.035077 +0.7,
0.0211765 +0.311)

>>> coherent_dm (5, 1) .norm()
1.0000000175063126

>>> coherent_dm(5, 1).sqgrtm()

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = False

Qobj data =

[[0.36791117+3.66778589e-097 0.36774407-2.13388761e-097
0.26105441-1.51480558e-097 0.14620658-8.48384618e-107]

.08826704-5.12182118e-107]

.36774407-2.13388761e-097 0.36757705+2.41479965e-097

.26093584-1.11446422e-097 0.14614018+8.98971115e-107

.08822695+6.40705133e-107]

.26105441-1.51480558e-097 0.26093584-1.11446422e-097

.18523331+4.02032413e-097 0.10374209-3.39161017e-107

.06263061-3.71421368e-107]

.14620658-8.48384618e-107j 0.14614018+8.98971115e-107

.10374209-3.39161017e-1073 0.05810197+3.36300708e-107

.035077 +2.36883273e-107]

.08826704-5.12182118e-107 0.08822695+6.40705133e-107

.06263061-3.71421368e-1073 0.035077 +2.36883273e-107

.0211765 +1.71630348e-10711

o

O O O O O O oo oo o o

>>> coherent_dm(5, 1).tr ()
1.0

>>> (basis (4, 2) + basis (4, 1)) .unit ()

Quantum object: dims = [[4], [1]], shape = (4, 1), type = ket
Qobj data =
[[O.]
[0.70710678]
[0.70710678]
[]

0.]

22 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.3 Manipulating States and Operators

3.3.1 Introduction

In the previous guide section Basic Operations on Quantum Objects, we saw how to create states and operators,
using the functions built into QuTiP. In this portion of the guide, we will look at performing basic operations
with states and operators. For more detailed demonstrations on how to use and manipulate these objects, see the
examples on the tutorials web page.

3.3.2 State Vectors (kets or bras)

Here we begin by creating a Fock qutip. states.basis vacuum state vector |0) with in a Hilbert space with
5 number states, from O to 4:

vac = basis (5, 0)

print (vac)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[1.]
[0.]
[0.]
[0.1]
[0.1]

and then create a lowering operator (G) corresponding to 5 number states using the qutip.operators.
destroy function:

a = destroy (5)

print (a)
Output:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = False
Qobj data =
[[0. 1 0. 0. 0.]
[0 0 1.41421356 0. 0.]
[0. 0 0. 1.73205081 0.]
[0. 0 0. 0. 2.]
[0 0 0. 0. 0. 1]

Now lets apply the destruction operator to our vacuum state vac,

print (a * wvac)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]
[0.]
[0.]
[0.1]
[0.]

]

3.3. Manipulating States and Operators 23

https://qutip.org/tutorials.html

QuTiP: Quantum Toolbox in Python, Release 4.7.0

We see that, as expected, the vacuum is transformed to the zero vector. A more interesting example comes from
using the adjoint of the lowering operator, the raising operator a':

print (a.dag() = vac)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]

[1.]
[0.]
[0.]
[0.1]

The raising operator has in indeed raised the state vec from the vacuum to the |1) state. Instead of using the dagger
Qobj.dag () method to raise the state, we could have also used the built in qutip.operators.create
function to make a raising operator:

c = create(5)

print (c * wvac)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket

Qobj data =

[[0.
1.

AN P

[

[0
[0.
[0

which does the same thing. We can raise the vacuum state more than once by successively apply the raising
operator:

print(c * ¢ = vac)

QOutput:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]
[O.]
[1.41421356]
[]
[]

]

or just taking the square of the raising operator (dT) %,

print (c *%x 2 % vac)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[O.]
[O.]
[1.41421356]
[]
[]

]

24 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Applying the raising operator twice gives the expected v/n + 1 dependence. We can use the product of ¢ * a to
also apply the number operator to the state vector vac:

print(c * a = vac)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket

Qobj data =

[[0.
0.

AN)

[

[0
[O.
[0

or on the |1) state:

’print(c * a * (c *« vac))

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket

Qobj data =

[[0.
1.

AN)

[

[0
[0.
[0

or the |2) state:

’print(c * a * (cx*x2 * vac))

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]
[O.]
[2.82842712]
[]
[]

]

Notice how in this last example, application of the number operator does not give the expected value n = 2, but
rather 2v/2. This is because this last state is not normalized to unity as ¢ |n) = v/n + 1 |n + 1). Therefore, we
should normalize our vector first:

’print(c # a * (c**2 + vac) .unit ())

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[O.
0.

R -

[
[
[
[

Since we are giving a demonstration of using states and operators, we have done a lot more work than we should
have. For example, we do not need to operate on the vacuum state to generate a higher number Fock state. Instead
we can use the qutip.states.basis (or qutip.states. fock) function to directly obtain the required
state:

3.3. Manipulating States and Operators 25

QuTiP: Quantum Toolbox in Python, Release 4.7.0

ket = basis (5, 2)

print (ket)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[O.
0.

A -

[
[
[
[

Notice how it is automatically normalized. We can also use the built in qutip. operators. num operator:

n = num(5)

print (n)

Output:

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
0.

O O O+ O
O O N O
O W O O o
s O O O O
Ll

Therefore, instead of ¢ * a * (c *x 2 % vac) .unit () we have:

print (n = ket)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[O.
0.

A "

[
[
[
[

We can also create superpositions of states:

ket = (basis (5, 0) + basis (5, 1)) .unit ()

print (ket)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.70710678]

[0.70710678]
[0. 1
[0.]
[0 1]

where we have used the qutip.Qob7j.unit method to again normalize the state. Operating with the number
function again:

26 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

print(n * ket)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]
[0.70710678]
[1
[]
[]

]

We can also create coherent states and squeezed states by applying the qutip.operators.displace and
qutip.operators.squeeze functions to the vacuum state:

vac = basis (5, 0)
d = displace (5, 17)
s = squeeze (5, np.complex (0.25, 0.25))

print (d * wvac)

Output:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.60655682+0.7]
[0. +0.606281337]
[-0.4303874 +0.7]
[0. -0.241043517]
[0.14552147+0.7 11

print(d * s = vac)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.65893786+0.081393817]

.10779462+0.515797357]

.37567217-0.013268537]
.02688063-0.238287757]
.26352814+0.115121787]

O O O O

[

[_
[_
[]

Of course, displacing the vacuum gives a coherent state, which can also be generated using the built in qutip.
states.coherent function.

3.3.3 Density matrices

One of the main purpose of QuTiP is to explore the dynamics of open quantum systems, where the most general
state of a system is no longer a state vector, but rather a density matrix. Since operations on density matrices
operate identically to those of vectors, we will just briefly highlight creating and using these structures.

The simplest density matrix is created by forming the outer-product |¢) (¢| of a ket vector:

ket = basis (5, 2)

print (ket » ket.dag())

QOutput:

3.3. Manipulating States and Operators 27

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =

[[0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0.]

[0. 0. 1. 0. 0.]

[0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0.]]

A similar task can also be accomplished via the qutip.states. fock_dmor qutip.states.ket2dm
functions:

print (fock_dm (5, 2))

Output:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.1]]

print (ket2dm (ket))

Output:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.1]]

If we want to create a density matrix with equal classical probability of being found in the |2) or |4) number states
we can do the following:

print (0.5 % ket2dm(basis (5, 4)) + 0.5 % ket2dm(basis (5, 2)))

Output:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0. 0. 0. O 0. 1
[0. 0. 0. O 0. 1
[0. 0. 0.50 0. 1
[0. 0. 0. O 0. 1
[0. 0. 0. O 0.5]1]

oruse 0.5 * fock_dm(5, 2) + 0.5 x fock_dm (5, 4). There are also several other built-in func-
tions for creating predefined density matrices, for example qutip.states.coherent_dm and qutip.
states.thermal_dm which create coherent state and thermal state density matrices, respectively.

print (coherent_dm(5, 1.25))

Output:

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0.20980701 0.26141096 0.23509686 0.15572585 0.13390765]

(continues on next page)

28 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

[0.26141096 0.32570738 0.29292109 0.19402805 0.16684347]
[0.23509686 0.29292109 0.26343512 0.17449684 0.1500487]
[0.15572585 0.19402805 0.17449684 0.11558499 0.09939079]
[0.13390765 0.16684347 0.1500487 0.09939079 0.0854655 1]

print (thermal_dm(5, 1.25))

Output:

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True

Qobj data =

[[0.46927974 0. 0. 0. 0.]
[0. 0.26071096 0. 0. 0.]
[0. 0. 0.14483942 0. 0.]
[0. 0. 0. 0.08046635 0.]
[0 0. 0. 0. 0.0447035311]

QuTiP also provides a set of distance metrics for determining how close two density matrix distri-
butions are to each other. Included are the trace distance qutip.metrics.tracedist, fidelity
qutip.metrics.fidelity, Hilbert-Schmidt distance qutip.metrics.hilbert_dist, Bures dis-
tance qutip.metrics.bures_dist, Bures angle qutip.metrics.bures_angle, and quantum
Hellinger distance qutip.metrics.hellinger_dist.

x = coherent_dm (5, 1.25)

y = coherent_dm(5, np.complex (0, 1.25)) # <-— note the 'j

thermal_dm (5, 0.125)

N
Il

np.testing.assert_almost_equal (fidelity(x, x), 1)

np.testing.assert_almost_equal (hellinger_dist(x, y), 1.3819080728932833)

We also know that for two pure states, the trace distance (T) and the fidelity (F) are related by T' = +/1 — F'2, while
the quantum Hellinger distance (QHE) between two pure states |1) and |¢) is given by QHE = 1/2 — 2 |(¢|$)|*.

’np.testing.assert_almost_equal(tracedist(y, x), np.sqgrt(l - fidelity(y, x) *x 2))

For a pure state and a mixed state, 1 — F2 < T which can also be verified:

’assert 1 - fidelity(x, z) *x 2 < tracedist(x, z)

3.3.4 Qubit (two-level) systems

Having spent a fair amount of time on basis states that represent harmonic oscillator states, we now move on to
qubit, or two-level quantum systems (for example a spin-1/2). To create a state vector corresponding to a qubit
system, we use the same qutip.states.basis,or qutip.states. fock, function with only two levels:

’spin = basis (2, 0)

Now at this point one may ask how this state is different than that of a harmonic oscillator in the vacuum state
truncated to two energy levels?

’vac = basis (2, 0)

At this stage, there is no difference. This should not be surprising as we called the exact same function
twice. The difference between the two comes from the action of the spin operators qutip.operators.
sigmax, qutip.operators.sigmay, qutip.operators.sigmaz, qutip.operators.sigmap,

3.3. Manipulating States and Operators 29

QuTiP: Quantum Toolbox in Python, Release 4.7.0

and qutip.operators.sigmam on these two-level states. For example, if vac corresponds to the vacuum
state of a harmonic oscillator, then, as we have already seen, we can use the raising operator to get the |1) state:

print (vac)

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]

[0.1]

c = create(2)

print (c * wvac)

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.]

[1.1]

For a spin system, the operator analogous to the raising operator is the sigma-plus operator qut ip. operators.
sigmap. Operating on the spin state gives:

print (spin)

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]

[0.1]

print (sigmap() * spin)

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.]

[0.1]

Now we see the difference! The qutip.operators.sigmap operator acting on the spin state returns the
zero vector. Why is this? To see what happened, let us use the qutip.operators. sigmaz operator:

print (sigmaz())

Output:

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]

[0. -1.7]

print (sigmaz () * spin)

Output:

30 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]

[0.1]

spin2 = basis (2, 1)

print (spin2)

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.]

[1.1]

print (sigmaz () * spin2)

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.]

[-1.11]

The answer is now apparent. Since the QuTiP qutip.operators. sigmaz function uses the standard z-basis
representation of the sigma-z spin operator, the spin state corresponds to the |1) state of a two-level spin system
while spin2 gives the ||) state. Therefore, in our previous example sigmap () * spin, we raised the qubit
state out of the truncated two-level Hilbert space resulting in the zero state.

While at first glance this convention might seem somewhat odd, it is in fact quite handy. For one, the spin operators
remain in the conventional form. Second, when the spin system is in the [1) state:

print (sigmaz () * spin)
QOutput:
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]
[0.1]

the non-zero component is the zeroth-element of the underlying matrix (remember that python uses c-indexing,
and matrices start with the zeroth element). The || state therefore has a non-zero entry in the first index position.
This corresponds nicely with the quantum information definitions of qubit states, where the excited |1) state is
label as |0), and the |]) state by |1).

If one wants to create spin operators for higher spin systems, then the qutip.operators. jmat function
comes in handy.

3.3. Manipulating States and Operators 31

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.3.5 Expectation values

Some of the most important information about quantum systems comes from calculating the expectation value of
operators, both Hermitian and non-Hermitian, as the state or density matrix of the system varies in time. Therefore,
in this section we demonstrate the use of the qut ip. expect function. To begin:

vac = basis (5, 0)

one = basis (5, 1)

c = create (D)

N = num(5)

np.testing.assert_almost_equal (expect (N, wvac), 0)
np.testing.assert_almost_equal (expect (N, one), 1)

coh = coherent_dm(5, 1.073)
np.testing.assert_almost_equal (expect (N, coh), 0.9970555745806597)
cat = (basis(5, 4) + 1.03 = basis (5, 3)).unit ()

np.testing.assert_almost_equal (expect (c, cat), 0.99999999999999987)

The qutip.expect function also accepts lists or arrays of state vectors or density matrices for the second input:

states = [(c*x*xk * vac).unit () for k in range(5)] # must normalize

print (expect (N, states))

Output:

[0. 1. 2. 3. 4.]

cat_list = [(basis(5, 4) + x * basis(5, 3)).unit() for x in [0, 1.03, -1.0, -1.0311

print (expect (c, cat_list))

Output:

[0.40.9 0.+1.3 -1.40.3 0.-1.7]

Notice how in this last example, all of the return values are complex numbers. This is because the qutip.
expect function looks to see whether the operator is Hermitian or not. If the operator is Hermitian, then the
output will always be real. In the case of non-Hermitian operators, the return values may be complex. Therefore,
the qutip. expect function will return an array of complex values for non-Hermitian operators when the input
is a list/array of states or density matrices.

Of course, the qut ip. expect function works for spin states and operators:

up = basis (2, 0)
down = basis (2, 1)
np.testing.assert_almost_equal (expect (sigmaz (), up), 1)

np.testing.assert_almost_equal (expect (sigmaz (), down), -1)

as well as the composite objects discussed in the next section Using Tensor Products and Partial Traces:

32 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

spinl = basis (2, 0)

spin2 = basis (2, 1)

two_spins = tensor (spinl, spin2)
szl = tensor (sigmaz (), geye(2))
sz2 = tensor (geye(2), sigmaz())

np.testing.assert_almost_equal (expect (szl, two_spins), 1)

np.testing.assert_almost_equal (expect (sz2, two_spins), -1)

3.3.6 Superoperators and Vectorized Operators

In addition to state vectors and density operators, QuTiP allows for representing maps that act linearly on density
operators using the Kraus, Liouville supermatrix and Choi matrix formalisms. This support is based on the cor-
respondence between linear operators acting on a Hilbert space, and vectors in two copies of that Hilbert space,
vec : L(H) = H @ H [Hav03], [Wat13].

This isomorphism is implemented in QuTiP by the operator to_vector and vector to_operator
functions:

psi = basis (2, 0)

rho ket2dm (psi)

print (rho)

Output:

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]

[0. 0.]]

vec_rho = operator_to_vector (rho)

print (vec_rho)

Output:
Quantum object: dims = [[[2], [2]], [1]1], shape = (4, 1), type = operator-ket
Qobj data =
[[1.]
[0.]
[0.]
[0.1]
rho2 = vector_to_operator (vec_rho)
np.testing.assert_almost_equal ((rho - rho2) .norm(), O0)

The type attribute indicates whether a quantum object is a vector corresponding to an operator
(operator-ket), or its Hermitian conjugate (operator—-bra).

Note that QuTiP uses the column-stacking convention for the isomorphism between £(#) and H ® H:

3.3. Manipulating States and Operators 33

QuTiP: Quantum Toolbox in Python, Release 4.7.0

A = Qobj(np.arange (4) .reshape((2, 2)))

print (A)

Output:

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = False
Qobj data =
[[0. 1.]

[2. 3.]]

print (operator_to_vector (A))

Output:

Quantum object: dims = [[[2], [2]], [1]1], shape = (4, 1), type = operator-ket
Qobj data =

[[0.]

[2.]
[1.]
[3.11

Since H ® H is a vector space, linear maps on this space can be represented as matrices, often called super-
operators. Using the Qob 7, the spre and spost functions, supermatrices corresponding to left- and right-
multiplication respectively can be quickly constructed.

X = sigmax ()

S = spre(X) = spost(X.dag()) # Represents conjugation by X.

Note that this is done automatically by the t o_ super function when given t ype="'oper"' input.

S2 = to_super (X)

np.testing.assert_almost_equal ((S - S2).norm(), O0)

Quantum objects representing superoperators are denoted by t ype="'super"':

print (S)
Output:
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—isherm = True
Qobj data =
[[0. 0. 0. 1.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[1. 0. 0. 0.11

Information about superoperators, such as whether they represent completely positive maps, is exposed through
the iscp, istp and iscptp attributes:

’print(S.iscp, S.istp, S.iscptp)

Output:

’True True True

In addition, dynamical generators on this extended space, often called Liouvillian superoperators, can be created
using the 1iouvillian function. Each of these takes a Hamiltonian along with a list of collapse operators, and
returns a type="super" object that can be exponentiated to find the superoperator for that evolution.

34 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

H = 10 % sigmaz()

cl = destroy(2)

L = liouvillian(H, [cl])

print (L)

S = (12 % L) .expm()

Output:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,

—isherm = False

Qobj data =

[f 0. +0.3 0. +0.3 0. +0.3 1. +0.7]
[0. +0.j -0.5+20.3 0. +0.3 0. +0.7]
[0. +0.3 0. +0.3j -0.5-20.3 0. +0.7]
[0 +0.3 0. +0.3 0. +0.3 -1. +0.3]]

For qubits, a particularly useful way to visualize superoperators is to plot them in the Pauli basis, such that
Sy = {(ou]S[o.]). Because the Pauli basis is Hermitian, .S, ,, is a real number for all Hermitian-preserving
superoperators .S, allowing us to plot the elements of S as a Hinton diagram. In such diagrams, positive elements
are indicated by white squares, and negative elements by black squares. The size of each element is indicated by

the size of the corresponding square. For instance, let S[p] = o,pol. Then S[o,] = o, -

+1 p=0,z
-1 p=yz

We

can quickly see this by noting that the Y and Z elements of the Hinton diagram for S are negative:

from qutip import =

settings.colorblind_safe = True

import matplotlib.pyplot as plt

plt.rcParams|['savefig.transparent']
X = sigmax ()

S = spre(X) = spost(X.dag())

hinton (S)

True

3.3. Manipulating States and Operators

35

https://matplotlib.org/examples/specialty_plots/hinton_demo.html

QuTiP: Quantum Toolbox in Python, Release 4.7.0

— 1.00

- 0.75

- 0.50

0.25

0.00

-0.25

—0.50

-0.75

—1.00

3.3.7 Choi, Kraus, Stinespring and y Representations

In addition to the superoperator representation of quantum maps, QuTiP supports several other useful represen-
tations. First, the Choi matrix J(A) of a quantum map A is useful for working with ancilla-assisted process
tomography (AAPT), and for reasoning about properties of a map or channel. Up to normalization, the Choi
matrix is defined by acting A on half of an entangled pair. In the column-stacking convention,

J(A) = (k@ A)[) (-

In QuTiP, J(A) can be found by calling the to_choi function on a type="super" Qobj.

X = sigmax ()

S = sprepost (X, X)

J = to_choi (S)
print (J)
Output:
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—~isherm = True, superrep = choi
Qobj data =
[[0. 0. 0. 0.]
[0. 1. 1. 0.]
[0. 1. 1. 0.]
[0. 0. 0. 0.]]

36 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

print (to_choi (spre (geye (2))))

Output:
Quantum object: dims = [[[2], [2]], [[2], [2]]1], shape = (4, 4), type = super,,
—~isherm = True, superrep = choi
Qobj data =
[[1. 0. 0. 1.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[1. 0. 0. 1.1]

If a Qob j instance is already in the Choi superrep, then calling to_choi does nothing:

print (to_choi (J))

Output:
Quantum object: dims = [[[2], [2]], [[2], [2]]1], shape = (4, 4), type = super,
—~isherm = True, superrep = choi
Qobj data =
[[0. 0. 0. 0.]
[0. 1. 1. 0.]
[0. 1. 1. 0.]
[0. 0. 0. 0.11

To get back to the superoperator representation, simply use the to_super function. As with to_choi,
to_super is idempotent:

print (to_super (J) - S)

Output:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—isherm = True

Qobj data =

[[0. O.

0. 0.1
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.1]

print (to_super (S))

Output:

Quantum object: dims = [[[2], [2]], [[2], [2]]1], shape = (4, 4), type = super,
—isherm = True

Qobj data =

[[0. O.

-]
-]
-]
-]

O O O

0
[0. 0. 1.
[0. 1. 0.
[1. 0. O]

We can quickly obtain another useful representation from the Choi matrix by taking its eigendecomposition. In
particular, let { A;} be a set of operators such that J(A) = >, |A;)){(A;|. We can write J(A) in this way for any
hermicity-preserving mapj that is, for any map A such that .J(A) = JT(A). These operators then form the Kraus
representation of A. In particular, for any input p,

A(p) =3 AipAl.

3.3. Manipulating States and Operators 37

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Notice using the column-stacking identity that (CT @ A)|B)) = |ABC)), we have that

DK@ AN @ A D] = 3 14D (Al = T (A).

?

The Kraus representation of a hermicity-preserving map can be found in QuTiP using the t o _kraus function.

’del sum # np.sum overwrote sum and caused a bug.

’I, X, Y, Z = geye(2), sigmax (), sigmay(), sigmaz()

S = sum([sprepost (P, P) for P in (I, X, Y, Z)]) / 4
print (S)

Output:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,
—isherm = True

Qobj data

[[0.5 0.
[0. O.
[0. O.
[0.5 0.

o o o o |
o O O O

J = to_choi (S)
print (J)

Output:

Quantum object: dims = [[[2], [2]], [[2], [2]]1], shape = (4, 4), type = super,,
—isherm = True, superrep = choi

Qobj data
[[0.5 0.
.5

o O O
o o o o |
O O O O

.5

]
(0.]
(0.]
(0]

]

print (J.eigenstates () [1])

Output:

[Quantum object: dims = [[[2], [2]], [1, 111, shape = (4, 1), type = operator-ket
Qobj data =
[[1.]

[0.]

[0.1]

[0.1]

Quantum object: dims
Qobj data =
[[0.]

[1.]

[0.]

[0.1]

Quantum object: dims
Qobj data =
[[0.]

[0.]

(1.1

[0.1]

Quantum object: dims = [[[2], [2]1], [1, 111, shape = (4, 1), type = operator-ket
Qobj data =

I
—
N
s
~

[211, [1, 111, shape = (4, 1), type = operator-ket

I
—
N
s
~

[211, [1, 111, shape = (4, 1), type = operator-ket

(continues on next page)

38 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

[[0.]
[0.]
(0.1
[1.71]
K = to_kraus(S)
print (K)
Output:
[Quantum object: dims = [[2], [2]], shape (2, 2), type = oper, isherm = True
Qobj data =
[[0.70710678 O.]
[0. 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type,
—= oper, isherm = False
Qobj data =
[[0. 0.]
[0.70710678 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type,
—= oper, isherm = False
Qobj data =
[[O. 0.70710678]
[0. 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type,
—= oper, isherm = True
Qobj data =
[[0. 0.]
[0. 0.70710678111

As with the other representation conversion functions, to_kraus checks the superrep attribute of its input,
and chooses an appropriate conversion method. Thus, in the above example, we can also call to_kraus on J.

KJ = to_kraus (J)
print (KJ)
Output:
[Quantum object: dims = [[2], [2]], shape (2, 2), type = oper, isherm = True
Qobj data =
[[0.70710678 O.]
[0. 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type,
—= oper, isherm = False
Qobj data =
[[0. 0.]
[0.70710678 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type,
—= oper, isherm = False
Qobj data =
[[0. 0.70710678]
[0. 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type,
—= oper, isherm = True
Qobj data =
[[0. 0.]
[0. 0.70710678111
for A, AJ in zip (K, KJ):
print (A — AJ)
Output:
Quantum object: dims = [[2], [2]], shape (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.]

(continues on next page)

3.3. Manipulating States and Operators

39

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

[0. 0.]]
Quantum object: dims
Qobj data =

[[0. 0.]

[0. 0.]]
Quantum object: dims
Qobj data =
[[0. 0.]

[0. 0.]]
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.]

[0. 0.]]

I
N
S

N
0
oy
Q
s}
()

I

~

2), type = oper, isherm = True

I
N
N

[\
0]
[=n
Q
Q3
0]

I

©

2), type = oper, isherm = True

The Stinespring representation is closely related to the Kraus representation, and consists of a pair of operators A
and B such that for all operators X acting on #,

A(X) = Try(AXBT),

where the partial trace is over a new index that corresponds to the index in the Kraus summation. Conversion to
Stinespring is handled by the t o_ st inespring function.

a = create(2) .dag()

S_ad = sprepost(a * a.dag(), a * a.dag()) + sprepost(a, a.dag())
S = 0.9 » sprepost (I, I) + 0.1 %= S_ad

print (S)

Output:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,,
—isherm = False

Qobj data
[[1. O.
.9

o o o o |

O O O O

[0.
[0.
[0

o O O

A, B = to_stinespring(S)

print (A)
Output:
Quantum object: dims = [[2, 3], [2]], shape = (6, 2), type = oper, isherm = False
Qobj data =
[[-0.98845443 0.]
[0. 0.31622777]
[0.15151842 0.]
[0. -0.93506452]
[0. 0.]
[0 -0.16016975]]
print (B)
Output:
Quantum object: dims = [[2, 3], [2]], shape = (6, 2), type = oper, isherm = False
Qobj data =

[[-0.98845443 0.]

(continues on next page)

40 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

. 0.31622777]
.15151842 0.]
-0.93506452]

0.]
-0.16016975]

O O O O O

]

Notice that a new index has been added, such that A and B have dimensions [[2, 3], [2]], with the length-3
index representing the fact that the Choi matrix is rank-3 (alternatively, that the map has three Kraus operators).

to_kraus (S)
print (to_choi (S) .eigenenergies())

Output:

[0. 0.04861218 0.1 1.85138782]

Finally, the last superoperator representation supported by QuTiP is the y-matrix representation,

A(/)) = Z Xa,ﬁBapBga
o,

where {B,,} is a basis for the space of matrices acting on . In QuTiP, this basis is taken to be the Pauli basis
B, =04/ \/2. Conversion to the x formalism is handled by the to_ chi function.

chi = to_chi(S)
print (chi)

Output:

Quantum object: dims = [[[2], [2]], [[2], [2]]1], shape = (4, 4), type = super,,
—~isherm = True, superrep = chi

Qobj data =

[[3.7+0.3 0. +0.3 0. +0.3 0.1+0.7]

[0. +0.3 0.1+0.3 0. +0.13 0. +0.73]

[0. +0.3 0. -0.13 0.1+0.3 0. +0.73]

[0.1+0.3 0. +0.3 0. +0.3 0.1+0.73 11

One convenient property of the y matrix is that the average gate fidelity with the identity map can be read off
directly from the o element:

np.testing.assert_almost_equal (average_gate_fidelity (S), 0.9499999999999998)

print (chi[0, 0] / 4)

Output:

(0.925+09)

Here, the factor of 4 comes from the dimension of the underlying Hilbert space H. As with the superoperator
and Choi representations, the x representation is denoted by the superrep, such that to_super, to_choi,
to_kraus, to_stinespring and to_chi all convert from the y representation appropriately.

3.3. Manipulating States and Operators 41

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.3.8 Properties of Quantum Maps

In addition to converting between the different representations of quantum maps, QuTiP also provides attributes
to make it easy to check if a map is completely positive, trace preserving and/or hermicity preserving. Each of
these attributes uses superrep to automatically perform any needed conversions.

In particular, a quantum map is said to be positive (but not necessarily completely positive) if it maps all positive
operators to positive operators. For instance, the transpose map A(p) = pT is a positive map. We run into
problems, however, if we tensor A with the identity to get a partial transpose map.

rho = ket2dm(bell_state())
rho_out = partial_transpose(rho, [0, 1])
print (rho_out.eigenenergies())

Output:

[-0.5 0.5 0.5 0.5]

Notice that even though we started with a positive map, we got an operator out with negative eigenvalues. Com-
plete positivity addresses this by requiring that a map returns positive operators for all positive operators, and does
so even under tensoring with another map. The Choi matrix is very useful here, as it can be shown that a map is
completely positive if and only if its Choi matrix is positive [Wat13]. QuTiP implements this check with the 1 scp
attribute. As an example, notice that the snippet above already calculates the Choi matrix of the transpose map
by acting it on half of an entangled pair. We simply need to manually set the dims and superrep attributes to
reflect the structure of the underlying Hilbert space and the chosen representation.

J = rho_out

J.dims = [[[2], [21], [[2]1, [2]1]]
J.superrep = 'choi'

print (J.iscp)

Output:

’False

This confirms that the transpose map is not completely positive. On the other hand, the transpose map does satisfy
a weaker condition, namely that it is hermicity preserving. That is, A(p) = (A(p)) for all p such that p = pf. To
see this, we note that (pT)T = p*, the complex conjugate of p. By assumption, p = p! = (p*)7T, though, such that
A(p) = A(p") = p*. We can confirm this by checking the i shp attribute:

’print(J.ishp)

Output:

’True

Next, we note that the transpose map does preserve the trace of its inputs, such that Tr(A[p]) = Tr(p) for all p.
This can be confirmed by the i stp attribute:

’print(J.istp)

Output:

’False

Finally, a map is called a quantum channel if it always maps valid states to valid states. Formally, a map is a
channel if it is both completely positive and trace preserving. Thus, QuTiP provides a single attribute to quickly
check that this is true.

42 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

>>> print (J.iscptp)

False

>>> print (to_super (geye (2)) .iscptp)
True

3.4 Using Tensor Products and Partial Traces

3.4.1 Tensor products

To describe the states of multipartite quantum systems - such as two coupled qubits, a qubit coupled to an oscillator,
etc. - we need to expand the Hilbert space by taking the tensor product of the state vectors for each of the system
components. Similarly, the operators acting on the state vectors in the combined Hilbert space (describing the
coupled system) are formed by taking the tensor product of the individual operators.

In QuTiP the function qut ip. tensor. tensorisused to accomplish this task. This function takes as argument
a collection:

’>>> tensor (opl, op2, op3)

oralist:

’>>> tensor ([opl, op2, op3])

of state vectors or operators and returns a composite quantum object for the combined Hilbert space. The function
accepts an arbitrary number of states or operators as argument. The type returned quantum object is the same as
that of the input(s).

For example, the state vector describing two qubits in their ground states is formed by taking the tensor product
of the two single-qubit ground state vectors:

print (tensor (basis (2, 0), basis (2, 0)))

Output:

Quantum object: dims = [[2, 2], [1, 111, shape = (4, 1), type = ket
Qobj data =

[[1.]

[0.]
[0.]
[0.1]

or equivalently using the 1ist format:

print (tensor ([basis (2, 0), basis (2, 0)]))

Output:

Quantum object: dims = [[2, 2], [1l, 1]1], shape = (4, 1), type = ket
Qobj data =

[[1.]

[0.]
[0.]
[0.1]

This is straightforward to generalize to more qubits by adding more component state vectors in the argument list
tothe qutip. tensor. tensor function, as illustrated in the following example:

3.4. Using Tensor Products and Partial Traces 43

QuTiP: Quantum Toolbox in Python, Release 4.7.0

print (tensor ((basis (2, 0) + basis(2, 1)) .unit(), (basis(2, 0) + basis(2, 1)).
—unit (), basis (2, 0)))

QOutput:

Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = (8, 1), type = ket
Qobj data =

[[0.5]

0.
.5

ual

[
[
[
[
[
[0.5
[

]
]
]
]
]
]
]

O O O O O O

This state is slightly more complicated, describing two qubits in a superposition between the up and down states,
while the third qubit is in its ground state.

To construct operators that act on an extended Hilbert space of a combined system, we similarly pass a list of
operators for each component system to the qutip.tensor. tensor function. For example, to form the
operator that represents the simultaneous action of the o, operator on two qubits:

print (tensor (sigmax (), sigmax()))

Output:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[0. 0. 0. 1.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[1. 0. 0. 0.1]

To create operators in a combined Hilbert space that only act on a single component, we take the tensor product of
the operator acting on the subspace of interest, with the identity operators corresponding to the components that
are to be unchanged. For example, the operator that represents o on the first qubit in a two-qubit system, while
leaving the second qubit unaffected:

print (tensor (sigmaz (), identity(2)))

Output:
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. -1. 0.]
[0 0 0. -1.1]

44 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.4.2 Example: Constructing composite Hamiltonians

The qutip.tensor. tensor function is extensively used when constructing Hamiltonians for composite sys-
tems. Here we’ll look at some simple examples.

Two coupled qubits

First, let’s consider a system of two coupled qubits. Assume that both the qubits have equal energy splitting, and
that the qubits are coupled through a 0, ® o, interaction with strength g = 0.05 (in units where the bare qubit
energy splitting is unity). The Hamiltonian describing this system is:

H = tensor(sigmaz (), identity(2)) + tensor (identity(2), sigmaz()) + 0.05 *_
—tensor (sigmax (), sigmax())

print (H)

Output:

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[2.

0.
0.
0.05
0.

[O.
[0.
[0.05

Three coupled qubits

The two-qubit example is easily generalized to three coupled qubits:

H = (tensor(sigmaz (), identity(2), identity(2)) + tensor(identity(2), sigmaz(),
—~identity(2)) + tensor(identity(2), identity(2), sigmaz()) + 0.5 *_
—tensor (sigmax (), sigmax (), identity(2)) + 0.25 x tensor(identity(2), sigmax(), .
—sigmax()))
print (H)
QOutput:
Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = (8, 8), type = oper, isherm
—= True
Qobj data =
[[3. 0. 0. 0.25 0. 0. 0.5 0. 1
[0. 1. 0.25 0 0. 0. 0. 0.5]
[0. 0.25 1. 0 0.5 0. 0. 0.]
[0.25 O. 0. -1 0. 0.5 0. 0.]
[0. 0. 0.5 0. 1. 0. 0. 0.25]
[0. 0. 0. 0.5 0. -1. 0.25 0.]
[0.5 0. 0. 0 0. 0.25 -1. 0. 1
[0. 0.5 0. 0 0.25 0. 0. -3. 11

3.4. Using Tensor Products and Partial Traces 45

QuTiP: Quantum Toolbox in Python, Release 4.7.0

A two-level system coupled to a cavity: The Jaynes-Cummings model

The simplest possible quantum mechanical description for light-matter interaction is encapsulated in the Jaynes-
Cummings model, which describes the coupling between a two-level atom and a single-mode electromagnetic field
(a cavity mode). Denoting the energy splitting of the atom and cavity omega_a and omega_ c, respectively, and
the atom-cavity interaction strength g, the Jaynes-Cummings Hamiltonian can be constructed as:

N = 10
omega_a = 1.0
omega_c = 1.25
g = 0.05

a = tensor (identity(2), destroy (N))

sm = tensor (destroy(2), identity(N))

sz = tensor(sigmaz (), identity (N))

H= 0.5 » omega_a * sz + omega_c * a.dag() » a + g = (a.dag() *= sm + a » sm.dag())
print (H)

Output:

Quantum object: dims = [[2, 10], [2, 10]1], shape = (20, 20), type = oper, isherm =

—True

Qobj data =

[[0.5 0. 0 0 0 0
0. 0. 0 0 0 0
0. 0. 0 0 0 0
0. 0.]

[0. 1.75 0. 0. 0. 0.
0. 0. 0. 0. 0.05 0.
0. 0. 0 0 0 0
0. 0.]

[0. 0. 3. 0. 0. 0.
0. 0. 0. 0. 0. 0.07071068
0. 0. 0 0 0 0
0. 0.]

[0. 0. 0. 4.25 0. 0.
0. 0. 0 0 0 0
0.08660254 0. 0 0 0 0
0. 0.]

[0. 0. 0 0 5.5 0
0. 0. 0. 0 0. 0.
0. 0.1 0. 0 0. 0.
0. 0.]

[0. 0. 0 0. 0. 6.75
0. 0. 0. 0. 0. 0
0. 0. 0.1118034 0. 0. 0
0. 0.]

[0. 0. 0 0 0 0
8. 0. 0. 0. 0. 0.
0. 0. 0. 0.12247449 0. 0.
0. 0.]

[0. 0. 0 0. 0 0.
0. 9.25 0 0. 0. 0.
0. 0. 0 0. 0.13228757 0.
0. 0.]

(continues on next page)

46 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

[0. 0. 0 0. 0 0
0. 0. 10.5 0. 0. 0.
0. 0. 0. 0. 0. 0.14142136
0. 0.]

[0. 0. 0. 0. 0. 0.
0. 0. 0. 11.75 0. 0.
0. 0. 0 0 0 0
0.15 0.]

[0. 0.05 0. 0. 0. 0.
0. 0. 0 0 -0.5 0
0. 0. 0 0 0 0
0. 0.]

[O. 0. 0.07071068 0. 0. 0.
0. 0. 0. 0. 0. 0.75
0. 0. 0 0 0 0
0. 0.]

[0. 0. 0. 0.08660254 0. 0.
0. 0. 0. 0. 0. 0.
2. 0. 0 0. 0
0. 0.]

[0. 0. 0 0 0.1 0.
0. 0. 0. 0. 0. 0.
0. 3.25 0. 0. 0. 0.
0. 0.]

[0. 0. 0. 0. 0. 0.1118034
0. 0. 0 0. 0 0
0. 0. 4.5 0. 0 0
0. 0.]

[0. 0. 0 0 0 0
0.12247449 0. 0. 0. 0. 0.
0. 0. 0. 5.75 0. 0.
0. 0.]

[0. 0. 0. 0. 0. 0.
0. 0.13228757 0. 0. 0. 0.
0. 0. 0 0. 7 0
0. 0.]

[0. 0. 0. 0. 0. 0.
0. 0. 0.14142136 0. 0. 0.
0. 0. 0. 0. 0. 8.25
0. 0.]

[0. 0. 0. 0. 0. 0.
0. 0. 0. 0.15 0. 0.
0. 0. 0 0 0 0
9.5 0.]

[0. 0. 0 0 0 0
0. 0. 0 0 0 0
0. 0. 0 0 0 0
0. 10.75 11

Here N is the number of Fock states included in the cavity mode.

3.4. Using Tensor Products and Partial Traces 47

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.4.3 Partial trace

The partial trace is an operation that reduces the dimension of a Hilbert space by eliminating some degrees of
freedom by averaging (tracing). In this sense it is therefore the converse of the tensor product. It is useful when
one is interested in only a part of a coupled quantum system. For open quantum systems, this typically involves
tracing over the environment leaving only the system of interest. In QuTiP the class method qutip.Qob7j.
ptrace is used to take partial traces. qutip.Qobj.ptrace acts on the qutip.Qob j instance for which
it is called, and it takes one argument sel, which is a 1ist of integers that mark the component systems that
should be kept. All other components are traced out.

For example, the density matrix describing a single qubit obtained from a coupled two-qubit system is obtained
via:

>>> psi = tensor (basis(2, 0), basis(2, 1))

>>> psi.ptrace (0)

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. 0.]]
>>> psi.ptrace(1l)
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 0.]
[0. 1.1]

Note that the partial trace always results in a density matrix (mixed state), regardless of whether the composite
system is a pure state (described by a state vector) or a mixed state (described by a density matrix):

>>> psi = tensor ((basis (2, 0) + basis(2, 1)) .unit(), basis (2, 0))

>>> psi

Quantum object: dims = [[2, 2], [1, 111, shape = (4, 1), type = ket

Qobj data =

[[0.70710678
[0.
[0.70710678
[0.

>>> psi.ptrace(0)
Quantum object: dims
Qobj data =
[[0.5 0.5]

[0.5 0.5]1]

I
N
~
0]
[=x
o
s}
@
I
©

2), type = oper, isherm = True

>>> rho = tensor (ket2dm((basis (2, 0) + basis(2, 1)).unit()), fock_dm(2, 0))

>>> rho
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[0.5 0.
[0. O.
[0.5 0.
[0. O.

.5

o O o o |
o o o o

>>> rho.ptrace (0)
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0.5 0.5]
[0.5 0.571]

48 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.4.4 Superoperators and Tensor Manipulations

As described in Superoperators and Vectorized Operators, superoperators are operators that act on Liouville
space, the vectorspace of linear operators. Superoperators can be represented using the isomorphism vec :
L(H) — H ® H [Hav03], [Watl3]. To represent superoperators acting on £(H; ® H2) thus takes some ten-
sor rearrangement to get the desired ordering H; ® Ho ® H1 ® Ho.

In particular, this means that qutip.tensor does not act as one might expect on the results of qutip.
to_super:

>>> A = geye([2])
>>> B = geye([3])
B

) .dims

>>> to_super (tensor (A)
31, [2, 3111

teez, 31, 2, 311, [(2,

>>> tensor (to_super (A), to_super(B)).dims
ree2y, 21, 31, 311, (121, (21, (31, (3111

In the former case, the result correctly has four copies of the compound index with dims [2, 3]. In the latter
case, however, each of the Hilbert space indices is listed independently and in the wrong order.

The qutip.super_tensor function performs the needed rearrangement, providing the most direct
analog to qutip.tensor on the underlying Hilbert space. In particular, for any two type="oper"
Qobjs A and B, to_super (tensor (A, B)) == super_tensor (to_super (A), to_super (B))
and operator_to_vector (tensor (A, B)) == super_tensor (operator_to_vector (),
operator_to_vector (B)). Returning to the previous example:

>>> super_tensor (to_super (A), to_super (B)).dims
rer2, 31, 2, 311, rz2, 31, (2, 3111

The qutip.composite function automatically switches between qutip.tensor and qutip.
super_tensor based on the type of its arguments, such that composite (A, B) returns an appropriate
Qobj to represent the composition of two systems.

>>> composite (A, B).dims
[f2, 31, [2, 31]

>>> composite (to_super (A), to_super (B)).dims
(eez, 31, (2, 311, [([2, 31, [2, 311]

QuTiP also allows more general tensor manipulations that are useful for converting between superoperator repre-
sentations [WBC11]. In particular, the tensor_contract function allows for contracting one or more pairs
of indices. As detailed in the channel contraction tutorial, this can be used to find superoperators that represent
partial trace maps. Using this functionality, we can construct some quite exotic maps, such as a map from 3 x 3
operators to 2 X 2 operators:

>>> tensor_contract (composite (to_super (A), to_super(B)), (1, 3), (4, 6)).dims
[rre21, 211, 031, [311]

3.4. Using Tensor Products and Partial Traces 49

https://nbviewer.ipython.org/github/qutip/qutip-notebooks/blob/master/examples/superop-contract.ipynb

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.5 Time Evolution and Quantum System Dynamics

3.5.1 Dynamics Simulation Results

The solver.Result Class

Before embarking on simulating the dynamics of quantum systems, we will first look at the data structure used
for returning the simulation results to the user. This object is a qutip.solver.Result class that stores all
the crucial data needed for analyzing and plotting the results of a simulation. Like the qutip. Qob 7 class, the
Result class has a collection of properties for storing information. However, in contrast to the Qob j class, this
structure contains no methods, and is therefore nothing but a container object. A generic Result object result
contains the following properties for storing simulation data:

Property Description

result.solver String indicating which solver was used to generate the data.
result.times List/array of times at which simulation data is calculated.

result.expect List/array of expectation values, if requested.

result.states List/array of state vectors/density matrices calculated at t imes, if requested.
result. The number of expectation value operators in the simulation.

num_expect

result. The number of collapse operators in the simulation.

num_collapse

result.ntraj Number of Monte Carlo trajectories run.

result. Times at which state collapse occurred. Only for Monte Carlo solver.
col_times

result. Which collapse operator was responsible for each collapse in in col_times. Only
col_which used by Monte Carlo solver.

result.seeds Seeds used in generating random numbers for Monte Carlo solver.

Accessing Result Data

To understand how to access the data in a Result object we will use an example as a guide, although we do not
worry about the simulation details at this stage. Like all solvers, the Monte Carlo solver used in this example
returns an Result object, here called simply result. To see what is contained inside result we can use the
print function:

>>> print (result)

Result object with mcsolve data.

expect = True

num_expect = 2, num_collapse = 2, ntraj = 500

The first line tells us that this data object was generated from the Monte Carlo solver mcsolve (discussed in
Monte Carlo Solver). The next line (not the ——— line of course) indicates that this object contains expectation value
data. Finally, the last line gives the number of expectation value and collapse operators used in the simulation,
along with the number of Monte Carlo trajectories run. Note that the number of trajectories ntraj is only
displayed when using the Monte Carlo solver.

Now we have all the information needed to analyze the simulation results. To access the data for the two expecta-
tion values one can do:

expt0 = result.expect[0]
exptl = result.expect[1l]

Recall that Python uses C-style indexing that begins with zero (i.e., [0] => 1st collapse operator data). Together
with the array of times at which these expectation values are calculated:

50 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

times = result.times

we can plot the resulting expectation values:

plot (times, expt0O, times, exptl)
show ()

State vectors, or density matrices, as well as col_times and col_which, are accessed in a similar manner,
although typically one does not need an index (i.e [0]) since there is only one list for each of these components.
The one exception to this rule is if you choose to output state vectors from the Monte Carlo solver, in which case
there are nt ra j number of state vector arrays.

Saving and Loading Result Objects

The main advantage in using the Result class as a data storage object comes from the simplicity in which sim-
ulation data can be stored and later retrieved. The qutip.fileio.gsave and qutip.fileio.qgload
functions are designed for this task. To begin, let us save the data object from the previous section into a file
called “cavity+qubit-data” in the current working directory by calling:

gsave (result, 'cavity+qubit-data')

All of the data results are then stored in a single file of the same name with a “.qu” extension. Therefore, everything
needed to later this data is stored in a single file. Loading the file is just as easy as saving:

>>> stored_result = gload('cavity+qubit-data')
Loaded Result obiject:

Result object with mcsolve data.

expect = True

num_expect = 2, num_collapse = 2, ntraj = 500

where stored_result is the new name of the Result object. We can then extract the data and plot in the same
manner as before:

expt0 = stored_result.expect[0]
exptl = stored_result.expect[1]
times = stored_result.times
plot (times, expt0, times, exptl)
show ()

Also see Saving QuTiP Objects and Data Sets for more information on saving quantum objects, as well as arrays
for use in other programs.

3.5.2 Lindblad Master Equation Solver
Unitary evolution

The dynamics of a closed (pure) quantum system is governed by the Schrédinger equation

P R
ih L — 3.1
Zh@tq] HY, (3.1)

where W is the wave function, H the Hamiltonian, and 7 is Planck’s constant. In general, the Schrodinger equation
is a partial differential equation (PDE) where both ¥ and H are functions of space and time. For computational
purposes it is useful to expand the PDE in a set of basis functions that span the Hilbert space of the Hamiltonian,
and to write the equation in matrix and vector form

L d
i) = H 1)

3.5. Time Evolution and Quantum System Dynamics 51

QuTiP: Quantum Toolbox in Python, Release 4.7.0

where |1} is the state vector and H is the matrix representation of the Hamiltonian. This matrix equation can, in
principle, be solved by diagonalizing the Hamiltonian matrix H. In practice, however, it is difficult to perform
this diagonalization unless the size of the Hilbert space (dimension of the matrix) is small. Analytically, it is
a formidable task to calculate the dynamics for systems with more than two states. If, in addition, we consider
dissipation due to the inevitable interaction with a surrounding environment, the computational complexity grows
even larger, and we have to resort to numerical calculations in all realistic situations. This illustrates the importance
of numerical calculations in describing the dynamics of open quantum systems, and the need for efficient and
accessible tools for this task.

The Schrédinger equation, which governs the time-evolution of closed quantum systems, is defined by its Hamil-
tonian and state vector. In the previous section, Using Tensor Products and Partial Traces, we showed how
Hamiltonians and state vectors are constructed in QuTiP. Given a Hamiltonian, we can calculate the unitary (non-
dissipative) time-evolution of an arbitrary state vector |1)o) (psi0) using the QuTiP function qutip.mesolve.
It evolves the state vector and evaluates the expectation values for a set of operators expt_ops at the points in
time in the list t imes, using an ordinary differential equation solver.

For example, the time evolution of a quantum spin-1/2 system with tunneling rate 0.1 that initially is in the up
state is calculated, and the expectation values of the o, operator evaluated, with the following code

>>> H = 2xnp.pi = 0.1 * sigmax()

>>> psi0 = basis (2, 0)

>>> times = np.linspace(0.0, 10.0, 20)

>>> result = sesolve(H, psi0O, times, [sigmaz()])

The brackets in the fourth argument is an empty list of collapse operators, since we consider unitary evolution
in this example. See the next section for examples on how dissipation is included by defining a list of collapse
operators.

The function returns an instance of qutip.solver.Result, as described in the previous section Dynamics
Simulation Results. The attribute expect in result is a list of expectation values for the operators that are
included in the list in the fifth argument. Adding operators to this list results in a larger output list returned by the
function (one array of numbers, corresponding to the times in times, for each operator)

>>> result = sesolve(H, psiO, times, [sigmaz (), sigmay()])
>>> result.expect
[array ([1. , 0.78914057, 0.24548559, -0.40169513, -0.8794735 ,

-0.98636142, -0.67728219, -0.08258023, 0.54694721, 0.94581685,
0.94581769, 0.54694945, -0.08257765, -0.67728015, -0.98636097,
-0.87947476, -0.40169736, 0.24548326, 0.78913896, 1. 1),
array ([0.00000000e+00, -6.14212640e-01, -9.69400240e-01, -9.15773457e-01,
-4.75947849e-01, 1.64593874e-01, 7.35723339e-01, 9.96584419e-01,
8.37167094e-01, 3.24700624e-01, -3.24698160e-01, -8.37165632e-01,
-9.96584633e-01, -7.35725221e-01, -1.64596567e-01, 4.75945525e-01,
9.15772479e-01, 9.69400830e-01, 6.14214701e-01, 2.77159958e-06])]

The resulting list of expectation values can easily be visualized using matplotlib’s plotting functions:

>>> H = 2+xnp.pi » 0.1 * sigmax()

>>> psi0 = basis (2, 0)

>>> times = np.linspace (0.0, 10.0, 100)

>>> result = sesolve(H, psi0O, times, [sigmaz (), sigmay()])
>>> fig, ax = plt.subplots/()

>>> ax.plot (result.times, result.expect[0])
>>> ax.plot (result.times, result.expect[1l])
>>> ax.set_xlabel ('Time'")

>>> ax.set_ylabel ('Expectation values')

>>> ax.legend(("Sigma-2z", "Sigma-Y"))

>>> plt.show()

52 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

1.00 A

0.75 A

0.50 A

0.25 ~

0.00 A

—0.25 A

Expectation values

—0.50 A

—0.75 A

—1.00 A

If an empty list of operators is passed as fifth parameter, the qut ip.mesolve function returns a qutip.
solver.Result instance that contains a list of state vectors for the times specified in t imes

>>> times = [0.0, 1.0]
>>> result = mesolve(H, psiO, times, [], [])
>>> result.states
[Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.1]
[0.]], Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.80901699+0.7 1
[0. -0.5877852673111

3.5. Time Evolution and Quantum System Dynamics 53

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Non-unitary evolution

While the evolution of the state vector in a closed quantum system is deterministic, open quantum systems are
stochastic in nature. The effect of an environment on the system of interest is to induce stochastic transitions
between energy levels, and to introduce uncertainty in the phase difference between states of the system. The
state of an open quantum system is therefore described in terms of ensemble averaged states using the density
matrix formalism. A density matrix p describes a probability distribution of quantum states |1/,,), in a matrix
representation p = > pp |¥n) (¢n|, where p, is the classical probability that the system is in the quantum state
|1y,). The time evolution of a density matrix p is the topic of the remaining portions of this section.

The Lindblad Master equation

The standard approach for deriving the equations of motion for a system interacting with its environment is to
expand the scope of the system to include the environment. The combined quantum system is then closed, and its
evolution is governed by the von Neumann equation

1

h[HtOta Ptot (t)]; (32)

Prot(t) =
the equivalent of the Schrodinger equation (3.1) in the density matrix formalism. Here, the total Hamiltonian
Htot = Hsys + Henv + Hinta

includes the original system Hamiltonian Hyy, the Hamiltonian for the environment He,,, and a term representing
the interaction between the system and its environment H;,,;. Since we are only interested in the dynamics of the
system, we can at this point perform a partial trace over the environmental degrees of freedom in Eq. (3.2), and
thereby obtain a master equation for the motion of the original system density matrix. The most general trace-
preserving and completely positive form of this evolution is the Lindblad master equation for the reduced density
matrix p = Treny [ptot]

5(t) = (D), ()] + 3 5 [2Cup(t)CL — pl)CEC — CLCp(t)] (33

where the C,, = /¥, A, are collapse operators, and A,, are the operators through which the environment couples
to the system in Hi,, and ~,, are the corresponding rates. The derivation of Eq. (3.3) may be found in several
sources, and will not be reproduced here. Instead, we emphasize the approximations that are required to arrive at
the master equation in the form of Eq. (3.3) from physical arguments, and hence perform a calculation in QuTiP:

* Separability: Att = 0 there are no correlations between the system and its environment such that the total
density matrix can be written as a tensor product pf . (0) = p!(0) ® p,,(0).

* Born approximation: Requires: (1) that the state of the environment does not significantly change as a
result of the interaction with the system; (2) The system and the environment remain separable throughout
the evolution. These assumptions are justified if the interaction is weak, and if the environment is much
larger than the system. In summary, piot(t) & p(t) ® penv-

* Markov approximation The time-scale of decay for the environment 7, is much shorter than the smallest
time-scale of the system dynamics Tgys > Teny. This approximation is often deemed a “short-memory
environment” as it requires that environmental correlation functions decay on a time-scale fast compared to
those of the system.

* Secular approximation Stipulates that elements in the master equation corresponding to transition frequen-
cies satisfy |wap — wea| < 1/ Tsys» 1.€., all fast rotating terms in the interaction picture can be neglected. It
also ignores terms that lead to a small renormalization of the system energy levels. This approximation is
not strictly necessary for all master-equation formalisms (e.g., the Block-Redfield master equation), but it is
required for arriving at the Lindblad form (3.3) which is used in qutip.mesolve.

For systems with environments satisfying the conditions outlined above, the Lindblad master equation (3.3) gov-
erns the time-evolution of the system density matrix, giving an ensemble average of the system dynamics. In order
to ensure that these approximations are not violated, it is important that the decay rates ,, be smaller than the min-
imum energy splitting in the system Hamiltonian. Situations that demand special attention therefore include, for

54 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

example, systems strongly coupled to their environment, and systems with degenerate or nearly degenerate energy
levels.

For non-unitary evolution of a quantum systems, i.e., evolution that includes incoherent processes such as relax-
ation and dephasing, it is common to use master equations. In QuTiP, the same function (qutip.mesolve) is
used for evolution both according to the Schrodinger equation and to the master equation, even though these two
equations of motion are very different. The qutip.mesolve function automatically determines if it is suffi-
cient to use the Schrodinger equation (if no collapse operators were given) or if it has to use the master equation
(if collapse operators were given). Note that to calculate the time evolution according to the Schrodinger equation
is easier and much faster (for large systems) than using the master equation, so if possible the solver will fall back
on using the Schrodinger equation.

What is new in the master equation compared to the Schrédinger equation are processes that describe dissipation
in the quantum system due to its interaction with an environment. These environmental interactions are defined
by the operators through which the system couples to the environment, and rates that describe the strength of the
processes.

In QuTiP, the product of the square root of the rate and the operator that describe the dissipation process is called a
collapse operator. A list of collapse operators (c_ops) is passed as the fourth argument to the qutip.mesolve
function in order to define the dissipation processes in the master equation. When the c_ops isn’t empty, the
qutip.mesolve function will use the master equation instead of the unitary Schrédinger equation.

Using the example with the spin dynamics from the previous section, we can easily add a relaxation process (de-
scribing the dissipation of energy from the spin to its environment), by adding np. sqrt (0.05) * sigmax ()
to the previously empty list in the fourth parameter to the qut i p. mesolve function:

>>> times = np.linspace (0.0, 10.0, 100)

>>> result = mesolve(H, psiO, times, [np.sqrt(0.05) * sigmax()], [sigmaz (),
—sigmay()])

>>> fig, ax = plt.subplots()

>>> ax.plot (times, result.expect[0])

>>> ax.plot (times, result.expect[1l])

>>> ax.set_xlabel ('Time")

>>> ax.set_ylabel ("Expectation values')

>>> ax.legend(("Sigma-2z", "Sigma-Y"))

>>> plt.show()

3.5. Time Evolution and Quantum System Dynamics 55

QuTiP: Quantum Toolbox in Python, Release 4.7.0

1.00 — Sigma-Z
Sigma-Y
0.75 A
0.50 A
it L
S
‘© 0.25 4
>
[
e
w© 0.00 A
O
()
o
5 —0.25 1
—0.50 A
—0.75 4
0 2 4 6 8 10
Time

Here, 0.05 is the rate and the operator 0, (qutip.operators.sigmax) describes the dissipation process.

Now a slightly more complex example: Consider a two-level atom coupled to a leaky single-mode cavity through
a dipole-type interaction, which supports a coherent exchange of quanta between the two systems. If the atom
initially is in its groundstate and the cavity in a 5-photon Fock state, the dynamics is calculated with the lines
following code

>>> times = np.linspace (0.0, 10.0, 200)

>>> psi0 = tensor(fock(2,0), fock (10, 5))

>>> a = tensor(geye(2), destroy(10))

>>> sm = tensor (destroy(2), geye(10))

>>> H = 2 » np.pi ~ a.dag() » a + 2 » np.pi * sm.dag() * sm + 2 % np.pi * 0.25 =
— (sm * a.dag() + sm.dag() = a)

>>> result mesolve (H, psiO, times, [np.sqgrt(0.1)=*a]l, [a.dag()~*a, sm.dag()*sm])
>>> plt.figure()

>>> plt.plot (times, result.expect[0])

>>> plt.plot (times, result.expect[1l])

>>> plt.xlabel ('Time")

>>> plt.ylabel ('Expectation values')

>>> plt.legend(("cavity photon number", "atom excitation probability"))

>>> plt.show()

56 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

5 1 —— cavity photon number
atom excitation probability
4 -
%]
Q
=
g 31
C
e
I
0 2
o
x
L
1 -
O -
0 2 4 6 8 10
Time

3.5.3 Monte Carlo Solver

Introduction

Where as the density matrix formalism describes the ensemble average over many identical realizations of a quan-
tum system, the Monte Carlo (MC), or quantum-jump approach to wave function evolution, allows for simulating
an individual realization of the system dynamics. Here, the environment is continuously monitored, resulting in a
series of quantum jumps in the system wave function, conditioned on the increase in information gained about the
state of the system via the environmental measurements. In general, this evolution is governed by the Schrédinger
equation with a non-Hermitian effective Hamiltonian

ih
Heﬂ" - Hsys - 5 Zorj,_cn7 (34)

where again, the (', are collapse operators, each corresponding to a separate irreversible process with rate .
Here, the strictly negative non-Hermitian portion of Eq. (3.4) gives rise to a reduction in the norm of the wave
function, that to first-order in a small time dt, is given by (¢ (¢t + 6t)|1(t + dt)) = 1 — ép where

p =10ty (W(B)|C Culp(t)), (3.5)

and 4t is such that 6p < 1. With a probability of remaining in the state |¢)(¢ 4 6t)) given by 1 — ép, the
corresponding quantum jump probability is thus Eq. (3.5). If the environmental measurements register a quantum
jump, say via the emission of a photon into the environment, or a change in the spin of a quantum dot, the wave
function undergoes a jump into a state defined by projecting |1 (t)) using the collapse operator C,, corresponding
to the measurement

[(t + 68)) = Cr [(2)) / (b (D)|CFCltb(8)) 2. (3.6)

3.5. Time Evolution and Quantum System Dynamics 57

QuTiP: Quantum Toolbox in Python, Release 4.7.0

If more than a single collapse operator is present in Eq. (3.4), the probability of collapse due to the ith-operator
C; is given by

Pi(t) = (¥ (1)|C5 Cil(t)) /op. 3.7)

Evaluating the MC evolution to first-order in time is quite tedious. Instead, QuTiP uses the following algorithm to
simulate a single realization of a quantum system. Starting from a pure state |¢/(0)):

* Ia: Choose a random number 7; between zero and one, representing the probability that a quantum jump
occurs.

¢ Ib: Choose a random number r5 between zero and one, used to select which collapse operator was respon-
sible for the jump.

* II: Integrate the Schrodinger equation, using the effective Hamiltonian (3.4) until a time 7 such that the
norm of the wave function satisfies (¢)(7) [t (7)) = r1, at which point a jump occurs.

e III: The resultant jump projects the system at time 7 into one of the renormalized states given by Eq. (3.6).
The corresponding collapse operator C, is chosen such that n is the smallest integer satisfying:

D Palr) =y (3.8)

where the individual P, are given by Eq. (3.7). Note that the left hand side of Eq. (3.8) is, by definition,
normalized to unity.

* IV: Using the renormalized state from step III as the new initial condition at time 7, draw a new random
number, and repeat the above procedure until the final simulation time is reached.

Monte Carlo in QuTiP

In QuTiP, Monte Carlo evolution is implemented with the qutip.mcsolve function. It takes nearly the same
arguments as the qutip.mesolve function for master-equation evolution, except that the initial state must
be a ket vector, as oppose to a density matrix, and there is an optional keyword parameter nt raj that defines
the number of stochastic trajectories to be simulated. By default, nt raj=500 indicating that 500 Monte Carlo
trajectories will be performed.

To illustrate the use of the Monte Carlo evolution of quantum systems in QuTiP, let’s again consider the case of a
two-level atom coupled to a leaky cavity. The only differences to the master-equation treatment is that in this case
we invoke the qut ip.mcsolve function instead of qutip.mesolve

times = np.linspace (0.0, 10.0, 200)

psi0 = tensor (fock(2, 0), fock (10, 5))

a = tensor(geye(2), destroy(10))

sm = tensor (destroy(2), geye(10))

H = 2+np.pixa.dag()+*a + 2+np.pixsm.dag()*sm + 2+np.pi+0.25x (smra.dag() + sm.
—dag () *a)

data = mcsolve (H, psiO, times, [np.sqgrt(0.1) * al, [a.dag() = a, sm.dag() = sm])

plt.figure()

plt.plot (times, data.expect[0], times, data.expect[1l])
plt.title('Monte Carlo time evolution')

plt.xlabel ('Time'")

plt.ylabel ('Expectation values')

plt.legend(("cavity photon number", "atom excitation probability"))
plt.show ()

58 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

5 1 —— cavity photon number
atom excitation probability
4 -
%]
Q
=
g 31
[
e
I
0 2
o
x
11|
1 -
O -
0 2 4 6 8 10
Time
Monte Carlo time evolution
5 1 —— cavity photon number
atom excitation probability
4 -
0n
Q
=)
g 31
C
e
I
0 2
o
X
L
1 .
O .
0 2 4 6 8 10
Time

3.5. Time Evolution and Quantum System Dynamics 59

QuTiP: Quantum Toolbox in Python, Release 4.7.0

The advantage of the Monte Carlo method over the master equation approach is that only the state vector is
required to be kept in the computers memory, as opposed to the entire density matrix. For large quantum system
this becomes a significant advantage, and the Monte Carlo solver is therefore generally recommended for such
systems. For example, simulating a Heisenberg spin-chain consisting of 10 spins with random parameters and
initial states takes almost 7 times longer using the master equation rather than Monte Carlo approach with the
default number of trajectories running on a quad-CPU machine. Furthermore, it takes about 7 times the memory
as well. However, for small systems, the added overhead of averaging a large number of stochastic trajectories
to obtain the open system dynamics, as well as starting the multiprocessing functionality, outweighs the benefit
of the minor (in this case) memory saving. Master equation methods are therefore generally more efficient when
Hilbert space sizes are on the order of a couple of hundred states or smaller.

Like the master equation solver qut ip.mesolve, the Monte Carlo solver returns a qutip. solver.Result
object consisting of expectation values, if the user has defined expectation value operators in the Sth argument to
mcsolve, or state vectors if no expectation value operators are given. If state vectors are returned, then the
qutip.solver.Result returned by qutip.mcsolve will be an array of length nt ra j, with each element
containing an array of ket-type qobjs with the same number of elements as times. Furthermore, the output
qutip.solver.Result object will also contain a list of times at which collapse occurred, and which collapse
operators did the collapse, in the col_times and col_which properties, respectively.

Changing the Number of Trajectories

As mentioned earlier, by default, the mcsolve function runs 500 trajectories. This value was chosen because it
gives good accuracy, Monte Carlo errors scale as 1/n where n is the number of trajectories, and simultaneously
does not take an excessive amount of time to run. However, like many other options in QuTiP you are free to
change the number of trajectories to fit your needs. If we want to run 1000 trajectories in the above example, we
can simply modify the call to mcsolve like:

data = mcsolve(H, psiO, times, [np.sqrt(0.1) =% al, [a.dag() * a, sm.dag() =% sm]
—ntraj=1000)

o

where we have added the keyword argument nt raj=1000 at the end of the inputs. Now, the Monte Carlo solver
will calculate expectation values for both operators, a.dag () * a, sm.dag() =* sm averaging over 1000
trajectories. Sometimes one is also interested in seeing how the Monte Carlo trajectories converge to the master
equation solution by calculating expectation values over a range of trajectory numbers. If, for example, we want
to average over 1, 10, 100, and 1000 trajectories, then we can input this into the solver using:

ntraj = [1, 10, 100, 1000]

Keep in mind that the input list must be in ascending order since the total number of trajectories run by mcsolve
will be calculated using the last element of ntraj. In this case, we need to use an extra index when getting
the expectation values from the qutip. solver.Result object returned by mcsolve. In the above example
using:

data = mcsolve (H, psiO, times, [np.sqgrt(0.1) * al], [a.dag() * a, sm.dag() * sm]
—ntraj=[1, 10, 100, 1000])

o

we can extract the relevant expectation values using:

exptl = data.expect[0]
exptl0 = data.expect[1]
expt100 = data.expect[2]
expt1l000 = data.expect[3]

The Monte Carlo solver also has many available options that can be set using the qutip.solver.Options
class as discussed in Setting Options for the Dynamics Solvers.

60 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Reusing Hamiltonian Data

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

In order to solve a given simulation as fast as possible, the solvers in QuTiP take the given input operators and
break them down into simpler components before passing them on to the ODE solvers. Although these operations
are reasonably fast, the time spent organizing data can become appreciable when repeatedly solving a system over,
for example, many different initial conditions. In cases such as this, the Hamiltonian and other operators may be
reused after the initial configuration, thus speeding up calculations. Note that, unless you are planning to reuse the
data many times, this functionality will not be very useful.

To turn on the “reuse” functionality we must set the rhs_reuse=True flaginthe qutip.solver.Options:

options = Options (rhs_reuse=True)

A full account of this feature is given in Setting Options for the Dynamics Solvers. Using the previous example, we
will calculate the dynamics for two different initial states, with the Hamiltonian data being reused on the second
call

times = np.linspace (0.0, 10.0, 200)
psi0 = tensor (fock(2, 0), fock (10, 5))
a = tensor(geye(2), destroy(10))

sm tensor (destroy(2), geye(10))

H = 2+np.pixa.dag()+*a + 2+np.pixsm.dag()*sm + 2xnp.pix0.25% (smra.dag() + sm.
—dag () *a)

datal = mcsolve(H, psiO, times, [np.sqgrt(0.1) % al, [a.dag() * a, sm.dag() * sm])
psil = tensor(fock(2, 0), coherent (10, 2 - 17))

opts = Options(rhs_reuse=True) # Run a second time, reusing RHS

data2 = mcsolve(H, psil, times, [np.sqgrt(0.1) = al, [a.dag() * a, sm.dag() % sm],

—options=opts)

plt.figure()
plt.plot (times, datal.expect[0], times, datal.expect[l], 1lw=2)
plt.plot (times, data2.expect[0], '—-', times, data2.expect[l], '—-', lw=2)

plt.title('Monte Carlo time evolution')

plt.xlabel ('Time', fontsize=14)

plt.ylabel ('Expectation values', fontsize=14)

plt.legend(("cavity photon number", "atom excitation probability"))
plt.show ()

3.5. Time Evolution and Quantum System Dynamics 61

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Monte Carlo time evolution

5 1 - cavity photon number
atom excitation probability
4 -
n
Y]
=
©
> 3
C
o
S
S
O 27
(O]
o
X
L
1_
Al
I\
l \ ’\——————-——_—_~~_"§——N_—————-
l —
od 7/
0 2 4 6 8 10

Time

In addition to the initial state, one may reuse the Hamiltonian data when changing the number of trajectories
ntraj or simulation times t imes. The reusing of Hamiltonian data is also supported for time-dependent Hamil-
tonians. See Solving Problems with Time-dependent Hamiltonians for further details.

3.5.4 Stochastic Solver - Photocurrent

Photocurrent method, like monte-carlo method, allows for simulating an individual realization of the system evo-
lution under continuous measurement.

Closed system

Photocurrent evolution have the state evolve deterministically between quantum jumps. During the deterministic
part, the system evolve by schrodinger equation with a non-hermitian, norm conserving effective Hamiltonian.

ih
Hcf'f = HSyS + 5 < Z C:Cn + |an|2> . (39)

With C,,, the collapse operators. This effective Hamiltonian is equivalent to the monte-carlo effective Hamiltonian
with an extra term to keep the state normalized. At each time step of d¢, the wave function has a probability

3pn = (V(1)|Cy Culy(t)) ot (3.10)

of making a quantum jump. J¢ must be chosen small enough to keep that probability small dp << 1. If multiple
Jjumps happen at the same time step, the state become unphysical. Each jump result in a sharp variation of the

state by,
[Cuy B
0 = (|Cn1/1| w) (3.11)

62 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

The basic photocurrent method directly integrates these equations to the first-order. Starting from a state [1(0)),
it evolves the state according to

0p(t) = —iHgyst(t) 5t+z< »(t)ot + ‘C"‘bl 5t + 6N, <|g Z‘ ¢>> (3.12)

for each time-step. Here N = 1 with a probability of dw and §NV,, = 0 with a probability of 1 — Jw.

Trajectories obtained with this algorithm are equivalent to those obtained with monte-carlo evolution (up to
O(6t%)). In most cases, qut ip.mcsolve is more efficient than qut ip.photocurrent_sesolve.

Open system

Photocurrent approach allows to obtain trajectories for a system with both measured and dissipative interaction
with the bath. The system evolves according to the master equation between jumps with a modified liouvillian

Leff (p(t)) = Lsys(p(t)) + Z (tI‘ (Cgcnpcicn) - CICHPCITCH) 5 (3]3)

with the probability of jumps in a time step Jt given by
6p = tr (CpC) ét. (3.14)
After a jump, the density matrix become

, CpC+

~ tr (CpCh)

The evolution of the system at each time step if thus given by

(3.15)

p(t + 6t) = p(t) + Legt (p)6t + 6N (CpCt)

tr (CpCT)

3.5.5 Stochastic Solver

When a quantum system is subjected to continuous measurement, through homodyne detection for example, it
is possible to simulate the conditional quantum state using stochastic Schrodinger and master equations. The
solution of these stochastic equations are quantum trajectories, which represent the conditioned evolution of the
system given a specific measurement record.

In general, the stochastic evolution of a quantum state is calculated in QuTiP by solving the general equation

dp(t) = dypdt + > do npdWh, (3.16)

where dW,, is a Wiener increment, which has the expectation values E[dW] = 0 and E[dW?] = dt. Stochastic
evolution is implemented with the qutip.stochastic.general_stochastic function.

Stochastic Schrodinger Equation

The stochastic Schrodinger equation is given by (see section 4.4, [Wis09])

i 2
dip(t) = —iHp(t)dt — 3 (SS - @S + e”) t)dt + Z (S - 6—) D(E)dW,, (3.17)

n

where H is the Hamiltonian, S,, are the stochastic collapse operators, and e, is

en = ($(1)|Sn + Sl (1)) (3.18)

3.5. Time Evolution and Quantum System Dynamics 63

QuTiP: Quantum Toolbox in Python, Release 4.7.0

In QuTiP, this equation can be solved using the function qutip.stochastic.ssesolve, which is imple-
mented by defining d; and d5 ,, from Equation (3.16) as

1 €2
— i _ T _ Zi
dq iH 5 E (SnSn enSn + 1 > , (3.19)

n

and

e
don = Sy — 5" (3.20)
The solver qutip.stochastic.ssesolve will construct the operators d; and d» ,, once the user passes the
Hamiltonian (H) and the stochastic operator list (sc_ops). As with the qut ip.mcsolve, the number of trajec-
tories and the seed for the noise realisation can be fixed using the arguments: nt ra j and noise, respectively. If

the user also requires the measurement output, the argument store_measurement=True should be included.

Additionally, homodyne and heterodyne detections can be easily simulated by passing the arguments
method="'homodyne' ormethod="'heterodyne' to qutip.stochastic.ssesolve.

Examples of how to solve the stochastic Schrodinger equation using QuTiP can be found in this development
notebook.

Stochastic Master Equation

When the initial state of the system is a density matrix p, the stochastic master equation solver qutip.
stochastic.smesolve must be used. The stochastic master equation is given by (see section 4.4, [Wis09])

dp(t) = —i[H, p(t)]dt + D[A]p(t)dt + H[A]pdW (t) (3.21)
where
D[A]p = % [24pAt — pATA — ATAp| (3.22)
and
H[A]p = Ap(t) + p(t)AT — tr[Ap(t) + p(t) AT]. (3.23)

In QuTiP, solutions for the stochastic master equation are obtained using the solver qutip.stochastic.
smesolve. The implementation takes into account 2 types of collapse operators. C; (c_ops) represent the
dissipation in the environment, while S, (sc_ops) are monitored operators. The deterministic part of the evolu-
tion, described by the d; in Equation (3.16), takes into account all operators C; and S, :

dy = —i[H(t), p(t)] + Z D[Cilp+ Y D[S,lp, (3.24)

The stochastic part, ds 5, is given solely by the operators S,

da,n = Sup(t) + p(t) ST —tr (Snp(t) + p(t)Sh) p(2). (3.25)

As in the stochastic Schrodinger equation, the detection method can be specified using the met hod argument.

Example

Below, we solve the dynamics for an optical cavity at OK whose output is monitored using homodyne detection.
The cavity decay rate is given by s and the A is the cavity detuning with respect to the driving field. The
measurement operators can be passed using the option m_ops. The homodyne current J,, is calculated using

Jy = (z) + dW, (3.26)

where z is the operator passed using m_ops. The results are available in result .measurements.

64 Chapter 3. Users Guide

https://nbviewer.ipython.org/github/qutip/qutip-notebooks/blob/master/development/development-ssesolve-tests.ipynb
https://nbviewer.ipython.org/github/qutip/qutip-notebooks/blob/master/development/development-ssesolve-tests.ipynb

QuTiP: Quantum Toolbox in Python, Release 4.7.0

import numpy as np
import matplotlib.pyplot as plt

import qutip as gt

parameters

DIM = 20 # Hilbert space dimension
DELTA = 5x2*np.pi # cavity detuning

KAPPA = 2 # cavity decay rate
INTENSITY = 4 # intensity of initial state

NUMBER_OF_TRAJECTORIES = 500

operators

= gt.destroy (DIM)
= a + a.dag()

= DELTAxa.dag()* a

X O s
|

rho_0 gt .coherent (DIM, np.sqrt (INTENSITY))
times = np.arange (0, 1, 0.0025)

stoc_solution = gt.smesolve(H, rho_0, times,
c_ops=[],
sc_ops=[np.sqgrt (KAPPA) «* a],
e_ops=[x],
ntraj=NUMBER_OF_TRAJECTORIES,
nsubsteps=2,
store_measurement=True,
dW_factors=[1],
method="homodyne")

fig, ax = plt.subplots()

ax.set_title('Stochastic Master Equation - Homodyne Detection')

ax.plot (times, np.array(stoc_solution.measurement) .mean (axis=0)[:].real,
'r', 1lw=2, label=r'SJ_xS")

ax.plot (times, stoc_solution.expect[0], 'k', lw=2,

label=r's$\langle x \rangle$')
ax.set_xlabel ('Time"')
ax.legend()

3.5. Time Evolution and Quantum System Dynamics

65

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Stochastic Master Equation - Homodyne Detection

6 — jx
—_— (X)

0.0 0.2 0.4 0.6 0.8 1.0
Time

For other examples on qutip.stochastic.smesolve, see the following notebook, as well as these note-
books available at QuTiP Tutorials page: heterodyne detection, inneficient detection, and feedback control.

3.5.6 Solving Problems with Time-dependent Hamiltonians

Methods for Writing Time-Dependent Operators

In the previous examples of quantum evolution, we assumed that the systems under consideration were described
by time-independent Hamiltonians. However, many systems have explicit time dependence in either the Hamilto-
nian, or the collapse operators describing coupling to the environment, and sometimes both components might de-
pend on time. The time-evolutions solvers qut ip.mesolve, qutip.mcsolve, qutip.sesolve,qutip.
brmesolve qutip.ssesolve, qutip.photocurrent_sesolve, qutip.smesolve, and qutip.
photocurrent_mesolve are all capable of handling time-dependent Hamiltonians and collapse terms. There
are, in general, three different ways to implement time-dependent problems in QuTiP:

1. Function based: Hamiltonian / collapse operators expressed using [qobj, func] pairs, where the time-
dependent coefficients of the Hamiltonian (or collapse operators) are expressed using Python functions.

2. String (Cython) based: The Hamiltonian and/or collapse operators are expressed as a list of [qobj, string]
pairs, where the time-dependent coefficients are represented as strings. The resulting Hamiltonian is then
compiled into C code using Cython and executed.

3. Array Based: The Hamiltonian and/or collapse operators are expressed as a list of [qobj, np.array] pairs.
The arrays are 1 dimensional and dtype are complex or float. They must contain one value for each time in
the tlist given to the solver. Cubic spline interpolation will be used between the given times.

4. Hamiltonian function (outdated): The Hamiltonian is itself a Python function with time-dependence.
Collapse operators must be time independent using this input format.

66 Chapter 3. Users Guide

https://nbviewer.ipython.org/github/qutip/qutip-notebooks/blob/master/development/development-smesolve-tests.ipynb
https://qutip.org/tutorials.html
https://nbviewer.ipython.org/github/qutip/qutip-notebooks/blob/master/examples/smesolve-heterodyne.ipynb
https://nbviewer.ipython.org/github/qutip/qutip-notebooks/blob/master/examples/smesolve-inefficient-detection.ipynb
https://nbviewer.ipython.org/github/jrjohansson/reproduced-papers/blob/master/Reproduce-SIAM-JCO-46-445-2007-Mirrahimi.ipynb

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Give the multiple choices of input style, the first question that arrises is which option to choose? In short, the
function based method (option #1) is the most general, allowing for essentially arbitrary coefficients expressed
via user defined functions. However, by automatically compiling your system into C++ code, the second option
(string based) tends to be more efficient and will run faster [This is also the only format that is supported in
the qutip.brmesolve solver]. Of course, for small system sizes and evolution times, the difference will
be minor. Although this method does not support all time-dependent coefficients that one can think of, it does
support essentially all problems that one would typically encounter. Time-dependent coefficients using any of the
following functions, or combinations thereof (including constants) can be compiled directly into C++-code:

'abs', 'acos', 'acosh', 'arg', 'asin', 'asinh', 'atan', 'atanh', 'conj',
'cos', 'cosh','exp', 'erf', 'zerf', 'imag', 'log', 'loglO', 'norm', 'pi',
'proj', 'real', 'sin', 'sinh', 'sqgrt', 'tan', 'tanh'

In addition, QuTiP supports cubic spline based interpolation functions [Modeling Non-Analytic and/or Experi-
mental Time-Dependent Parameters using Interpolating Functions].

If you require mathematical functions other than those listed above, it is possible to call any of the functions in
the NumPy library using the prefix np . before the function name in the string, i.e 'np.sin (t) ' and scipy.
special imported as spe. This includes a wide range of functionality, but comes with a small overhead created
by going from C++->Python->C++.

Finally option #4, expressing the Hamiltonian as a Python function, is the original method for time dependence in
QuTiP 1.x. However, this method is somewhat less efficient then the previously mentioned methods. However, in
contrast to the other options this method can be used in implementing time-dependent Hamiltonians that cannot
be expressed as a function of constant operators with time-dependent coefficients.

A collection of examples demonstrating the simulation of time-dependent problems can be found on the tutorials
web page.

Function Based Time Dependence

A very general way to write a time-dependent Hamiltonian or collapse operator is by using Python functions as
the time-dependent coefficients. To accomplish this, we need to write a Python function that returns the time-
dependent coefficient. Additionally, we need to tell QuTiP that a given Hamiltonian or collapse operator should
be associated with a given Python function. To do this, one needs to specify operator-function pairs in list format:
[Op, py_coeff], where Op is a given Hamiltonian or collapse operator and py_coeff is the name of the
Python function representing the coefficient. With this format, the form of the Hamiltonian for both mesolve
and mcsolve is:

’>>> H = [HO, [Hl1, py_coeffl], [H2, py_coeff2], ...]

where HO is a time-independent Hamiltonian, while H1™~and ~~H2 are time dependent. The same format can
be used for collapse operators:

’>>> c_ops = [[CO, py_coeff0], Cl, [C2, py_coeff2], ...]

Here we have demonstrated that the ordering of time-dependent and time-independent terms does not matter. In
addition, any or all of the collapse operators may be time dependent.

Note: While, in general, you can arrange time-dependent and time-independent terms in any order you like, it is
best to place all time-independent terms first.

As an example, we will look at an example that has a time-dependent Hamiltonian of the form H = Hy — f(t)H;
where f(t) is the time-dependent driving strength given as f(t) = Aexp [— (t/ 0)2} . The following code sets up
the problem

ustate = basis (3, 0)
excited = basis (3, 1)

(continues on next page)

3.5. Time Evolution and Quantum System Dynamics 67

https://qutip.org/tutorials.html

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

ground = basis (3, 2)

N = 2 # Set where to truncate Fock state for cavity

sigma_ge = tensor (geye (N), ground * excited.dag()) # |g><e]

sigma_ue = tensor (geye (N), ustate * excited.dag()) # |u><e/

a = tensor (destroy (N), geye(3))

ada = tensor (num(N), geye(3))

c_ops = [] # Build collapse operators

kappa = 1.5 # Cavity decay rate

c_ops.append (np.sqrt (kappa) * a)

gamma = 6 # Atomic decay rate

c_ops.append (np.sqrt (5+xgamma/9) * sigma_ue) # Use Rb branching ratio of 5/9 e->u
c_ops.append (np.sqgrt (4+gamma/9) + sigma_ge) # 4/9 e->g

t = np.linspace(-15, 15, 100) # Define time vector

psi0 = tensor(basis (N, 0), ustate) # Define initial state

state_GG = tensor(basis (N, 1), ground) # Define states onto which to project
sigma_GG = state_GG x state_GG.dag()

state_UU = tensor (basis (N, 0), ustate)

sigma_UU = state_UU = state_UU.dag()

g =5 # coupling strength

HO = -g * (sigma_ge.dag() * a + a.dag() » sigma_ge) # time-independent term
H1 = (sigma_ue.dag() + sigma_ue) # time-dependent term

Stochastic Master Equation - Homodyne Detection

—_— Jx

—_— (X)

0.0 0.2 0.4 0.6 0.8 1.0

Time

Given that we have a single time-dependent Hamiltonian term, and constant collapse terms, we need to specify a
single Python function for the coefficient f(t). In this case, one can simply do

68 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

def H1_coeff(t, args):
return 9 x np.exp(—(t / 5.) ** 2)

Stochastic Master Equation - Homodyne Detection

6 — jx
—_— (X)

0.0 0.2 0.4 0.6 0.8 1.0
Time

In this case, the return value dependents only on time. However, when specifying Python functions for coefficients,
the function must have (t,args) as the input variables, in that order. Having specified our coefficient function,
we can now specify the Hamiltonian in list format and call the solver (in this case qut ip.mesolve)

H = [HO, [H1, Hl1_coeff]]
output = mesolve(H, psiO, t, c_ops, [ada, sigma_UU, sigma_GG])

3.5. Time Evolution and Quantum System Dynamics 69

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Stochastic Master Equation - Homodyne Detection

6 — jx
—_— (X)

0.0 0.2 0.4 0.6 0.8 1.0
Time

We can call the Monte Carlo solver in the exact same way (if using the default nt ra j=500):

output = mcsolve(H, psiO, t, c_ops, [ada, sigma_UU, sigma_GG])

The output from the master equation solver is identical to that shown in the examples, the Monte Carlo however
will be noticeably off, suggesting we should increase the number of trajectories for this example. In addition, we

can also consider the decay of a simple Harmonic oscillator with time-varying decay rate

kappa = 0.5

def col_coeff(t, args): # coefficient function
return np.sqgrt (kappa * np.exp(-t))

N = 10 # number of basis states
a = destroy (N)

H = a.dag() = a # simple HO

psi0 = basis (N, 9) # initial state

c_ops = [[a, col_coeff]] # time-dependent collapse term
times = np.linspace (0, 10, 100)

output = mesolve (H, psiO, times, c_ops, [a.dag() * al)

70 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Stochastic Master Equation - Homodyne Detection

6 — jx
—_— (X)

0.0 0.2 0.4 0.6 0.8 1.0
Time

Using the args variable

In the previous example we hardcoded all of the variables, driving amplitude A and width o, with their numerical
values. This is fine for problems that are specialized, or that we only want to run once. However, in many cases,
we would like to change the parameters of the problem in only one location (usually at the top of the script), and
not have to worry about manually changing the values on each run. QuTiP allows you to accomplish this using
the keyword args as an input to the solvers. For instance, instead of explicitly writing 9 for the amplitude and 5
for the width of the gaussian driving term, we can make us of the args variable

def H1_coeff (t, args):
return args['A'] % np.exp (- (t/args['sigma']) «*2)

3.5. Time Evolution and Quantum System Dynamics 71

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Stochastic Master Equation - Homodyne Detection

—_— Jx

—_— (X)

—4 -
—6 -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Time
or equivalently,
def H1_coeff(t, args):
A = args['A']
sig = args|['sigma']
return A * np.exp(—(t / sig) =** 2)

72

Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Stochastic Master Equation - Homodyne Detection

6 — jx
—_— (X)

—4 -
-6
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Time
where args is a Python dictionary of key: valuepairsargs = {'A': a, 'sigma': b} wherea and
b are the two parameters for the amplitude and width, respectively. Of course, we can always hardcode the values
in the dictionary as well args = {'A': 9, 'sigma': 5}, but there is much more flexibility by using

variables in args. To let the solvers know that we have a set of args to pass we append the args to the end of
the solver input:

output = mesolve(H, psiO, times, c_ops, [a.dag() * al], args={'A': 9, 'sigma': 5})

3.5. Time Evolution and Quantum System Dynamics 73

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Stochastic Master Equation - Homodyne Detection

6 — jx
—_— (X)

0.0 0.2 0.4 0.6 0.8 1.0
Time

or to keep things looking pretty

args = {'A': 9, 'sigma': 5}
output = mesolve(H, psiO, times, c_ops, [a.dag() * al], args=args)

74 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Stochastic Master Equation - Homodyne Detection

6 — jx
—_— (X)

0.0 0.2 0.4 0.6 0.8 1.0
Time

Once again, the Monte Carlo solver qutip.mcsolve works in an identical manner.

String Format Method

Note: You must have Cython installed on your computer to use this format. See Installation for instructions on
installing Cython.

The string-based time-dependent format works in a similar manner as the previously discussed Python function
method. That being said, the underlying code does something completely different. When using this format,
the strings used to represent the time-dependent coefficients, as well as Hamiltonian and collapse operators, are
rewritten as Cython code using a code generator class and then compiled into C code. The details of this meta-
programming will be published in due course. however, in short, this can lead to a substantial reduction in time
for complex time-dependent problems, or when simulating over long intervals.

Like the previous method, the string-based format uses a list pair format [Op, str] where str is now a string
representing the time-dependent coefficient. For our first example, this string wouldbe '9 * exp (-(t / 5.)
x% 2) '. The Hamiltonian in this format would take the form:

ustate = basis (3, 0)
excited = basis (3, 1)
ground = basis (3, 2)

N = 2 # Set where to truncate Fock state for cavity
sigma_ge = tensor (geye (N), ground * excited.dag()) # /g><e/
sigma_ue = tensor(geye(N), ustate x excited.dag()) # |u><e|

a = tensor (destroy(N), geye(3))

(continues on next page)

3.5. Time Evolution and Quantum System Dynamics 75

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

ada = tensor (num(N), geye(3))
c_ops = [] # Build collapse operators
kappa = 1.5 # Cavity decay rate
c_ops.append (np.sqrt (kappa) * a)
gamma = 6 # Atomic decay rate
c_ops.append (np.sqrt (5xgamma/9) * sigma_ue) # Use Rb branching ratio of 5/9 e->u
c_ops.append (np.sqgrt (4+gamma/9) * sigma_ge) # 4/9 e-—>g
t = np.linspace(-15, 15, 100) # Define time vector
psi0 = tensor (basis (N, 0), ustate) # Define initial state
state_GG = tensor(basis (N, 1), ground) # Define states onto which to project
sigma_GG = state_GG x state_GG.dag()
state_UU = tensor (basis (N, 0), ustate)
sigma_UU = state_UU % state_UU.dag()
g =5 # coupling strength
HO = -g % (sigma_ge.dag() * a + a.dag() = sigma_ge) # time-independent term
H1 = (sigma_ue.dag () + sigma_ue) # time-dependent term
Stochastic Master Equation - Homodyne Detection
6 —
— (X)
4 -
w ‘*ﬁ)
. | ‘ |
J
\ } l |
O . /
\ ‘
| !) [
~2- ‘ \ '1 h l
|
4l 1
_6 -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Time
H = [HO, [H1, '9 % exp(-(t / 5) ** 2)']]
76 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Stochastic Master Equation - Homodyne Detection

6 — jx
—_— (X)

0.0 0.2 0.4 0.6 0.8 1.0
Time

Notice that this is a valid Hamiltonian for the string-based format as exp is included in the above list of suitable
functions. Calling the solvers is the same as before:

output = mesolve(H, psiO, t, c_ops, [a.dag() * a]l)

3.5. Time Evolution and Quantum System Dynamics 77

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Stochastic Master Equation - Homodyne Detection

6 — jx
—_— (X)

1 N

0.0 0.2 0.4 0.6 0.8 1.0
Time

We can also use the args variable in the same manner as before, however we must rewrite our string term to read:
'A x exp(—(t / sig) ** 2)'

H = [HO, [H1, 'A % exp(-(t / sig) x% 2)']]
args = {'A': 9, 'sig': b5}
output = mesolve(H, psiO, times, c_ops, [a.dag()~*al], args=args)

78 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Stochastic Master Equation - Homodyne Detection

6 — jx
—_— (X)

0.0 0.2 0.4 0.6 0.8 1.0
Time

Important: Naming your args variables exp, sin, pi etc. will cause errors when using the string-based
format.

Collapse operators are handled in the exact same way.

Modeling Non-Analytic and/or Experimental Time-Dependent Parameters using Interpolating
Functions

Sometimes it is necessary to model a system where the time-dependent parameters are non-analytic functions, or
are derived from experimental data (i.e. a collection of data points). In these situations, one can use interpolating
functions as an approximate functional form for input into a time-dependent solver. QuTiP includes it own custom
cubic spline interpolation class qutip. interpolate.Cubic_Spline to provide this functionality. To see
how this works, lets first generate some noisy data:

t = np.linspace(-15, 15, 100)

func = lambda t: 9+np.exp(-(t / 5)** 2)

noisy_func = lambda t: func(t)+(0.05+xfunc(t)) *np.random.randn (t.shapel0])
noisy_data = noisy_func(t)

plt.figure()

plt.plot (t, func(t))
plt.plot (t, noisy_data, 'o'")
plt.show()

3.5. Time Evolution and Quantum System Dynamics 79

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Stochastic Master Equation - Homodyne Detection

—_— Jx

—_— (X)

0.0

0.2

0.4 0.6 0.8

Time

1.0

-15

-10

=5 0 5 10 15

80

Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

To turn these data points into a function we call the QuTiP qutip.interpolate.Cubic_Spline class
using the first and last domain time points, t [0] and t [-1], respectively, as well as the entire array of data
points:

S = Cubic_Spline(t[0], t[-1], noisy_data)

plt.figure()

plt.plot (t, func(t))
plt.plot (t, noisy_data, 'o'")
plt.plot(t, S(t), lw=2)
plt.show ()

-15 -10 =5 0 5 10 15

Note that, at present, only equally spaced real or complex data sets can be accommodated. This cubic spline class
S can now be pasted to any of the mesolve, mcsolve, or sesolve functions where one would normally input
a time-dependent function or string-representation. Taking the problem from the previous section as an example.
We would make the replacement:

’H - [HO, [H1, '9 % exp(—(t / 5) #x 2)']]
to
’H - [HO, [H1, S]]

When combining interpolating functions with other Python functions or strings, the interpolating class will au-
tomatically pick the appropriate method for calling the class. That is to say that, if for example, you have other
time-dependent terms that are given in the string-format, then the cubic spline representation will also be passed
in a string-compatible format. In the string-format, the interpolation function is compiled into c-code, and thus is
quite fast. This is the default method if no other time-dependent terms are present.

3.5. Time Evolution and Quantum System Dynamics 81

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Accesing the state from solver

New in QuTiP 4.4

The state of the system, the ket vector or the density matrix, is available to time-dependent Hamiltonian and
collapse operators in args. Some keys of the argument dictionary are understood by the solver to be values to be
updated with the evolution of the system. The state can be obtained in 3 forms: Qobj, vector (1d np.array),
matrix (2d np . array), expectation values and collapse can also be obtained.

Preparation usage Notes

state as | name+"=QobJ[‘bsdsi6argsTheket br density matrix as a Qobj with psi0’s dimensions
Qoby
state as | name+"=mat | mati @ =arqsThestatd as a matrix, equivalent to state.full ()
matrix
state as | name+"=vec| vesi®=arqsTheamstite as a vector, equivalent to state.full().

vector ravel ('F")

expec- name+"=expeezhr@s [ngmEipectation value of the operator O, either () (t)|O(t)) or
tation tr (Op(t))

value

coll- name+"=collapde'arfk [nkise df collapse, each collapse is a tuple of the pair (time,
pases which) which being the indice of the collapse operator.

mcsolve only.

Here psiO is the initial value used for tests before the evolution begins. qut ip.brmesolve does not support
these arguments.

Reusing Time-Dependent Hamiltonian Data

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

When repeatedly simulating a system where only the time-dependent variables, or initial state change, it is possible
to reuse the Hamiltonian data stored in QuTiP and there by avoid spending time needlessly preparing the Hamil-
tonian and collapse terms for simulation. To turn on the the reuse features, we must pass a qutip.Options
object with the rhs_reuse flag turned on. Instructions on setting flags are found in Setting Options for the
Dynamics Solvers. For example, we can do

H = [HO, [H1, 'A % exp(—(t / sig) #* 2)']]

args = {'A': 9, 'sig': 5}

output = mcsolve(H, psi0O, times, c_ops, [a.dag()=*al], args=args)

opts = Options (rhs_reuse=True)

args = {'A': 10, 'sig': 3}

output = mcsolve (H, psi0O, times, c_ops, [a.dag()=*al], args=args, options=opts)

The second call to qut ip.mcsolve does not reorganize the data, and in the case of the string format, does not
recompile the Cython code. For the small system here, the savings in computation time is quite small, however, if
you need to call the solvers many times for different parameters, this savings will obviously start to add up.

82 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Running String-Based Time-Dependent Problems using Parfor

Note: This section covers a specialized topic and may be skipped if you are new to QuTiP.

In this section we discuss running string-based time-dependent problems using the qut ip . parfor function. As
the qutip.mcsolve function is already parallelized, running string-based time dependent problems inside of
parfor loops should be restricted to the qut ip.mesolve function only. When using the string-based format, the
system Hamiltonian and collapse operators are converted into C code with a specific file name that is automatically
genrated, or supplied by the user via the rhs_ filename property of the qutip.Options class. Because the
gqutip.parfor function uses the built-in Python multiprocessing functionality, in calling the solver inside a
parfor loop, each thread will try to generate compiled code with the same file name, leading to a crash. To get
around this problem you can call the qut ip. rhs_generate function to compile simulation into C code before
calling parfor. You must then set the qut ip.Odedata object rhs_reuse=True for all solver calls inside
the parfor loop that indicates that a valid C code file already exists and a new one should not be generated. As an
example, we will look at the Landau-Zener-Stuckelberg interferometry example that can be found in the notebook
“Time-dependent master equation: Landau-Zener-Stuckelberg inteferometry” in the tutorials section of the QuTiP
web site.

To set up the problem, we run the following code:

delta = 0.1 * 2 % np.pi
w =2.0 % 2 % np.pi

qubit sigma_x coefficient
#
T =2 np.pi / w # driving period
#
#

driving frequency

gammal = 0.00001
gamma2 = 0.005

relaxation rate
dephasing rate

eps_list = np.linspace(-10.0, 10.0, 51) %= 2 % np.pi # epsilon

A_list = np.linspace (0.0, 20.0, 51) = 2 % np.pi # Amplitude

sx = sigmax(); sz = sigmaz(); sm = destroy(2); sn = num(2)

c_ops = [np.sgrt (gammal) * sm, np.sqrt(gamma2) +* sz] # relaxation and dephasing
HO = -delta / 2.0 * sx

Hl = [sz, '-eps / 2.0 + A / 2.0 = sin(w = t)"']
H_td = [HO, H1]
Hargs = {'w': w, 'eps': eps_list[0], 'A': A_list[0]}

where the last code block sets up the problem using a string-based Hamiltonian, and Hargs is a dictionary of
arguments to be passed into the Hamiltonian. In this example, we are going to use the qutip.propagator
and qutip.propagator.propagator_steadystate to find expectation values for different values of e
and A in the Hamiltonian H = —1 Ao, — 1eo. — S Asin(wt).

We must now tell the qutip.mesolve function, that is called by qutip.propagator to reuse a pre-
generated Hamiltonian constructed using the qut ip. rhs_generate command:

opts = Options (rhs_reuse=True)
rhs_generate (H_td, c_ops, Hargs, name='lz_func')

Here, we have given the generated file a custom name 1z_ func, however this is not necessary as a generic name
will automatically be given. Now we define the function task that is called by qutip.parallel.parfor
with the m-index parallelized in loop over the elements of p_mat [m, n]:

def task(args):

m, eps = args

p_mat_m = np.zeros (len(A_list))

for n, A in enumerate(A_list):
change args sent to solver, w is really a constant though.
Hargs = {'w': w, 'eps': eps,'A': A}
U = propagator (H_td, T, c_ops, Hargs, opts) #<- IMPORTANT LINE
rho_ss = propagator_steadystate (U)

(continues on next page)

3.5. Time Evolution and Quantum System Dynamics 83

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

p_mat_m[n] = expect(sn, rho_ss)
return [m, p_mat_m]

Notice the Options opt s in the call to the qutip.propagator function. This is tells the qutip.mesolve
function used in the propagator to call the pre-generated file 1z_ func. If this were missing then the routine
would fail.

3.5.7 Bloch-Redfield master equation
Introduction

The Lindblad master equation introduced earlier is constructed so that it describes a physical evolution of the
density matrix (i.e., trace and positivity preserving), but it does not provide a connection to any underlaying
microscopic physical model. The Lindblad operators (collapse operators) describe phenomenological processes,
such as for example dephasing and spin flips, and the rates of these processes are arbitrary parameters in the model.
In many situations the collapse operators and their corresponding rates have clear physical interpretation, such as
dephasing and relaxation rates, and in those cases the Lindblad master equation is usually the method of choice.

However, in some cases, for example systems with varying energy biases and eigenstates and that couple to
an environment in some well-defined manner (through a physically motivated system-environment interaction
operator), it is often desirable to derive the master equation from more fundamental physical principles, and relate
it to for example the noise-power spectrum of the environment.

The Bloch-Redfield formalism is one such approach to derive a master equation from a microscopic system. It
starts from a combined system-environment perspective, and derives a perturbative master equation for the system
alone, under the assumption of weak system-environment coupling. One advantage of this approach is that the
dissipation processes and rates are obtained directly from the properties of the environment. On the downside, it
does not intrinsically guarantee that the resulting master equation unconditionally preserves the physical properties
of the density matrix (because it is a perturbative method). The Bloch-Redfield master equation must therefore be
used with care, and the assumptions made in the derivation must be honored. (The Lindblad master equation is in
a sense more robust — it always results in a physical density matrix — although some collapse operators might not
be physically justified). For a full derivation of the Bloch Redfield master equation, see e.g. [Coh92] or [Bre02].
Here we present only a brief version of the derivation, with the intention of introducing the notation and how it
relates to the implementation in QuTiP.

Brief Derivation and Definitions

The starting point of the Bloch-Redfield formalism is the total Hamiltonian for the system and the environment
(bath): H = Hs + Hp + Hi, where H is the total system+bath Hamiltonian, Hg and Hp are the system and bath
Hamiltonians, respectively, and H is the interaction Hamiltonian.

The most general form of a master equation for the system dynamics is obtained by tracing out the bath from

the von-Neumann equation of motion for the combined system (p = —ih~[H, p]). In the interaction picture the
result is
d i
Gps(®) == [dr TuplHs(6), (Hi (). ps(r) @ pal) (3.27)
0

where the additional assumption that the total system-bath density matrix can be factorized as p(t) =~ ps(t) ® pp.
This assumption is known as the Born approximation, and it implies that there never is any entanglement between
the system and the bath, neither in the initial state nor at any time during the evolution. It is justified for weak
system-bath interaction.

The master equation (3.27) is non-Markovian, i.e., the change in the density matrix at a time ¢ depends on states
at all times 7 < ¢, making it intractable to solve both theoretically and numerically. To make progress towards a
manageable master equation, we now introduce the Markovian approximation, in which p(s) is replaced by p(t)

84 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

in Eq. (3.27). The result is the Redfield equation

d B t

Gps(0) ==n7 [dr TualHy(0), (H1 (7). ps(t) @ pal) (3.28)
0

which is local in time with respect the density matrix, but still not Markovian since it contains an implicit depen-

dence on the initial state. By extending the integration to infinity and substituting 7 — ¢ — 7, a fully Markovian

master equation is obtained:

d

gps(t) =—h? /000 dr Trg[H(t),[H;(t — T), ps(t) @ pB]]- (3.29)

The two Markovian approximations introduced above are valid if the time-scale with which the system dynamics
changes is large compared to the time-scale with which correlations in the bath decays (corresponding to a “short-
memory” bath, which results in Markovian system dynamics).

The master equation (3.29) is still on a too general form to be suitable for numerical implementation. We therefore
assume that the system-bath interaction takes the form H; = Za A, ® Bg and where A,, are system operators and
B, are bath operators. This allows us to write master equation in terms of system operators and bath correlation
functions:

Gos(®) =12 5 [{aplr) Aa(OAslt — 7)os(0) — Aalt = T)ps(D)45(0)
ap
9ap(=7) [ps () Aa(t — T)Ap(t) — Aa(t)ps(t) Ap(t — 7)]},
where go3(7) = Trp [Ba(t)Bs(t — 7)ps] = (Ba(7)Bg(0)), since the bath state pp is a steady state.

In the eigenbasis of the system Hamiltonian, where A,,,(t) = Ampne@mnt w0 = w,, — wy, and w,, are the
eigenfrequencies corresponding the eigenstate |m), we obtain in matrix form in the Schrdinger picture

sec

%pab() = _Zwabpab -2 ZZ/ dr {gaB

a,B c,d

5bdZAa A[i iWenT AgcAgbei%aT]

} pcd(t)a

where the “sec” above the summation symbol indicate summation of the secular terms which satisfy |wq, —weq| <
Tdecay- This is an almost-useful form of the master equation. The final step before arriving at the form of the Bloch-
Redfield master equation that is implemented in QuTiP, involves rewriting the bath correlation function g(7) in
terms of the noise-power spectrum of the environment S(w) = [fooo dre™Tg(7):

+ gap(—7) [&w AT = Ag Al
n

/ dr gap(T)e™” = §Sa’8(w) +idas(w), (3.30)
0

where A\, (w) is an energy shift that is neglected here. The final form of the Bloch-Redfield master equation is

d . sec
%pab(t) = _lwabpab(t) + Z Rabcdpcd(t)a (331)
c,d
where
Raped = ——— Z {5bd > AL AL Sap(wen) — A% AL Sap(wea)
a,f

+ Gac Y AGu Ay Sap(wan) — AgcAnga/3<wdb)} ,

is the Bloch-Redfield tensor.

The Bloch-Redfield master equation in the form Eq. (3.31) is suitable for numerical implementation. The input
parameters are the system Hamiltonian /1, the system operators through which the environment couples to the
system A, and the noise-power spectrum S, 5(w) associated with each system-environment interaction term.

3.5. Time Evolution and Quantum System Dynamics 85

QuTiP: Quantum Toolbox in Python, Release 4.7.0

To simplify the numerical implementation we assume that A, are Hermitian and that cross-correlations between
different environment operators vanish, so that the final expression for the Bloch-Redfield tensor that is imple-
mented in QuTiP is

Rapea = ——— {5bd Z AgnAneSa(wen) — AGeAgySa(wea)

+ 6‘10 Z Adn nb wdn) - AgcAnga (wdb)} .

Bloch-Redfield master equation in QuTiP

In QuTiP, the Bloch-Redfield tensor Eq. (3.32) can be calculated using the function qutip.
bloch_redfield.bloch_redfield tensor. It takes two mandatory arguments: The system Hamilto-
nian H, a nested list of operator A, spectral density functions S,, (w) pairs that characterize the coupling between
system and bath. The spectral density functions are Python callback functions that takes the (angular) frequency
as a single argument.

To illustrate how to calculate the Bloch-Redfield tensor, let’s consider a two-level atom

1 1
H=—-Ao, — —¢go, (3.32)
2 2
delta = 0.2 » 2+np.pi
epsO = 1.0 » 2+np.pi
gammal = 0.5
H = - delta/2.0 * sigmax() - eps0/2.0 % sigmaz ()
def ohmic_spectrum(w) :
if w == 0.0: # dephasing inducing noise
return gammal
else: # relaxation inducing noise
return gammal / 2 * (w / (2 % np.pi)) = (w > 0.0)

R, ekets = bloch_redfield_tensor(H, [[sigmax(), ohmic_spectrum]])

print (R)
Output:
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super,,
—isherm = False
Qobj data =
[[O. +0.7 0 +0.7 0. +0.73
0.245145174+0.7]
[0. +0.7 -0.16103412-6.407616973 0. +0.7
0. +0.73]
[0 +0.73 0 +0.7 -0.16103412+6.40761697
0. +0.7]
[0. +0.73 0. +0.7 0. +0.7
-0.24514517+40. 7 11

Note that it is also possible to add Lindblad dissipation superoperators in the Bloch-Refield tensor by passing
the operators via the c_ops keyword argument like you would in the qutip.mesolve or qutip.mcsolve
functions. For convenience, the function qutip.bloch redfield.bloch redfield tensor also re-
turns a list of eigenkets ekets, since they are calculated in the process of calculating the Bloch-Redfield tensor R,
and the ekets are usually needed again later when transforming operators between the computational basis and the
eigenbasis.

86 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

The evolution of a wavefunction or density matrix, according to the Bloch-Redfield master equation (3.31), can be
calculated using the QuTiP function qutip.bloch_redfield.bloch_redfield_solve. It takes five
mandatory arguments: the Bloch-Redfield tensor R, the list of eigenkets eket s, the initial state psi0 (as a ket
or density matrix), a list of times t1ist for which to evaluate the expectation values, and a list of operators
e_ops for which to evaluate the expectation values at each time step defined by #/ist. For example, to evaluate
the expectation values of the o, o, and o, operators for the example above, we can use the following code:

tlist = np.linspace (0, 15.0, 1000)

psi0 = rand_ket (2)

e_ops = [sigmax (), sigmay (), sigmaz ()]

expt_list = bloch_redfield_solve (R, ekets, psiO, tlist, e_ops)

sphere = Bloch()

sphere.add_points ([expt_1list[0], expt_list[1l], expt_list[2]])
sphere.vector_color = ['r']

sphere.add_vectors (np.array([delta, 0, eps0]) / np.sqgrt(delta *x 2 + eps0 »* 2))

sphere.make_sphere ()

The two steps of calculating the Bloch-Redfield tensor and evolving according to the corresponding master equa-
tion can be combined into one by using the function qutip.bloch redfield.brmesolve, which takes
same arguments as qutip.mesolve and qutip.mcsolve, save for the additional nested list of operator-

3.5. Time Evolution and Quantum System Dynamics 87

QuTiP: Quantum Toolbox in Python, Release 4.7.0

spectrum pairs that is called a_ops.

output = brmesolve (H, psiO, tlist, a_ops=[[sigmax(),ohmic_spectrum]], e_ops=e_ops)

where the resulting output is an instance of the class qutip.solver.Result.

Time-dependent Bloch-Redfield Dynamics

Warning: It takes ~3-5 seconds (~30 if using Visual Studio) to compile a time-dependent Bloch-Redfield
problem. Therefore, if you are doing repeated simulations by varying parameters, then it is best to pass
options = Options (rhs_reuse=True) to the solver.

If you have not done so already, please read the section: Solving Problems with Time-dependent Hamiltonians.

As we have already discussed, the Bloch-Redfield master equation requires transforming into the eigenbasis of the
system Hamiltonian. For time-independent systems, this transformation need only be done once. However, for
time-dependent systems, one must move to the instantaneous eigenbasis at each time-step in the evolution, thus
greatly increasing the computational complexity of the dynamics. In addition, the requirement for computing all
the eigenvalues severely limits the scalability of the method. Fortunately, this eigen decomposition occurs at the
Hamiltonian level, as opposed to the super-operator level, and thus, with efficient programming, one can tackle
many systems that are commonly encountered.

The time-dependent Bloch-Redfield solver in QuTiP relies on the efficient numerical computations afforded by the
string-based time-dependent format, and Cython compilation. As such, all the time-dependent terms, and noise
power spectra must be expressed in the string format. To begin, lets consider the previous example, but formatted
to call the time-dependent solver:

ohmic = " /2.0 « (w / (2 % pi)) = (w > 0.0)".format (gammal=gammal)

output = brmesolve (H, psiO, tlist, a_ops=[[sigmax(),ohmic]], e_ops=e_ops)

Although the problem itself is time-independent, the use of a string as the noise power spectrum tells the solver to
go into time-dependent mode. The string is nearly identical to the Python function format, except that we replaced
np.pi with pi to avoid calling Python in our Cython code, and we have hard coded the gammal argument into
the string as limitations prevent passing arguments into the time-dependent Bloch-Redfield solver.

For actual time-dependent Hamiltonians, the Hamiltonian itself can be passed into the solver like any other
string-based Hamiltonian, as thus we will not discuss this topic further. Instead, here the focus is on time-
dependent bath coupling terms. To this end, suppose that we have a dissipative harmonic oscillator, where
the white-noise dissipation rate decreases exponentially with time x(t) = (0)exp(—t). In the Lindblad or
monte-carlo solvers, this could be implemented as a time-dependent collapse operator list c_ops = [[a,
'sgrt (kappa*xexp (-t)) ']11. In the Bloch-Redfield solver, the bath coupling terms must be Hermitian.
As such, in this example, our coupling operator is the position operator a+a . dag () . In addition, we do not need
the sgrt operation that occurs in the c_ops definition. The complete example, and comparison to the analytic
expression is:

N = 10 # number of basis states to consider
a = destroy (N)

H = a.dag() = a

psi0 = basis (N, 9) # initial state

kappa = 0.2 # coupling to oscillator

a_ops = [[ata.dag(), ' xexp (—t) x (w>=0) '.format (kappa=kappa)] 1]

(continues on next page)

88 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

tlist = np.linspace (0, 10, 100)

out = brmesolve (H, psi0O, tlist, a_ops, e_ops=[a.dag() * al)
actual_answer = 9.0 % np.exp(-kappa » (1.0 — np.exp(-tlist)))
plt.figure()

plt.plot (tlist, out.expect[0])

plt.plot (tlist, actual_answer)

plt.show ()

9.0 4

8.8 1

8.6

8.4 4

8.2

8.0

7.8 1

7.6 1

7.4 1

In many cases, the bath-coupling operators can take the form A = f(t)a+ f(¢)*a™. In this case, the above format
for inputting the a_ops is not sufficient. Instead, one must construct a nested-list of tuples to specify this time-
dependence. For example consider a white-noise bath that is coupled to an operator of the form exp (1jxt) ~a
+ exp(-1j*t)* a.dag (). In this example, the a_ops list would be:

a_ops = [[(a, a.dag()), (' * (w >= 0)'.format (kappa), 'exp(ljxt)', 'exp(-1lj=*t)
="y 11

where the first tuple element (a, a.dag()) tells the solver which operators make up the full Hermi-
tian coupling operator. The second tuple ('{0} x (w >= 0)'.format (kappa), 'exp(ljxt)',
'exp (-1j*t) '), gives the noise power spectrum, and time-dependence of each operator. Note that the noise
spectrum must always come first in this second tuple. A full example is:

3.5. Time Evolution and Quantum System Dynamics 89

QuTiP: Quantum Toolbox in Python, Release 4.7.0

N = 10

w0 = 1.0 » 2 % np.pi

g = 0.05 » wO

kappa = 0.15

times = np.linspace (0, 25, 1000)

a = destroy (N)

H

w0 « a.dag() » a + g = (a + a.dag())
psi0 = ket2dm((basis (N, 4) + basis (N, 2) + basis (N, 0)).unit())

a_ops = [[(a, a.dag()), (' * (w >= 0)'.format (kappa), 'exp(lijxt)', 'exp(-1jxt)
") 1]

e_ops = [a.dag() » a, a + a.dag()]

res_brme = brmesolve(H, psiO, times, a_ops, e_ops)
plt.figure ()

plt.plot (times, res_brme.expect [0], label=r'sa”{+}as")
plt.plot (times, res_brme.expect[1], label=r'Sa+ta”{+}$")
plt.legend()

plt.show ()

920 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

2.0 — ata
a+at
1.5 -
1.0 +
0.5 A
0.0 A
0 5 10 15 20 25

Further examples on time-dependent Bloch-Redfield simulations can be found in the online tutorials.

3.5.8 Floquet Formalism

Introduction

Many time-dependent problems of interest are periodic. The dynamics of such systems can be solved for directly
by numerical integration of the Schrodinger or Master equation, using the time-dependent Hamiltonian. But they
can also be transformed into time-independent problems using the Floquet formalism. Time-independent problems
can be solve much more efficiently, so such a transformation is often very desirable.

In the standard derivations of the Lindblad and Bloch-Redfield master equations the Hamiltonian describing the
system under consideration is assumed to be time independent. Thus, strictly speaking, the standard forms of these
master equation formalisms should not blindly be applied to system with time-dependent Hamiltonians. However,
in many relevant cases, in particular for weak driving, the standard master equations still turns out to be useful for
many time-dependent problems. But a more rigorous approach would be to rederive the master equation taking
the time-dependent nature of the Hamiltonian into account from the start. The Floquet-Markov Master equation
is one such a formalism, with important applications for strongly driven systems (see e.g., [Gri98]).

Here we give an overview of how the Floquet and Floquet-Markov formalisms can be used for solving time-
dependent problems in QuTiP. To introduce the terminology and naming conventions used in QuTiP we first give
a brief summary of quantum Floquet theory.

3.5. Time Evolution and Quantum System Dynamics 91

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Floquet theory for unitary evolution

The Schrédinger equation with a time-dependent Hamiltonian H () is

H()U(t) = ih%\l’(i), (3.33)

where U (t) is the wave function solution. Here we are interested in problems with periodic time-dependence, i.e.,
the Hamiltonian satisfies H(t) = H(t + T') where T is the period. According to the Floquet theorem, there exist
solutions to (3.33) on the form

U, (t) = exp(—ieat/h)Put), (3.34)

where ¥, (t) are the Floquet states (i.e., the set of wave function solutions to the Schrédinger equation), @, (t) =
®,,(t+T) are the periodic Floquet modes, and €, are the quasienergy levels. The quasienergy levels are constants
in time, but only uniquely defined up to multiples of 27 /T (i.e., unique value in the interval [0, 27 /T).

If we know the Floquet modes (for t € [0, T']) and the quasienergies for a particular H (¢), we can easily decompose
any initial wavefunction (¢ = 0) in the Floquet states and immediately obtain the solution for arbitrary ¢

U(t) = caValt) = caexp(—ieat/h)Pqlt), (3.35)

where the coefficients ¢, are determined by the initial wavefunction ¥(0) = > _ ¢, ¥4(0).

This formalism is useful for finding ¥(¢) for a given H(t) only if we can obtain the Floquet modes ®,(¢) and
quasienergies €, more easily than directly solving (3.33). By substituting (3.34) into the Schrodinger equation
(3.33) we obtain an eigenvalue equation for the Floquet modes and quasienergies

H(t)q)a (t) =€ Pq (t)v (3.36)

where H(t) = H(t) — ih0;. This eigenvalue problem could be solved analytically or numerically, but in QuTiP
we use an alternative approach for numerically finding the Floquet states and quasienergies [see e.g. Creffield
et al., Phys. Rev. B 67, 165301 (2003)]. Consider the propagator for the time-dependent Schrodinger equation
(3.33), which by definition satisfies

UT +t,t)¥(t) =Y(T +1).
Inserting the Floquet states from (3.34) into this expression results in
U(T +t,t) exp(—ieat/h) Py (t) = exp(—iea (T +) /R) P (T + 1),
or, since ®o (T +t) = o (t),
U(T +t,t)Ps(t) = exp(—iea T/h) Py (t) = 10Pu(t),
which shows that the Floquet modes are eigenstates of the one-period propagator. We can therefore find the

Floquet modes and quasienergies e, = —harg(n,)/7 by numerically calculating U (T + t¢,t) and diagonalizing
it. In particular this method is useful to find ®,(0) by calculating and diagonalize U (T, 0).

The Floquet modes at arbitrary time ¢ can then be found by propagating ®,(0) to ®,,(¢) using the wave function
propagator U (¢,0)¥,(0) = ¥, (t), which for the Floquet modes yields

U(t,0)4(0) = exp(—ieat/h)Da(t),

so that @, (t) = exp(ieat/R)U(t,0)P,(0). Since @, (t) is periodic we only need to evaluate it for ¢ € [0, T, and
from @, (¢ € [0,T]) we can directly evaluate @, (t), ¥, (¢) and ¥(¢) for arbitrary large .

92 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Floquet formalism in QuTiP

QuTiP provides a family of functions to calculate the Floquet modes and quasi energies, Floquet state decomposi-
tion, etc., given a time-dependent Hamiltonian on the callback format, list-string format and list-callback format
(see, e.g., qutip.mesolve for details).

Consider for example the case of a strongly driven two-level atom, described by the Hamiltonian

1 1 1
H(t) = _iAUI — 500 + §A sin(wt)o . (3.37)

In QuTiP we can define this Hamiltonian as follows:

>>> delta = 0.2 % 2xnp.pi
>>> epsO0 = 1.0 % 2xnp.pi
>>> A = 2.5 x 2+np.pi

>>> omega = 1.0 % 2+np.pi
>>> HO = - delta/2.0 % sigmax() — eps0/2.0 % sigmaz ()
>>> Hl1 = A/2.0 * sigmaz()
>>> args = {'w': omega}
>>> H = [HO, [H1l, 'sin(w = t)']]
2.0 A —— a'a
a+at
1.5+
1.0 A
0.5 A
0.0
T T T T T T
0 5 10 15 20 25

The ¢ = 0 Floquet modes corresponding to the Hamiltonian (3.37) can then be calculated using the qutip.
floquet. floquet_modes function, which returns lists containing the Floquet modes and the quasienergies

>>> T = 2xnp.pil / omega

>>> f modes_0, f_energies = floquet_modes (H, T, args)
>>> f_ energies

array ([-2.83131212, 2.83131212])

>>> f_modes_0

(continues on next page)

3.5. Time Evolution and Quantum System Dynamics 93

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

[Quantum object: dims = [[2], [1]1], shape = (2, 1), type = ket
Qobj data =
[[0.72964231+0.7]

[-0.39993746+0.5546827311,
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.39993746+0.5546827]

[0.72964231+0.7 111

2.0 A —— ata
a+at
1.5 +
1.0 A
0.5 -
0.0 A
0 5 10 15 20 25

For some problems interesting observations can be draw from the quasienergy levels alone. Consider for example
the quasienergies for the driven two-level system introduced above as a function of the driving amplitude, calcu-
lated and plotted in the following example. For certain driving amplitudes the quasienergy levels cross. Since the
quasienergies can be associated with the time-scale of the long-term dynamics due that the driving, degenerate
quasienergies indicates a “freezing” of the dynamics (sometimes known as coherent destruction of tunneling).

>>> delta 0.2 % 2+xnp.pi

>>> epsO0 = 0.0 % 2xnp.pi

>>> omega = 1.0 * 2xnp.pi

>>> A_vec = np.linspace(0, 10, 100) = omega
>>> T = (2+np.pil)/omega

>>> tlist = np.linspace (0.0, 10 = T, 101)
>>> spsiO = basis (2,0)

>>> g_energies = np.zeros((len(A_vec), 2))
>>> HO = delta/2.0 * sigmaz () - eps0/2.0 * sigmax/()
>>> args = {'w': omega}

>>> for idx, A in enumerate (A_vec) :
>>> H1 = A/2.0 » sigmax()
>>> H = [HO, [Hl1, lambda t, args: np.sin(args['w']xt)]]

(continues on next page)

94 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

>>> f_modes, f_energies = floquet_modes(H, T, args, True)

>>> g_energies[idx, :] = f_energies

>>> plt.figure()

>>> plt.plot (A_vec/omega, ¢_energies[:,0] / delta, 'b', A_vec/omega, g _energies]:,
—1] / delta, 'r'")

>>> plt.xlabel (r'SA/\omegasS')

>>> plt.ylabel (r'Quasienergy / Δ')

>>> plt.title(r'Floquet quasienergies')

>>> plt.show/()

2.0 —— ata
a+at
1.5 +
1.0 +
0.5 A
0.0 A
0 5 10 15 20 25

3.5. Time Evolution and Quantum System Dynamics 95

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Floguet quasienergies

0.4 -
0.2 -
<
>
o
2 0.0
k3,
(V)]
©
=)
(@4
-0.2 -
~0.4 -

o4
N
I
(@)]
oo
=
o

Given the Floquet modes at ¢ = 0, we obtain the Floquet mode at some later time ¢ using the function qutip.
floquet.floquet_mode_t:

>>> f modes_t = floquet_modes_t (f_modes_0, f_energies, 2.5, H, T, args)

>>> f modes_t

[Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket

Qobj data =

[[-0.89630512-0.231919467]
[0.37793106-0.0043133671]]

Quantum object: dims = [[2]

Qobj data =

[[-0.37793106-0.004313367]
[-0.89630512+0.2319194673]11]

4
’

[1]], shape = (2, 1), type = ket

The purpose of calculating the Floquet modes is to find the wavefunction solution to the original problem (3.37)
given some initial state |¢)g). To do that, we first need to decompose the initial state in the Floquet states, using
the function qutip. floquet. floquet_state decomposition

>>> psi0 = rand_ket (2)

>>> f coeff = floquet_state_decomposition (f_modes_0, f_energies, psiO)
>>> f_coeff

[(-0.645265993068382+0.730455254931574673),
(0.15517002114250228-0.16121161022382587) 1]

and given this decomposition of the initial state in the Floquet states we can easily evaluate the wave-

function that is the solution to (3.37) at an arbitrary time ¢ using the function qutip.floquet.
floquet_wavefunction_t

>>> t = 10 » np.random.rand ()
>>> psi_t = floquet_wavefunction_t (f_modes_0, f_energies, f_coeff, t, H, T, args)

96 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

The following example illustrates how to use the functions introduced above to calculate and plot the time-
evolution of (3.37).

import numpy as np
from matplotlib import pyplot

import qutip

delta = 0.2 = 2+np.pi

epsO0O = 1.0 » 2+np.pi

A = 0.5 % 2xnp.pi

omega = 1.0 * 2xnp.pi

T = (2xnp.pi) /omega

tlist = np.linspace(0.0, 10 %= T, 101)

psi0 = qutip.basis (2, 0)

HO = - delta/2.0 % qutip.sigmax() - eps0/2.0 % qutip.sigmaz ()
H1 = A/2.0 » qutip.sigmaz()

args = {'w': omega}

H = [HO, [Hl1, lambda t,args: np.sin(args['w'] * t)]]

find the floquet modes for the time-dependent hamiltonian
f_modes_0, f_energies = qutip.floquet_modes(H, T, args)

decompose the inital state in the floquet modes
f_coeff = qutip.floquet_state_decomposition (f_modes_0, f_energies, psiO)

calculate the wavefunctions using the from the floquet modes
p_ex = np.zeros(len(tlist))
for n, t in enumerate(tlist):

psi_t = qutip.floquet_wavefunction_t (f_modes_0, f_energies, f_coeff, t, H, T,
—args)
p_ex[n] = qutip.expect (qutip.num(2), psi_t)

For reference: calculate the same thing with mesolve
p_ex_ref = qutip.mesolve (H, psiO, tlist, [], [qutip.num(2)], args) .expect[0]

plot the results

pyplot.plot (tlist, np.real (p_ex), 'ro', tlist, l-np.real(p_ex), 'bo')
pyplot.plot (tlist, np.real(p_ex_ref), 'r', tlist, l-np.real(p_ex_ref), 'b'")
pyplot.xlabel ('Time")

pyplot.ylabel ('Occupation probability')

pyplot.legend(("Floquet P_1", "Floquet P_0", "Lindblad P_1", "Lindblad P_0S
"))

pyplot.show ()

3.5. Time Evolution and Quantum System Dynamics 97

QuTiP: Quantum Toolbox in Python, Release 4.7.0

1.0 A
0.8 A
z
E
§ 0.6 ® Floquet Py
a8 ® Floquet Py
5 —— Lindblad P,
T 0.4 —— Lindblad Po
o}
|9
|)
o
0.2
0.0 A
T T T T T T
0 2 4 6 8 10
Time

Pre-computing the Floquet modes for one period

When evaluating the Floquet states or the wavefunction at many points in time it is useful to pre-compute the
Floquet modes for the first period of the driving with the required resolution. In QuTiP the function qutip.
floquet. floquet_modes_table calculates a table of Floquet modes which later can be used together
with the function qutip. floquet.floquet_modes_t_lookup to efficiently lookup the Floquet mode at
an arbitrary time. The following example illustrates how the example from the previous section can be solved
more efficiently using these functions for pre-computing the Floquet modes.

import numpy as np
from matplotlib import pyplot
import qutip

delta 0.0 * 2+np.pi
epsO0O = 1.0 » 2+np.pi
A = 0.25 % 2+np.pi
omega = 1.0 * 2xnp.pi

T = 2+np.pi / omega

tlist = np.linspace(0.0, 10 %= T, 101)

psi0 = qutip.basis(2,0)

HO = - delta/2.0 % qutip.sigmax() - eps0/2.0 * qutip.sigmaz ()
H1 = A/2.0 » qutip.sigmax()

args = {'w': omega}

H = [HO, [Hl1, lambda t, args: np.sin(args['w'] = t)]]

find the flogquet modes for the time-dependent hamiltonian
f_modes_0, f_energies = qutip.floquet_modes (H, T, args)

decompose the inital state in the floquet modes
f_coeff = qutip.floquet_state_decomposition (f_modes_0, f_energies, psi0)

calculate the wavefunctions using the from the floquet modes
f_modes_table_t = qutip.floquet_modes_table (f_modes_0, f_energies, tlist, H, T,_
—args)
p_ex = np.zeros(len(tlist))
for n, t in enumerate(tlist):
f_modes_t = qutip.floquet_modes_t_lookup (f_modes_table_t, t, T)
psi_t = qutip.floquet_wavefunction (f_modes_t, f_energies, f_coeff, t)
p_ex[n] = qutip.expect (qutip.num(2), psi_t)

(continues on next page)

98 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

For reference: calculate the same thing with mesolve
p_ex_ref = qutip.mesolve(H, psiO, tlist, [], [qutip.num(2)], args) .expect[0]

plot the results

pyplot.plot (tlist, np.real (p_ex), 'ro', tlist, l-np.real(p_ex), 'bo")
pyplot.plot (tlist, np.real(p_ex_ref), 'r', tlist, l-np.real(p_ex_ref), 'b'")
pyplot.xlabel ("Time')

pyplot.ylabel ('Occupation probability")

pyplot.legend(("Floquet P_1", "Floquet P_0", "Lindblad P_1", "Lindblad P_0S
="))

pyplot.show ()

1.0

0.8 -
2
E
§ 0.6 ® Floquet Py
a8 ® Floquet Py
§ —— Lindblad P,
8 0.4 —— Lindblad P,
>
[}
|9
(@]

0.2 -

0.0

0 2 4 6 8 10
Time

Note that the parameters and the Hamiltonian used in this example is not the same as in the previous section, and
hence the different appearance of the resulting figure.

For convenience, all the steps described above for calculating the evolution of a quantum system using the Floquet
formalisms are encapsulated in the function qutip. floquet . fsesolve. Using this function, we could have
achieved the same results as in the examples above using

output = fsesolve(H, psiO=psiO, tlist=tlist, e_ops=[qutip.num(2)], args=args)
p_ex = output.expect[0]

3.5. Time Evolution and Quantum System Dynamics 929

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Floquet theory for dissipative evolution

A driven system that is interacting with its environment is not necessarily well described by the standard Lindblad
master equation, since its dissipation process could be time-dependent due to the driving. In such cases a rigorious
approach would be to take the driving into account when deriving the master equation. This can be done in many
different ways, but one way common approach is to derive the master equation in the Floquet basis. That approach
results in the so-called Floquet-Markov master equation, see Grifoni et al., Physics Reports 304, 299 (1998) for
details.

The Floquet-Markov master equation in QuTiP

The QuTiP function qutip. floquet. fmmesolve implements the Floquet-Markov master equation. It cal-
culates the dynamics of a system given its initial state, a time-dependent Hamiltonian, a list of operators through
which the system couples to its environment and a list of corresponding spectral-density functions that describes
the environment. In contrast to the qutip.mesolve and qutip.mcsolve, and the qutip. floquet.
fmmesolve does characterize the environment with dissipation rates, but extract the strength of the coupling to
the environment from the noise spectral-density functions and the instantaneous Hamiltonian parameters (similar
to the Bloch-Redfield master equation solver qutip.bloch_redfield.brmesolve).

Note: Currently the qutip. floquet.fmmesolve can only accept a single environment coupling operator
and spectral-density function.

The noise spectral-density function of the environment is implemented as a Python callback function that is passed
to the solver. For example:

gammal = 0.1
def noise_spectrum(omega) :
return 0.5 » gammal » omega/ (2+pi)

The other parameters are similar to the qutip.mesolve and qutip.mcsolve, and the same format for the
return value is used qutip.solver.Result. The following example extends the example studied above, and
uses qutip. floquet . fmmesolve to introduce dissipation into the calculation

import numpy as np
from matplotlib import pyplot
import qutip

delta = 0.0 * 2+np.pi

epsO0O = 1.0 » 2+np.pi

A = 0.25 % 2xnp.pi

omega = 1.0 * 2#np.pi

T = 2xnp.pi / omega

tlist = np.linspace(0.0, 20 = T, 101)

psi0 = qutip.basis(2,0)

HO = - delta/2.0 * qutip.sigmax() — eps0/2.0 * qutip.sigmaz ()
H1 = A/2.0 » qutip.sigmax()

args = {'w': omega}

H = [HO, [Hl1, lambda t,args: np.sin(args['w'] * t)]]

noise power spectrum
gammal = 0.1
def noise_spectrum(omega) :
return 0.5 » gammal + omega/ (2*np.pi)

find the floquet modes for the time-dependent hamiltonian
f_modes_0, f_energies = qutip.floquet_modes(H, T, args)

(continues on next page)

100 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

precalculate mode table
f_modes_table_t = qutip.floquet_modes_table(
f_modes_0, f_energies, np.linspace(0, T, 500 + 1), H, T, args,

solve the floquet-markov master equation

output = qutip.fmmesolve (H, psi0O, tlist, [qutip.sigmax ()], [], [noise_spectrum], T,
— args)

calculate expectation values in the computational basis
p_ex = np.zeros (tlist.shape, dtype=np.complexl28)
for idx, t in enumerate(tlist):
f_modes_t = qutip.floquet_modes_t_lookup (f_modes_table_t, t, T)

p_ex[idx] = qutip.expect (qutip.num(2), output.states[idx].transform(f_modes_t,
—True))

For reference: calculate the same thing with mesolve

output = qutip.mesolve (H, psiO, tlist,
[np.sgrt (gammal) * qutip.sigmax ()], [qutip.num(2)],
args)

p_ex_ref = output.expect[0]

plot the results

pyplot.plot (tlist, np.real(p_ex), 'r--', tlist, l-np.real(p_ex), 'b——")
pyplot.plot (tlist, np.real (p_ex_ref), 'r', tlist, l-np.real(p_ex_ref), 'b'")
pyplot.xlabel ('Time")

pyplot.ylabel ('Occupation probability")

pyplot.legend(("Flogquet SP_1S", "Floquet P_0S", "Lindblad P_1", "Lindblad P_0S
—"))

pyplot.show ()

1.0 1 -=~ Floquet P,
: —== Floquet Py
\ —— Lindblad P,
084 | —— Lindblad P,
1y "
E I|'I|' ::II'"I
8 VN
So6 fdrpiulimn
° i Vv
SR
S | 1
g \ AR
%04_ [I
o I i
[o) III'I
o H
0.2 1
0.0

0.0 2.5 5.0 7.5 10.0 12,5 150 17.5 20.0
Time

Alternatively, we can let the qutip. floquet . fmmesolve function transform the density matrix at each time
step back to the computational basis, and calculating the expectation values for us, but using:

output = frmmesolve (H, psiO, tlist, [sigmax ()], [num(2)], [noise_spectrum], T, args)
p_ex = output.expect[0]

3.5. Time Evolution and Quantum System Dynamics 101

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.5.9 Permutational Invariance

Permutational Invariant Quantum Solver (PIQS)

The Permutational Invariant Quantum Solver (PIQS) is a QuTiP module that allows to study the dynamics of an
open quantum system consisting of an ensemble of identical qubits that can dissipate through local and collective
baths according to a Lindblad master equation.

The Liouvillian of an ensemble of N qubits, or two-level systems (TLSs), Drrs(p), can be built using only
polynomial — instead of exponential — resources. This has many applications for the study of realistic quantum
optics models of many TLSs and in general as a tool in cavity QED.

Consider a system evolving according to the equation

p=Drus(p) =~ 1H. ol + 5Ly (o) + 2L, (o) + K2y, [

h

N
> (FLonlol+ B Lo lo)+ FLo.,101)

where J,.,, = %Uam are SU(2) Pauli spin operators, with &« = x,y,z and J1 ,, = o+ ,. The collective spin
operators are J, = Y. Jo., . The Lindblad super-operators are £4 = 24pAT — ATAp — pATA.

The inclusion of local processes in the dynamics lead to using a Liouvillian space of dimension 4. By exploiting
the permutational invariance of identical particles [2-8], the Liouvillian Dy s(p) can be built as a block-diagonal
matrix in the basis of Dicke states |j, m).

The system under study is defined by creating an object of the Dicke class, e.g. simply named system, whose
first attribute is

e system.N, the number of TLSs of the system N.
The rates for collective and local processes are simply defined as
* collective_emission defines ycg, collective (superradiant) emission
* collective_dephasing defines ycp, collective dephasing
* collective_pumping defines vcp, collective pumping.
* emission defines g, incoherent emission (losses)
* dephasing defines vp, local dephasing
e pumping defines ~p, incoherent pumping.

Then the system.lindbladian () creates the total TLS Lindbladian superoperator matrix. Similarly,
system.hamiltonian defines the TLS hamiltonian of the system Hrys.

The system’s Liouvillian can be built using system.liouvillian (). The properties of a Pigs object can be
visualized by simply calling system. We give two basic examples on the use of PIQS. In the first example the
incoherent emission of N driven TLSs is considered.

from pigs import Dicke
from qutip import steadystate

N = 10
system = Dicke (N, emission = 1, pumping = 2)
L = system.liouvillian()

steady = steadystate (L)

For more example of use, see the “Permutational Invariant Lindblad Dynamics” section in the tutorials section of
the website, https://qutip.org/tutorials.html.

102 Chapter 3. Users Guide

https://qutip.org/tutorials.html

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Table 1: Useful PIQS functions.

Operators Command Description

Collective spin algebra | jspin (N) The collective spin algebra J,., Jy, J, for N TLSs

Jzy Jy, J2

Collective spin J, jspin (N, "x") The collective spin operator Jz. Requires N number
of TLSs

Collective spin J,, jspin (N, "y") The collective spin operator J,. Requires N number
of TLSs

Collective spin J, jspin (N, "z") The collective spin operator J,. Requires N number
of TLSs

Collective spin J; jspin (N, "+") The collective spin operator .J .

Collective spin J_ jspin (N, "-") The collective spin operator J_.

Collective spin J, inun- | jspin (N, "z", The collective spin operator .J, in the uncoupled basis

coupled basis basis="uncoupled')| of dimension 2%.

Dicke state |j, m) density | dicke (N, j, m) The density matrix for the Dicke state given by |7, m)

matrix

Excited-state density ma- | excited (N) The excited state in the Dicke basis

trix in Dicke basis

Excited-state density ma- | excited (N, The excited state in the uncoupled basis

trix in uncoupled basis basis="uncoupled")

Ground-state density ma- | ground (N) The ground state in the Dicke basis

trix in Dicke basis

GHZ-state density ma- | ghz (N) The GHZ-state density matrix in the Dicke (default)

trix in the Dicke basis basis for N number of TLS

Collapse operators of the | Dicke.c_ops () The collapse operators for the ensemble can be called

ensemble by the c_ops method of the Dicke class.

Note that the mathematical object representing the density matrix of the full system that is manipulated (or ob-
tained from steadystate) in the Dicke-basis formalism used here is a representative of the density matrix. This
representative object is of linear size N2, whereas the full density matrix is defined over a 2N Hilbert space. In
order to calculate nonlinear functions of such density matrix, such as the Von Neumann entropy or the purity, it is
necessary to take into account the degeneracy of each block of such block-diagonal density matrix. Note that as
long as one calculates expected values of operators, being Tr[A*rho] a linear function of rho, the representative
density matrix give straightforwardly the correct result. When a nonlinear function of the density matrix needs to
be calculated, one needs to weigh each degenerate block correctly; this is taken care by the dicke_function_trace
in qutip.pigs, and the user can use it to define general nonlinear functions that can be described as the trace of a
Taylor expandable function. Two nonlinear functions that use dicke_function_trace and are already implemented
are purity_dicke, to calculate the purity of a density matrix in the Dicke basis, and entropy_vn_dicke, which can
be used to calculate the Von Neumann entropy.

More functions relative to the qutip.pigs module can be found at APl documentation. Attributes to the qutip.
pigs.Dickeand qutip.pigs.Pimclass can also be found there.

3.5.10 Setting Options for the Dynamics Solvers

Occasionally it is necessary to change the built in parameters of the dynamics solvers used by for example the
qutip.mesolve and qutip.mcsolve functions. The options for all dynamics solvers may be changed by
using the Options class qutip.solver.Options.

’options = Options()

the properties and default values of this class can be view via the print function:

’print(options)

Output:

3.5. Time Evolution and Quantum System Dynamics 103

QuTiP: Quantum Toolbox in Python, Release 4.7.0

nsteps:
first_step:
min_step:
max_step:
tidy:
num_cpus:
norm_tol:
norm_steps:
rhs_filename:
rhs_reuse:
seeds:

rhs_with_state:
average_expect:
average_states:

ntraj:
store_states:

store_final_state:

le-08
le-06
adams
12
1000
0

0

0
True
2
0.001
5
None
False
0
False
True
False
500
False
False

These properties are detailed in the following table. Assuming options

Options():

104

Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Property Default setting Description
options.atol le-8 Absolute tolerance
options.rtol le-6 Relative tolerance
options.method ‘adams’ Solver method. Can be ‘adams’ (non-stiff) or ‘bdf” (stiff)
options.order 12 Order of solver. Must be <=12 for ‘adams’ and <=5 for ‘bdf’
options.nsteps 1000 Max. number of steps to take for each interval
options.first_step 0 Size of initial step. O = determined automatically by solver.
options.min_step 0 Minimum step size. 0 = determined automatically by solver.
options.max_step 0 Maximum step size. 0 = determined automatically by solver.
options.tidy True Whether to run tidyup function on time-independent Hamilto-
nian.
op- False Whether or not to store the final state of the evolution.
tions.store_final_state
options.store_states False Whether or not to store the state vectors or density matrices.
options.rhs_filename | None RHS filename when using compiled time-dependent Hamilto-
nians.
options.rhs_reuse False Reuse compiled RHS function. Useful for repetitive tasks.
op- False Whether or not to include the state in the Hamiltonian function
tions.rhs_with_state callback signature.
options.num_cpus installed num of | Integer number of cpus used by mcsolve.
processors
options.seeds None Array containing random number seeds for mcsolver.
options.norm_tol le-6 Tolerance used when finding wavefunction norm in mcsolve.
options.norm_steps 5 Max. number of steps used to find wavefunction’s norm to
within norm_tol in mcsolve.
op- False Include an estimation of the steady state in mcsolve.
tions.steady_state_average
options.ntraj 500 Number of trajectories in stochastic solvers.
op- True Average expectation values over trajectories.
tions.average_expect
op- False Average of the states over trajectories.
tions.average_states
op- installed num of | Number of OPENMP threads to use.
tions.openmp_threads| processors
options.use_openmp | None Use OPENMP for sparse matrix vector multiplication.

As an example, let us consider changing the number of processors used, turn the GUI off, and strengthen the
absolute tolerance. There are two equivalent ways to do this using the Options class. First way,

options = Options|()
options.num_cpus = 3
options.atol = 1le-10

or one can use an inline method,

’options = Options (num_cpus=4, atol=1le-10)

Note that the order in which you input the options does not matter. Using either method, the resulting options
variable is now:

’print(options)

Output:

atol: le-10

(continues on next page)

3.5. Time Evolution and Quantum System Dynamics 105

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

rtol: le-06
method: adams
order: 12
nsteps: 1000
first_step: 0
min_step: 0
max_step: 0
tidy: True
num_cpus: 4
norm_tol: 0.001
norm_steps: 5
rhs_filename: None
rhs_reuse: False
seeds: 0
rhs_with_state: False
average_expect: True
average_states: False
ntraj: 500
store_states: False

store_final_state: False

To use these new settings we can use the keyword argument options in either the func:qutip.mesolve and
qutip.mcsolve function. We can modify the last example as:

>>> mesolve (HO, psiO, tlist, c_op_list, [sigmaz ()], options=options)
>>> mesolve (hamiltonian_t, psiO, tlist, c_op_list, [sigmaz ()], H_args,
—options=options)

or:
>>> mcsolve (HO, psiO, tlist, ntraj,c_op_list, [sigmaz ()], options=options)
>>> mcsolve (hamiltonian_t, psiO, tlist, ntraj, c_op_list, [sigmaz ()], H_args,

—options=options)

3.6 Hierarchical Equations of Motion

3.6.1 Introduction
The Hierarchical Equations of Motion (HEOM) method was originally developed by Tanimura and Kubo [TKS89]

in the context of physical chemistry to “’exactly” solve a quantum system in contact with a bosonic environment,
encapsulated in the Hamiltonian:

H:HS+ZwkaTkak+Qng (akJra};).
k k

As in other solutions to this problem, the properties of the bath are encapsulated by its temperature and its spectral
density,

J(w) = WZgzé(w — wg).
k

In the HEOM, for bosonic baths, one typically chooses a Drude-Lorentz spectral density:

g 2 \yw
MGk
or an under-damped Brownian motion spectral density:
a’Tw

Ju =

[(OJ2 w2)2 + I“2w2] '

i =

106 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Given the spectral density, the HEOM requires a decomposition of the bath correlation functions in terms of ex-
ponentials. In Bosonic Environments we describe how this is done with code examples, and how these expansions
are passed to the solver.

In addition to support for bosonic environments, QuTiP also provides support for feriomic environments which is
described in Fermionic Environments.

Both bosonic and fermionic environments are supported via a single solver, HEOMSolver, that supports solving
for both dynamics and steady-states.

3.6.2 Bosonic Environments

In this section we consider a simple two-level system coupled to a Drude-Lorentz bosonic bath. The system
Hamiltonian, H,,s, and the bath spectral density, Jp, are

eo, Aoy
2 2
2 \yw
(2 +w?)’

Hsys =
Jp =

We will demonstrate how to describe the bath using two different expansions of the spectral density correlation
function (Matsubara’s expansion and a Padé expansion), how to evolve the system in time, and how to calculate
the steady state.

First we will do this in the simplest way, using the built-in implementations of the two bath expansions,
DrudeLorentzBath and DrudelLorent zPadeBath. We will do this both with a truncated expansion and
show how to include an approximation to all of the remaining terms in the bath expansion.

Afterwards, we will show how to calculate the bath expansion coefficients and to use those coefficients to construct
your own bath description so that you can implement your own bosonic baths.

Finally, we will demonstrate how to simulate a system coupled to multiple independent baths, as occurs, for
example, in certain photosynthesis processes.

A notebook containing a complete example similar to this one implemented in BoFiN can be found in example
notebook la.

Describing the system and bath

First, let us construct the system Hamiltonian, H,, and the initial system state, rho0:

from qutip import basis, sigmax, sigmaz

The system Hamiltonian:

eps = 0.5 # energy of the 2-level system

Del = 1.0 # tunnelling term

H sys = 0.5 x eps * sigmaz () + 0.5 » Del % sigmax()

Initial state of the system:
rho0 = basis(2,0) % basis(2,0).dag()

Now let us describe the bath properties:

Bath properties:

= 0.5 # cut off frequency
0.1 # coupling strength

5 # temperature

System-bath coupling operator:
Q = sigmaz()

3.6. Hierarchical Equations of Motion 107

https://github.com/tehruhn/bofin/blob/main/examples/example-1a-Spin-bath-model-basic.ipynb
https://github.com/tehruhn/bofin/blob/main/examples/example-1a-Spin-bath-model-basic.ipynb

QuTiP: Quantum Toolbox in Python, Release 4.7.0

where v (gamma), A (lam) and T' are the parameters of a Drude-Lorentz bath, and Q is the coupling operator
between the system and the bath.

We may the pass these parameters to either DrudeLorentzBath or DrudeLorent zPadeBath to construct
an expansion of the bath correlations:

from qutip.nonmarkov.heom import DrudeLorentzBath
from qutip.nonmarkov.heom import DrudelLorentzPadeBath

Number of expansion terms to retain:
Nk = 2

Matsubara expansion:
bath = DrudelorentzBath(Q, lam, gamma, T, Nk)

Padé expansion:
bath = DrudelorentzPadeBath(Q, lam, gamma, T, Nk)

Where Nk is the number of terms to retain within the expansion of the bath.

System and bath dynamics

Now we are ready to construct a solver:

from qutip.nonmarkov.heom import HEOMSolver
from qutip import Options

max_depth = 5 # maximum hierarchy depth to retain
options = Options (nsteps=15_000)

solver = HEOMSolver (H_sys, bath, max_depth=max_depth, options=options)

and to calculate the system evolution as a function of time:

tlist = [0, 10, 20] # times to evaluate the system state at
result = solver.run(rhoO, tlist)

The max_depth parameter determines how many levels of the hierarchy to retain. As a first approximation
hierarchy depth may be thought of as similar to the order of Feynman Diagrams (both classify terms by increasing
number of interactions).

The result is a standard QuTiP results object with the attributes:
¢ times: the times at which the state was evaluated (i.e. t1ist)
* states: the system states at each time
e expect: the values of each e_ops at each time
¢ ado_states: see below (an instance of HierarchyADOsState)

If ado_return=True is passed to . run (.. .) the full set of auxilliary density operators (ADOs) that make
up the hierarchy at each time will be returned as . ado_states. We will describe how to use these to determine
other properties, such as system-bath currents, later in the fermionic guide (see Determining currents).

If one has a full set of ADOs from a previous call of . run (.. .) you may supply it as the initial state of the
solver by calling . run (result.ado_states[-1], tlist, ado_init=True).

As with other QuTiP solvers, if expectation operators or functions are supplied using . run (..., e_ops=[.
..]) the expectation values are available in result .expect.

Below we run the solver again, but use e_ops to store the expectation values of the population of the system
states and the coherence:

108 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Define the operators that measure the populations of the two
system states:

Pllp = basis(2,0) * basis(2,0) .dag()

P22p = basis(2,1) * basis(2,1).dag()

Define the operator that measures the 0, 1 element of density matrix
(corresonding to coherence) :
P12p = basis(2,0) * basis(2,1) .dag()

Run the solver:
tlist = np.linspace (0, 20, 101)
result = solver.run(rhoO, tlist, e_ops={"11": Pllp, "22": P22p, "12": P1l2p})

Plot the results:

fig, axes = plt.subplots(l, 1, sharex=True, figsize=(8,8))

axes.plot (result.times, result.expect["11"], 'b', linewidth=2, label="P11")
axes.plot (result.times, result.expect["12"], 'r', linewidth=2, label="P12")
axes.set_xlabel(r't', fontsize=28)

axes.legend(loc=0, fontsize=12)

1.0- — P11
— P12

0.8 A

0.6 A

0.4 4

0.2 A1

0.0

-0.2 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

3.6. Hierarchical Equations of Motion 109

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Steady-state

Using the same solver, we can also determine the steady state of the combined system and bath using:

steady_state, steady_ados = solver.steady_state ()

where steady_state is the steady state of the system and steady_ados if the steady state of the full hier-
archy. The ADO states are described more fully in Determining currents and HierarchyADOsState.

Matsubara Terminator
When constructing the Drude-Lorentz bath we have truncated the expansion at Nk = 2 terms and ignore the
remaining terms.

However, since the coupling to these higher order terms is comparatively weak, we may consider the interaction
with them to be Markovian, and construct an additional Lindbladian term that captures their interaction with the
system and the lower order terms in the expansion.

This additional term is called the terminator because it terminates the expansion.

The DrudeLorentzBathand DrudeLorent zPadeBath both provide a means of calculating the terminator
for a given expansion:

Matsubara expansion:
bath = DrudelorentzBath(Q, lam, gamma, T, Nk)

Padé expansion:
bath = DrudelorentzPadeBath(Q, lam, gamma, T, Nk)

Add terminator to the system Liouvillian:
delta, terminator = bath.terminator ()
HL = liouvillian(H_sys) + terminator

Construct solver:
solver = HEOMSolver (HL, bath, max_depth=max_depth, options=options)

This captures the Markovian effect of the remaining terms in the expansion without having to fully model many
more terms.

The value delta is an approximation to the strength of the effect of the remaining terms in the expansion (i.e.
how strongly the terminator is coupled to the rest of the system).

Matsubara expansion coefficients

So far we have relied on the built-in DrudeLorent zBath to construct the Drude-Lorentz bath expansion for
us. Now we will calculate the coefficients ourselves and construct a BosonicBath directly. A similar procedure
can be used to apply HEOMSolver to any bosonic bath for which we can calculate the expansion coefficients.

The real and imaginary parts of the correlation function, C(¢), for the bosonic bath is expanded in an expontential
series:

C(t) = C’real (t) + icimag (t)

oo
E —Vk,realt

Creal (t) - Ck. real€ Vk,real
k=0

o0

E —Vk,imagt
Cimag(t) = Ck,imag€ ks g
k=0

110 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

In the specific case of Matsubara expansion for the Drude-Lorentz bath, the coefficients of this expansion are, for
the real part, Ci.cq1(%):

¥ k=0
2rk/B k>1
Ayleot(By/2) —i] k=0

Ck.real = 4\yvg
’ P vt >
(vi—?)B k21

Vg, real =

and the imaginary part, Ciyqq(2):

Vi imag =

Ck,imag —

And now the same numbers calculated in Python:

Convenience functions and parameters:

def cot (x):
return 1. / np.tan(x)

beta = 1. / T

Number of expansion terms to calculate:
Nk = 2

C_real expansion terms:
ck_real = [lam * gamma / np.tan(gamma / (2 % T))]
ck_real.extend ([

(8 » lam * gamma T * np.pi = k = T /

((2 » np.pi » k » T)xx2 — gammax*=*2))

for k in range(l, Nk + 1)
1)
vk_real = [gamma]
vk_real.extend([2 « np.pi » k * T for k in range(l, Nk + 1)])

C_imag expansion terms (this is the full expansion):
ck_imag = [lam * gamma % (-1.0)]
vk_imag = [gamma]

After all that, constructing the bath is very straight forward:

from qutip.nonmarkov.heom import BosonicBath

bath = BosonicBath(Q, ck_real, vk_real, ck_imag, vk_imag)

And we’re done!

The BosonicBath can be used with the HEOMSolver in exactly the same way as the baths we constructed
previously using the built-in Drude-Lorentz bath expansions.

3.6. Hierarchical Equations of Motion 111

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Multiple baths

The HEOMSolver supports having a system interact with multiple environments. All that is needed is to supply
a list of baths instead of a single bath.

In the example below we calculate the evolution of a small system where each basis state of the system interacts
with a separate bath. Such an arrangement can model, for example, the Fenna—Matthews—Olson (FMO) pigment-
protein complex which plays an important role in photosynthesis (for a full FMO example see the notebook
https://github.com/tehruhn/bofin/blob/main/examples/example-2-FMO-example.ipynb).

For each bath expansion, we also include the terminator in the system Liouvillian.

At the end, we plot the populations of the system states as a function of time, and show the long-time beating of
quantum state coherence that occurs:

The size of the system:
N_sys = 3

def proj(i, 3J):
"mm A helper function for creating an interaction operator.
return basis(N_sys, 1) * basis(N_sys, 7Jj).dag()

mmn

Construct one bath for each system state:
baths = []
for i in range (N_sys):
0 = proj(i, i)
baths.append (DrudeLorentzBath (Q, lam, gamma, T, Nk))

Construct the system Liouvillian from the system Hamiltonian and
bath expansion terminators:
H_sys = sum((i + 0.5) * eps % proj(i, i) for i in range (N_sys))
H_sys += sum(

(1 + 3 + 0.5) % Del * proj(i, 3)

for i in range (N_sys) for j in range (N_sys)

if i !'= 3
)
HL = liouvillian(H_sys) + sum(bath.terminator()[1] for bath in baths)

Construct the solver (pass a list of baths):
solver = HEOMSolver (HL, baths, max_depth=max_depth, options=options)

Run the solver:
rho0 = basis(N_sys, 0) % basis(N_sys, 0).dag()
tlist = np.linspace(0, 5, 200)
e_ops = {
£"P/{i)": proj(i, 1)
for i in range (N_sys)
}

result = solver.run(rho0O, tlist, e_ops=e_ops)

Plot populations:
fig, axes = plt.subplots(l, 1, sharex=True, figsize=(8,8))
for label, values in result.expect.items():

axes.plot (result.times, values, label=label)
axes.set_xlabel(r't', fontsize=28)
axes.set_ylabel (r"Population", fontsize=28)
axes.legend(loc=0, fontsize=12)

112 Chapter 3. Users Guide

https://github.com/tehruhn/bofin/blob/main/examples/example-2-FMO-example.ipynb

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Sl ' ‘ , ‘
AR
0.0 '

3.6.3 Fermionic Environments

Here we model a single fermion coupled to two electronic leads or reservoirs (e.g., this can describe a single
quantum dot, a molecular transistor, etc). The system hamiltonian, H,,,, and bath spectral density, Jp, are

Hyys = cle
rw?

Jp=———
TR

We will demonstrate how to describe the bath using two different expansions of the spectral density correlation
function (Matsubara’s expansion and a Padé expansion), how to evolve the system in time, and how to calculate
the steady state.

Since our fermion is coupled to two reservoirs, we will construct two baths — one for each reservoir or lead — and
call them the left (L) and right (R) baths for convenience. Each bath will have a different chemical potential p
which we will label p7, and pg.

First we will do this using the built-in implementations of the bath expansions, LorentzianBath and
LorentzianPadeBath.

3.6. Hierarchical Equations of Motion 113

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Afterwards, we will show how to calculate the bath expansion coefficients and to use those coefficients to construct
your own bath description so that you can implement your own fermionic baths.

Our implementation of fermionic baths primarily follows the definitions used by Christian Schinabeck in his
dissertation (https://opus4.kobv.de/opus4-fau/files/10984/DissertationChristianSchinabeck.pdf) and related pub-
lications.

A notebook containing a complete example similar to this one implemented in BoFiN can be found in example
notebook 4b.

Describing the system and bath

First, let us construct the system Hamiltonian, H,,,, and the initial system state, rhoO:

from qutip import basis, destroy

The system Hamiltonian:
el = 1. # site energy
H_sys = el % destroy(2).dag() * destroy(2)

Initial state of the system:
rho0 = basis(2,0) * basis(2,0).dag()

Now let us describe the bath properties:

Shared bath properties:

gamma = 0.01 # coupling strength
W= 1.0 # cut-off
T =20.0

25851991 # temperature
beta = 1. / T

Chemical potentials for the two baths:
mu_L = 1.

mu_R = —1.

System-bath coupling operator:
Q = destroy(2)

where I' (gamma), W and T are the parameters of an Lorentzian bath, p7, (mu_L) and ptp (mu_R) are the chemical
potentials of the left and right baths, and Q is the coupling operator between the system and the baths.

We may the pass these parameters to either LorentzianBath or LorentzianPadeBath to construct an
expansion of the bath correlations:

from qutip.nonmarkov.heom import LorentzianBath
from qutip.nonmarkov.heom import LorentzianPadeBath

Number of expansion terms to retain:
Nk = 2

Matsubara expansion:
bath_L = LorentzianBath(Q, gamma, W, mu_L, T, Nk, tag="L")
bath_R = LorentzianBath(Q, gamma, W, mu_R, T, Nk, tag="R")

Padé expansion:
bath_L = LorentzianPadeBath(Q, gamma, W, mu_L, T, Nk, tag="L")
bath_R = LorentzianPadeBath(Q, gamma, W, mu_R, T, Nk, tag="R")

Where Nk is the number of terms to retain within the expansion of the bath.

Note that we haved labelled each bath with a tag (either “L” or “R”) so that we can identify the exponents from
individual baths later when calculating the currents between the system and the bath.

114 Chapter 3. Users Guide

https://opus4.kobv.de/opus4-fau/files/10984/DissertationChristianSchinabeck.pdf
https://github.com/tehruhn/bofin/blob/main/examples/example-4b-fermions-single-impurity-model.ipynb
https://github.com/tehruhn/bofin/blob/main/examples/example-4b-fermions-single-impurity-model.ipynb

QuTiP: Quantum Toolbox in Python, Release 4.7.0

System and bath dynamics

Now we are ready to construct a solver:

from qutip.nonmarkov.heom import HEOMSolver
from qutip import Options

max_depth = 5 # maximum hierarchy depth to retain
options = Options (nsteps=15_000)
baths = [bath_L, bath_R]

solver = HEOMSolver (H_sys, baths, max_depth=max_depth, options=options)

and to calculate the system evolution as a function of time:

tlist = [0, 10, 20] # times to evaluate the system state at
result = solver.run(rhoO, tlist)

As in the bosonic case, the max_depth parameter determines how many levels of the hierarchy to retain.

As in the bosonic case, we can specify e_ops in order to retrieve the expectation values of operators at each given
time. See System and bath dynamics for a fuller description of the returned result object.

Below we run the solver again, but use e_ops to store the expectation values of the population of the system
states:

Define the operators that measure the populations of the two
system states:

Pllp = basis(2,0) * basis(2,0).dag()

P22p basis(2,1) % basis(2,1).dag()

Run the solver:
tlist = np.linspace (0, 500, 101)
result = solver.run(rhoO, tlist, e_ops={"11": Pllp, "22": P22p})

Plot the results:

fig, axes = plt.subplots(l, 1, sharex=True, figsize=(8,8))

axes.plot (result.times, result.expect["11"], 'b', linewidth=2, label="P11")
axes.plot (result.times, result.expect["22"], 'r', linewidth=2, label="P22")
axes.set_xlabel (r't', fontsize=28)

axes.legend(loc=0, fontsize=12)

3.6. Hierarchical Equations of Motion 115

QuTiP: Quantum Toolbox in Python, Release 4.7.0

1.0 - — P11
— P22
0.8
0.6
0.4
0.2 4
0.0
0 100 200 300 400 500

The plot above is not very exciting. What we would really like to see in this case are the currents between the
system and the two baths. We will plot these in the next section using the auxiliary density operators (ADOs)
returned by the solver.

Determining currents
The currents between the system and a fermionic bath may be calculated from the first level auxiliary density
operators (ADOs) associated with the exponents of that bath.

The contribution to the current into a given bath from each exponent in that bath is:
ContributionfromExponent = :I:iTr(Qi - A)
where the + sign is the sign of the exponent (see the description later in Padé expansion coefficients) and Q% is

Q for + exponents and Q' for — exponents.

The first-level exponents for the left bath are retrieved by calling . filter (tags=["L"]) on ado_state
which is an instance of HierarchyADOsState and also provides access to the methods of HierarchyADOs
which describes the structure of the hierarchy for a given problem.

116 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Here the tag “L” matches the tag passed when constructing bath_L earlier in this example.

Similarly, we may calculate the current to the right bath from the exponents tagged with “R”.

def exp_current (aux, exp):
""" Calculate the current for a single exponent. """
sign = 1 if exp.type == exp.types["+"] else -1
op = exp.Q if exp.type == exp.types["+"] else exp.Q.dag()
return 1j » sign % (op * aux).tr()

def heom_current (tag, ado_state):
"mr o Calculate the current between the system and the given bath. """
level_1_ados = [
(ado_state.extract (label), ado_state.exps(label) [0])
for label in ado_state.filter (tags=[tag]l)
1

return np.real (sum(exp_current (aux, exp) for aux, exp in level_1_ados))

heom_left_current = lambda t, ado_state: heom_current ("L", ado_state)
heom_right_current = lambda t, ado_state: heom_current ("R", ado_state)

Once we have defined functions for retrieving the currents for the baths, we can pass them to e_ops and plot the
results:

Run the solver (returning ADO states):
tlist = np.linspace (0, 100, 201)

result = solver.run(rho0O, tlist, e_ops={
"left_currents": heom_left_current,
"right_currents": heom_right_current,

})

Plot the results:
fig, axes = plt.subplots(l, 1, sharex=True, figsize=(8,8))
axes.plot (
result.times, result.expect["left_ currents"], 'b',
linewidth=2, label=r"Bath L",
)
axes.plot (
result.times, result.expect["right_ currents"], 'r',
linewidth=2, label="Bath R",

axes.set_xlabel(r't', fontsize=28)

axes.set_ylabel (r'Current', fontsize=20)
axes.set_title(r'System to Bath Currents', fontsize=20)
axes.legend(loc=0, fontsize=12)

3.6. Hierarchical Equations of Motion 117

QuTiP: Quantum Toolbox in Python, Release 4.7.0

System to Bath Currents

— Bath L
—— Bath R
0.004 -
0.003 -
-
(-
Q
-
)
O 0.002 -
0.001 -
0.000 -
0 20 40 60 80 100

And now we have a more interesting plot that shows the currents to the left and right baths decaying towards their
steady states!

In the next section, we will calculate the steady state currents directly.

Steady state currents

Using the same solver, we can also determine the steady state of the combined system and bath using:

steady_state, steady_ados = solver.steady_state ()

and calculate the steady state currents to the two baths from steady_ados using the same heom_current
function we defined previously:

steady_state_current_left = heom_current ("L", steady_ados)
steady_state_current_right = heom_current ("R", steady_ados)

Now we can add the steady state currents to the previous plot:

118 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Plot the results and steady state currents:
fig, axes = plt.subplots(l, 1, sharex=True, figsize=(8,8))
axes.plot (
result.times, result.expect["left currents"], 'b',
linewidth=2, label=r"Bath L",
)
axes.plot (
result.times, [steady_state_current_left] » len(result.times), 'b:',
linewidth=2, label=r"Bath L (steady state)",
)
axes.plot (
result.times, result.expect["right_ currents"], 'r',
linewidth=2, label="Bath R",
)
axes.plot (
result.times, [steady_state_current_right] * len(result.times), 'r:',
linewidth=2, label=r"Bath R (steady state)",

axes.set_xlabel(r't', fontsize=28)

axes.set_ylabel (r'Current', fontsize=20)

axes.set_title(r'System to Bath Currents (with steady states)', fontsize=20)
axes.legend(loc=0, fontsize=12)

3.6. Hierarchical Equations of Motion 119

QuTiP: Quantum Toolbox in Python, Release 4.7.0

System to Bath Currents (with steady states)

—— Bath L
----- Bath L (steady state)
—— BathR
----- Bath R (steady state)
0.004 -
0.003
)
c
()
el
L
-]
0.002
@)
0.001 -
0.000 -

As you can see, there is still some way to go beyond t = 100 before the steady state is reached!

Padé expansion coefficients

We now look at how to calculate the correlation expansion coefficients for the Lorentzian spectral density our-
selves. Once we have calculated the coefficients we can construct a FermionicBath directly from them. A
similar procedure can be used to apply HEOMSolver to any fermionic bath for which we can calculate the
expansion coefficients.

In the fermionic case we must descriminate between the order in which excitations are created within the bath, so
we define two different correlation functions, C; (t), and C_ (t):

Co(0) = o= [et w) el —)

:% .

where ¢ is either + or — and, fF is the Fermi distribution function, and J(w) is the Lorentzian spectral density we
defined at the start.

The Fermi distribution function is:

fr(@) = (exp(a) + 1)~

120 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

As in the bosonic case we can approximate this integral with a Matsubara or Padé expansion. For the Lorentzian
bath the Padé expansion converges much more quickly, so we will calculate the Padé expansion coefficients here.

The Padé decomposition approximates the Fermi distribution as:
Nk

a; rox 1 2klx
fr@~ 0 =52 s

2+ €

where k; and ¢; are coefficients defined in J. Chem Phys 133, “Efficient on the fly calculation of time correlation
functions in computer simulations”, and Nk specifies the cut-off in the expansion.

Evaluating the integral for the correlation functions gives:

Nk
)% § na’le*%r,lt
=0

where:
F;’V wEPTOTGAW) 1=0
Nol = fz%gi 1#0
_ﬁ+w2
W —oip =0
Yo, = € .
G —oip 1#0
and 8 = =

And now we calculate the same numbers in Python:

Imports
from numpy.linalg import eigvalsh

Convenience functions and parameters:
def deltafun(j, k):
""" Kronecker delta function. """
return 1.0 if j == k else 0.

def f_approx(x, Nk):
"rr padé approxmation to Fermi distribution. """
f =10.5
for 11 in range(l, Nk + 1):
kappa and epsilon are calculated further down
f =f - 2 % kappal[ll] * x / (x++2 + epsilon[ll]**2)
return f

def kappa_epsilon (Nk) :
"rr Calculate kappa and epsilon coefficients. """

alpha = np.zeros((2 = Nk, 2 % Nk))
for j in range (2 » Nk):
for k in range (2 * Nk):

alphalj] [k] = (
(deltafun(j, k + 1) + deltafun(j, k - 1))
/ np.sqrt((2 = (3 + 1) — 1) = (2 » (k + 1) - 1))
)
eps = [-2. / val for val in eigvalsh (alpha) [:Nk]]

alpha_p = np.zeros((2 = Nk — 1, 2 « Nk — 1))
for j in range(2 » Nk - 1):
for k in range(2 % Nk - 1):
alpha p[j][k] = (

(continues on next page)

3.6. Hierarchical Equations of Motion 121

https://doi.org/10.1063/1.3491098
https://doi.org/10.1063/1.3491098

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

(deltafun(j, k + 1) + deltafun(j, k - 1))
/ np.sqrt ((2 = (3 + 1) + 1) *« (2 = (k + 1) + 1))

chi = [-2. / val for val in eigvalsh(alpha_p) [:Nk - 1]]
eta_list = [
0.5 « Nk » (2 = (Nk + 1) — 1) * (
np.prod([chi[k]**2 - eps[]J]*+2 for k in range (Nk - 1)]) /
np.prod ([
eps[k]**x2 — eps[j]l**2 + deltafun(j, k) for k in range (Nk)

for j in range (Nk)
kappa = [0] + eta_list
epsilon = [0] + eps
return kappa, epsilon
kappa, epsilon = kappa_epsilon (Nk)

Phew, we made it to function that calculates the coefficients for the
correlation function expansions:

def C(sigma, mu, Nk):
"o Calculate the expansion coefficients for C_\sigma.
beta = 1. / T

mmn

ck = [0.5 » gamma * W % f_approx(l1.03 * beta = W, Nk)]
vk = [W - sigma = 1.073 » mu]
for 11 in range(l, Nk + 1):
ck.append (
-1.03 = (kappalll] / beta) * gamma * Wx=*2
/ (—(epsilon[ll]**2 / betax*2) + Wxx2)

)
vk.append (epsilon[l1l] / beta - sigma * 1.03j * mu)
return ck, vk

ck_plus_L, vk_plus_L = C(1.0, mu_L, Nk) # C_+, left bath
ck_minus_L, vk_minus_L = C(-1.0, mu_L, Nk) # C_—-, left bath

ck_plus_R, vk_plus_R C(1.0, mu_R, Nk) # C_+, right bath
ck_minus_R, vk_minus_R = C(-1.0, mu_R, Nk) # C_—, right bath

Finally we are ready to construct the FermionicBath:

from qutip.nonmarkov.heom import FermionicBath

Padé expansion:
bath_L = FermionicBath(Q, ck_plus_L, vk_plus_L, ck_minus_L, vk_minus_L)
bath_R = FermionicBath(Q, ck_plus_R, vk_plus_R, ck_minus_R, vk_minus_R)

And we’re done!

The FermionicBath can be used with the HEOMSolver in exactly the same way as the baths we constructed
previously using the built-in Lorentzian bath expansions.

122 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.6.4 Previous implementations

The current HEOM implementation in QuTiP is the latest in a succession of HEOM implementations by various
contributors:

HSolverDL

The original HEOM solver was implemented by Neill Lambert, Anubhav Vardhan, and Alexander Pitchford and
is still available as qut ip.nonmarkov.dlheom solver.HSolverDL and only directly provided support
for the Drude-Lorentz bath although there was the possibility of sub-classing the solver to implement other baths.

A compatible interface using the current implementation is available under the same name in qutip.
nonmarkov.heom.HSolverDL.

BoFiN-HEOM

BoFiN-HEOM (the bosonic and fermionic HEOM solver) was a much more flexible re-write of the original
QuTiP HSolverDL that added support for both bosonic and fermionic baths and for baths to be specified directly
via their correlation function expansion coefficients. Its authors were Neill Lambert, Tarun Raheja, Shahnawaz
Ahmed, and Alexander Pitchford.

BoFiN was written outside of QuTiP and is can still be found in its original repository at https://github.com/
tehruhn/bofin.

The construction of the right-hand side matrix for BoFiN was slow, so BoFiN-fast, a hybrid C++ and Python
implementation, was written that performed the right-hand side construction in C++. It was otherwise identical to
the pure Python version. BoFiN-fast can be found at https://github.com/tehruhn/bofin_fast.

BoFiN also came with an extensive set of example notebooks that are available at https://github.com/tehruhn/
bofin/tree/main/examples.

Current implementation

The current implementation is a rewrite of BoFiN in pure Python. It’s right-hand side construction has similar
speed to BoFiN-fast, but is written in pure Python. Built-in implementations of a variety of different baths are
provided, and a single solver is used for both fermionic and bosonic baths. Multiple baths of the same kind
(either fermionic or bosonic) may be specified in a single problem, and there is good support for working with the
auxiliary density operator (ADO) state and extracting information from it.

The code was written by Neill Lambert and Simon Cross.

3.6.5 References

3.7 Solving for Steady-State Solutions

3.7.1 Introduction

For time-independent open quantum systems with decay rates larger than the corresponding excitation rates, the
system will tend toward a steady state as ¢ — oo that satisfies the equation
dpes
dt

= Lﬁss - 0

Although the requirement for time-independence seems quite resitrictive, one can often employ a transformation
to the interaction picture that yields a time-independent Hamiltonian. For many these systems, solving for the

3.7. Solving for Steady-State Solutions 123

https://github.com/tehruhn/bofin
https://github.com/tehruhn/bofin
https://github.com/tehruhn/bofin_fast
https://github.com/tehruhn/bofin/tree/main/examples
https://github.com/tehruhn/bofin/tree/main/examples

QuTiP: Quantum Toolbox in Python, Release 4.7.0

asymptotic density matrix pss can be achieved using direct or iterative solution methods faster than using master
equation or Monte Carlo simulations. Although the steady state equation has a simple mathematical form, the
properties of the Liouvillian operator are such that the solutions to this equation are anything but straightforward
to find.

3.7.2 Steady State solvers in QuTiP

In QuTiP, the steady-state solution for a system Hamiltonian or Liouvillian is given by qut ip. steadystate.
steadystate. This function implements a number of different methods for finding the steady state, each with
their own pros and cons, where the method used can be chosen using the met hod keyword argument.

Method Keyword Description

Direct (default) ‘direct’ Direct solution solving Az = b via sparse LU decomposi-
tion.

Eigenvalue ‘eigen’ Iteratively find the zero eigenvalue of L.

Inverse-Power ‘power’ Solve using the inverse-power method.

GMRES ‘iterative-gmres’ Solve using the GMRES method and optional precondi-
tioner.

LGMRES ‘iterative-lgmres’ Solve using the LGMRES method and optional precondi-
tioner.

BICGSTAB ‘iterative-bicgstab’ Solve using the BICGSTAB method and optional precon-
ditioner.

SVD ‘svd’ Steady-state solution via the dense SVD of the Liouvillian.

The function qutip. steadystate.steadystate can take either a Hamiltonian and a list of collapse oper-
ators as input, generating internally the corresponding Liouvillian super operator in Lindblad form, or alternatively,
a Liouvillian passed by the user. When possible, we recommend passing the Hamiltonian and collapse operators to
qutip.steadystate.steadystate, and letting the function automatically build the Liouvillian (in Lind-
blad form) for the system.

As of QuTiP 3.2, the direct and power methods can take advantage of the Intel Pardiso LU solver in the Intel
Math Kernel library that comes with the Anacoda (2.5+) and Intel Python distributions. This gives a substantial
increase in performance compared with the standard SuperLU method used by SciPy. To verify that QuTiP can
find the necessary libraries, one can check for INTEL MKL Ext: True in the QuTiP about box (qutip.
about).

3.7.3 Using the Steadystate Solver

Solving for the steady state solution to the Lindblad master equation for a general system with qutip.
steadystate.steadystate can be accomplished using:

>>> rho_ss = steadystate(H, c_ops)

where H is a quantum object representing the system Hamiltonian, and c_ops is a list of quantum objects for
the system collapse operators. The output, labeled as rho_ss, is the steady-state solution for the systems. If no
other keywords are passed to the solver, the default ‘direct’ method is used, generating a solution that is exact to
machine precision at the expense of a large memory requirement. The large amount of memory need for the direct
LU decomposition method stems from the large bandwidth of the system Liouvillian and the correspondingly
large fill-in (extra nonzero elements) generated in the LU factors. This fill-in can be reduced by using bandwidth
minimization algorithms such as those discussed in Additional Solver Arguments. However, in most cases, the
default fill-in reducing algorithm is nearly optimal. Additional parameters may be used by calling the steady-state
solver as:

rho_ss = steadystate (H, c_ops, method='power', use_rcm=True)

where method="power' indicates that we are using the inverse-power solution method, and use_rcm=True
turns on a bandwidth minimization routine.

124 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Although it is not obvious, the 'direct', eigen, and 'power' methods all use an LU decomposi-
tion internally and thus suffer from a large memory overhead. In contrast, iterative methods such as the
'iterative—-gmres', 'iterative-lgmres', and 'iterative-bicgstab' methods do not factor
the matrix and thus take less memory than these previous methods and allowing, in principle, for extremely large
system sizes. The downside is that these methods can take much longer than the direct method as the condition
number of the Liouvillian matrix is large, indicating that these iterative methods require a large number of itera-
tions for convergence. To overcome this, one can use a preconditioner M that solves for an approximate inverse
for the (modified) Liouvillian, thus better conditioning the problem, leading to faster convergence. The use of a
preconditioner can actually make these iterative methods faster than the other solution methods. The problem with
precondioning is that it is only well defined for Hermitian matrices. Since the Liouvillian is non-Hermitian, the
ability to find a good preconditioner is not guaranteed. And moreover, if a preconditioner is found, it is not guar-
anteed to have a good condition number. QuTiP can make use of an incomplete LU preconditioner when using the
iterative 'gmres"', 'lgmres’', and 'bicgstab"' solvers by setting use_precond=True. The precondi-
tioner optionally makes use of a combination of symmetric and anti-symmetric matrix permutations that attempt
to improve the preconditioning process. These features are discussed in the Additional Solver Arguments section.
Even with these state-of-the-art permutations, the generation of a successful preconditoner for non-symmetric
matrices is currently a trial-and-error process due to the lack of mathematical work done in this area. It is always
recommended to begin with the direct solver with no additional arguments before selecting a different method.

Finding the steady-state solution is not limited to the Lindblad form of the master equation. Any time-independent
Liouvillian constructed from a Hamiltonian and collapse operators can be used as an input:

>>> rho_ss = steadystate (L)

where L is the Louvillian. All of the additional arguments can also be used in this case.

3.7.4 Additional Solver Arguments

The following additional solver arguments are available for the steady-state solver:

3.7. Solving for Steady-State Solutions 125

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Key- Options (default listed first) | Description
word
method | ‘direct’, ‘eigen’, ‘power’, | Method used for solving for the steady-state density matrix.

‘iterative-gmres’, iterative-
lgmres’, ‘svd’

sparse True, False Use sparse version of direct solver.

weight None Allows the user to define the weighting factor used in the
'direct', "GMRES', and 'LGMRES"' solvers.

permc_specCOLAMD’, ‘NATURAL’ Column ordering used in the sparse LU decomposition.

use_rcm | False, True Use a Reverse Cuthill-Mckee reordering to minimize the band-

width of the modified Liouvillian used in the LU decomposi-
tion. If use_rcm=True then the column ordering is set to
'Natural' automatically unless explicitly set.

use_precanHalse, True Attempt to generate a preconditioner when using the
'iterative-gmres' and 'iterative-lgmres'
methods.
M None, sparse_matrix, Linear- | A user defined preconditioner, if any.
Operator
use_wbm| False, True Use a Weighted Bipartite Matching algorithm to attempt to make

the modified Liouvillian more diagonally dominate, and thus for
favorable for preconditioning. Set to True automatically when
using a iterative method, unless explicitly set.

tol le-9 Tolerance used in finding the solution for all methods expect
'direct' and 'svd'.

maxiter | 10000 Maximum number of iterations to perform for all methods expect
'direct' and 'svd'.

fill_facton 10 Upper-bound on the allowed fill-in for the approximate inverse

preconditioner. This value may need to be set much higher than
this in some cases.

drop_tol | le-3 Sets the threshold for the relative magnitude of preconditioner el-
ements that should be dropped. A lower number yields a more ac-
curate approximate inverse at the expense of fill-in and increased

runtime.
diag_pivot uursh Sets the threshold between [0, 1] for which diagonal elements are
considered acceptable pivot points when using a preconditioner.
ILU_MILU smilu_2’ Selects the incomplete LU decomposition method algorithm
used.

Further information can be found in the qutip. steadystate. steadystate docstrings.

3.7.5 Example: Harmonic Oscillator in Thermal Bath

A simple example of a system that reaches a steady state is a harmonic oscillator coupled to a thermal environment.
Below we consider a harmonic oscillator, initially in the |10) number state, and weakly coupled to a thermal
environment characterized by an average particle expectation value of (n) = 2. We calculate the evolution via
master equation and Monte Carlo methods, and see that they converge to the steady-state solution. Here we choose
to perform only a few Monte Carlo trajectories so we can distinguish this evolution from the master-equation
solution.

import numpy as np
import matplotlib.pyplot as plt

import qutip

Define paramters
N 20

number of basis states to consider

(continues on next page)

126 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

a = qutip.destroy (N)

H = a.dag() = a

psi0 = qutip.basis (N, 10) # initial state
kappa = 0.1 # coupling to oscillator

collapse operators
c_op_list = []
n_th_a = 2 # temperature with average of 2 excitations
rate = kappa * (1 + n_th_a)
if rate > 0.0:
c_op_list.append(np.sqgrt (rate) * a) # decay operators
rate = kappa * n_th_a
if rate > 0.0:
c_op_list.append(np.sqgrt (rate) * a.dag()) # excitation operators

find steady-state solution

final_state = qutip.steadystate(H, c_op_list)

find expectation value for particle number in steady state
fexpt = qutip.expect(a.dag() * a, final_state)

tlist = np.linspace (0, 50, 100)

monte-carlo

mcdata = qutip.mcsolve (H, psiO, tlist, c_op_list, [a.dag() * al], ntraj=100)
master eq.

medata = qutip.mesolve (H, psiO, tlist, c_op_list, [a.dag() =* al)

plt.plot (tlist, mcdata.expect[0], tlist, medata.expect[0], lw=2)
plot steady-state expt. value as horizontal line (should be = 2)
plt.axhline (y=fexpt, color='r', lw=1.5)
plt.ylim ([0, 107])
plt.xlabel ('Time', fontsize=14)
plt.ylabel ("Number of excitations', fontsize=14)
plt.legend(('Monte-Carlo', 'Master Equation', 'Steady State'))
plt.title(

r'Decay of Fock state $\left|1l0\rangle\right.s'

r' in a thermal environment with $\langle n\rangle=2$'

plt.show ()

3.7. Solving for Steady-State Solutions 127

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Decay of Fock state |10) in a thermal environment with (n) =2

10
- Monte-Carlo
Master Equation
—— Steady State
wn 87 \
C
o
S
S
G 6
X
O]
Y
o
| -
o 47
O
£
S5
= 5 Y o
O T T T T T T
0 10 20 30 40 50

Time

3.8 Two-time correlation functions

With the QuTiP time-evolution functions (for example qutip.mesolve and qutip.mcsolve), a state vector
or density matrix can be evolved from an initial state at ¢ to an arbitrary time ¢, p(t) = V (¢,t0) {p(to)}, where
V(t,10) is the propagator defined by the equation of motion. The resulting density matrix can then be used to
evaluate the expectation values of arbitrary combinations of same-time operators.

To calculate two-time correlation functions on the form (A(t + 7)B(t)), we can use the quantum regression the-
orem (see, e.g., [Gar03]) to write

(At +7)B(t)) = Tr[AV(t + 7,8) {Bp(t)}] = Tr [AV (t + 7,8) { BV (£,0) {p(0)} }]
We therefore first calculate p(t) = V (¢,0) {p(0)} using one of the QuTiP evolution solvers with p(0) as initial
state, and then again use the same solver to calculate V(¢ + 7,¢) { Bp(t) } using Bp(t) as initial state.

Note that if the initial state is the steady state, then p(t) = V' (¢,0) {pss} = pss and
(At +7)B(t)) = Tr [AV(t + 7,t) {Bpss}] = Tr [AV(7,0) { Bpss }| = (A(7)B(0)),

which is independent of ¢, so that we only have one time coordinate 7.

QuTiP provides a family of functions that assists in the process of calculating two-time correlation functions.
The available functions and their usage is shown in the table below. Each of these functions can use one of the
following evolution solvers: Master-equation, Exponential series and the Monte-Carlo. The choice of solver is
defined by the optional argument solver.

128 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

QuTiP function

Correlation function

qutip.correlation.correlation Z2op_2t

(A(t+7)B(t)) or (A(t)B(t + 71)).

qutip.correlation.correlation _Zop_1t

A(7)B(0)) or (A(0)B(1)).
0)B(7)C(0)).

qutip.correlation.correlation_3op 1t | {A(
qutip.correlation.correlation 3op 2t | (A(

A(DB(t + r)C(0)).

The most common use-case is to calculate correlation functions of the kind (A(7)B(0)), in which case
we use the correlation function solvers that start from the steady state, e.g., the qutip.correlation.
correlation_Zop_1t function. These correlation function solvers return a vector or matrix (in general
complex) with the correlations as a function of the delays times.

3.8.1 Steadystate correlation function

The following code demonstrates how to calculate the (z(¢)z(0)) correlation for a leaky cavity with three different

relaxation rates.

times = np.linspace(0,10.0,200)
a = destroy(10)
x = a.dag() + a
H = a.dag() * a

corrl = correlation_2o0p_1t (H, None, times,
corr2 = correlation_2op_1lt (H, None, times,
corr3 = correlation_2op_1t (H, None, times,
plt.figure()

plt.plot (times, np.real (corrl),
plt.legend(['0.5",'1.0","'2.0"])
plt.xlabel (r'Time tS'")
plt.ylabel (r'Correlation $\left<x(t)x
plt.show ()

[np.sgrt (0.5) * al, x, x)
[np.sgrt (1.0) * al, x, x)
[np.sgrt (2.0) %= al, x, x)

times, np.real (corr2), times, np.real (corr3))

(0)\right>$")

3.8. Two-time correlation functions

129

Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Correlation (x(t)x(0))

3.8.2 Emission spectrum

Given a correlation function (A(7)B(0)) we can define the corresponding power spectrum as

S(w) = / T AWM B(0)) e dr.

In QuTiP, we can calculate S(w) using either qutip.correlation. spectrum_ss, which first calculates
the correlation function using one of the time-dependent solvers and then performs the Fourier transform semi-
analytically, or we can use the function qutip.correlation. spectrum_correlation_fft to numer-
ically calculate the Fourier transform of a given correlation data using FFT.

The following example demonstrates how these two functions can be used to obtain the emission power spectrum.

import numpy as np
from matplotlib import pyplot
import qutip

N = 4 number of cavity fock states
wcec = wa = 1.0 » 2 % np.pi cavity and atom frequency
g = 0.1 x 2 » np.pi coupling strength

cavity dissipation rate
atom dissipation rate

kappa = 0.75
gamma = 0.25

HH o W W H

Jaynes-Cummings Hamiltonian

a = qutip.tensor(qutip.destroy(N), qutip.geye(2))

sm = qutip.tensor (qutip.geye (N), qutip.destroy(2))

H = wcra.dag()*a + waxsm.dag()+*sm + gx(a.dag()*sm + axsm.dag())

collapse operators

(continues on next page)

3.8. Two-time correlation functions 131

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

n_th = 0.25

c_ops = [
np.sqrt (kappa * (1 + n_th)) *x a,
np.sqrt (kappa * n_th) * a.dag(),
np.sqgrt (gamma) * sm,

calculate the correlation function using the mesolve solver, and then fft to
obtain the spectrum. Here we need to make sure to evaluate the correlation
function for a sufficient long time and sufficiently high sampling rate so
that the discrete Fourier transform (FFT) captures all the features in the

resulting spectrum.

tlist = np.linspace (0, 100, 5000)

corr = qutip.correlation_2o0p_1t (H, None, tlist, c_ops, a.dag(), a)

wlistl, specl = qutip.spectrum_correlation_fft(tlist, corr)

H o R

calculate the power spectrum using spectrum, which internally uses essolve
to solve for the dynamics (by default)

wlist2 = np.linspace(0.25, 1.75, 200) % 2 % np.pi

spec2 = qutip.spectrum(H, wlist2, c_ops, a.dag(), a)

plot the spectra

fig, ax = pyplot.subplots(l, 1)

ax.plot (wlistl / (2 * np.pi), specl, 'b', lw=2, label='eseries method')
ax.plot (wlist2 / (2 * np.pi), spec2, 'r—-', lw=2, label="me+fft method")
ax.legend()

ax.set_xlabel ('Frequency')

ax.set_ylabel ('Power spectrum')

ax.set_title('Vacuum Rabi splitting')

ax.set_xlim(wlist2[0]/ (2+*np.pi1), wlist2[-1]/(2+np.pi))

plt.show ()

Vacuum Rabi splitting

0.6 1 — eseries method
== me+fft method

0.5 1

0.4 1

Power spectrum
o
w
1

©
N
1

0.1+

0.0 1

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Frequency

132 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.8.3 Non-steadystate correlation function

More generally, we can also calculate correlation functions of the kind (A(t; + t2)B(t1)), i.e., the correlation
function of a system that is not in its steady state. In QuTiP, we can evaluate such correlation functions using the
function qutip.correlation.correlation_Zop_2t. The default behavior of this function is to return
a matrix with the correlations as a function of the two time coordinates (1 and ¢5).

import numpy as np
import matplotlib.pyplot as plt
import qutip

times = np.linspace (0, 10.0, 200)

a = qutip.destroy (10)

x = a.dag() + a

H = a.dag() = a

alpha = 2.5

rho0 = gqutip.coherent_dm (10, alpha)

corr = gqutip.correlation_2op_2t (H, rhoO, times, times, [np.sqgrt(0.25) * al, x, x)

plt.pcolor (np.real (corr))

plt.xlabel (r'Time $t_25")

plt.ylabel (r'Time St_1")

plt.title(r'Correlation $\left<x(t)x(0)\right>$")
plt.show ()

Correlation (x(t)x(0))

200

175

150

125

100

Time t;

75

50

25

0 25 50 75 100 125 150 175 200
Time t;

However, in some cases we might be interested in the correlation functions on the form (A(t; + t2)B(t1)),
but only as a function of time coordinate ¢5. In this case we can also use the qutip.correlation.
correlation_Z2op_Z2t function, if we pass the density matrix at time ¢; as second argument, and None as
third argument. The qutip.correlation.correlation_Z2op_2t function then returns a vector with the
correlation values corresponding to the times in faulist (the fourth argument).

3.8. Two-time correlation functions 133

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Example: first-order optical coherence function

This example demonstrates how to calculate a correlation function on the form (A(7)B(0)) for a non-steady initial
state. Consider an oscillator that is interacting with a thermal environment. If the oscillator initially is in a coherent
state, it will gradually decay to a thermal (incoherent) state. The amount of coherence can be quantified using the

(af(1)a(0))
Vi{at()a(r))(at(0)a(0)) "
for a completely incoherent (thermal) state g")(7) = 0. The following code calculates and plots g!)(7) as a
function of 7.

first-order optical coherence function ¢V (7) = For a coherent state |¢(!)(7)| = 1, and

import numpy as np
import matplotlib.pyplot as plt
import qutip

N = 15

taus = np.linspace(0,10.0,200)
a = qutip.destroy (N)

H=2 % np.pli » a.dag() * a

collapse operator

Gl = 0.75
n_th = 2.00 # bath temperature in terms of excitation number
c_ops = [np.sgrt (Gl = (1 + n_th)) % a, np.sqrt (Gl = n_th) * a.dag()]

start with a coherent state
rho0 = qutip.coherent_dm(N, 2.0)

first calculate the occupation number as a function of time
n = qutip.mesolve (H, rhoO, taus, c_ops, [a.dag() = a]).expect[0]

calculate the correlation function Gl and normalize with n to obtain gl
Gl = qutip.correlation_2op_2t (H, rho0O, None, taus, c_ops, a.dag(), a)
gl = G1 / np.sqrt(n[0] * n)

plt.plot (taus, np.real(gl), 'b', lw=2)
plt.plot (taus, n, 'r', 1lw=2)
plt.title('Decay of a coherent state to an incoherent (thermal) state')
plt.xlabel (r's\taus$")
plt.legend ([
r'First-order coherence function $g”{ (1)} (\tau)s$',
r'Occupation number $n(\tau)s$',
1)
plt.show ()

134 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Decay of a coherent state to an incoherent (thermal) state

47 —— First-order coherence function g®)(7)
= Occupation number n(T)

3 4
2 4
1 -
0 4
_1 B

0 2 4 6 8 10

T

For convenience, the steps for calculating the first-order coherence function have been collected in the function
qutip.correlation.coherence_function_gl.

Example: second-order optical coherence function

The second-order optical coherence function, with time-delay , is defined as

(af(0)af(r)a(r)a(0))
(a?(0)a(0))?

9@(7) =

For a coherent state ¢(*)(7) = 1, for a thermal state ¢® (7 = 0) = 2 and it decreases as a function of time
(bunched photons, they tend to appear together), and for a Fock state with 7 photons ¢(?) (7 = 0) = n(n—1)/n? <
1 and it increases with time (anti-bunched photons, more likely to arrive separated in time).

To calculate this type of correlation function with QuTiP, we can use qutip.correlation.
correlation_3op_1t, which computes a correlation function on the form (A(0)B(7)C/(0)) (three operators,
one delay-time vector). We first have to combine the central two operators into one single one as they are evaluated
at the same time, e.g. here we do af(7)a(7) = (afa)(7).

The following code calculates and plots g(?) () as a function of 7 for a coherent, thermal and Fock state.

import numpy as np
import matplotlib.pyplot as plt
import qutip

N = 25

taus = np.linspace (0, 25.0, 200)
a = qutip.destroy (N)

H=2 % np.pi » a.dag() * a

kappa = 0.25

n_th = 2.0 # bath temperature in terms of excitation number
c_ops = [np.sqgrt(kappa = (1 + n_th)) * a, np.sqgrt(kappa * n_th) » a.dag/()]
states = [

(continues on next page)

3.8. Two-time correlation functions 135

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

{'state': qutip.coherent_dm(N, np.sqrt(2)), 'label': "coherent state"},
{'state': qutip.thermal_dm(N, 2), 'label': "thermal state"},
{'state': qutip.fock_dm(N, 2), 'label': "Fock state"},

fig, ax = plt.subplots(l, 1)

for state in states:
rho0 = state['state']

first calculate the occupation number as a function of time
n = qutip.mesolve (H, rhoO, taus, c_ops, [a.dag() = a]).expect[0]

calculate the correlation function G2 and normalize with n(0)n(t) to

obtain g2

G2 = qutip.correlation_3op_1t (H, rho0O, taus, c_ops, a.dag(), a.dag()=*a, a)
g2 = G2 / (n[0] * n)

ax.plot (taus, np.real(g2), label=state['label'], 1lw=2)

ax.legend(loc=0)

ax.set_xlabel (r's\taus$")
ax.set_ylabel (r'sg”{(2)} (\tau)$")
plt.show ()

2.0 1 —— coherent state
- thermal state
1.8 4 - Fock state
1.6 -
1.4 A
E
% 1.2 1
1.0 ~
0.8 -
0.6 -
0 5 10 15 20 25
T

For convenience, the steps for calculating the second-order coherence function have been collected in the function
qutip.correlation.coherence function gZ2.

136 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.9 Quantum Optimal Control

3.9.1 Introduction

In quantum control we look to prepare some specific state, effect some state-to-state transfer, or effect some
transformation (or gate) on a quantum system. For a given quantum system there will always be factors that
effect the dynamics that are outside of our control. As examples, the interactions between elements of the system
or a magnetic field required to trap the system. However, there may be methods of affecting the dynamics in a
controlled way, such as the time varying amplitude of the electric component of an interacting laser field. And so
this leads to some questions; given a specific quantum system with known time-independent dynamics generator
(referred to as the drift dynamics generators) and set of externally controllable fields for which the interaction can
be described by control dynamics generators:

1. What states or transformations can we achieve (if any)?
2. What is the shape of the control pulse required to achieve this?

These questions are addressed as controllability and quantum optimal control [dAless08]. The answer to question
of controllability is determined by the commutability of the dynamics generators and is formalised as the Lie
Algebra Rank Criterion and is discussed in detail in [dAless08]. The solutions to the second question can be
determined through optimal control algorithms, or control pulse optimisation.

Time varying
control fields

———P
Interactions

tt

Constant system field
I | |

Fig. 3: Schematic showing the principle of quantum control.

Quantum Control has many applications including NMR, quantum metrology, control of chemical reactions, and
quantum information processing.

To explain the physics behind these algorithms we will first consider only finite-dimensional, closed quantum
systems.

3.9.2 Closed Quantum Systems

In closed quantum systems the states can be represented by kets, and the transformations on these states are unitary
operators. The dynamics generators are Hamiltonians. The combined Hamiltonian for the system is given by

H(t) = Ho+ Y u;(t)H;

where H) is the drift Hamiltonian and the H; are the control Hamiltonians. The u; are time varying amplitude
functions for the specific control.

The dynamics of the system are governed by Schrodingers equation.

g) = —iH(t) [¢)

3.9. Quantum Optimal Control 137

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Note we use units where 2 = 1 throughout. The solutions to Schrodinger’s equation are of the form:

[¥(8)) = U(#) [vo)

where 1) is the state of the system at ¢ = 0 and U (¢) is a unitary operator on the Hilbert space containing the
states. U (t) is a solution to the Schridinger operator equation

4y = —iH{t)U, U(0)=WK

We can use optimal control algorithms to determine a set of u; that will drive our system from |¢g) to |11), this is
state-to-state transfer, or drive the system from some arbitary state to a given state |1)1), which is state preparation,
or effect some unitary transformation Uyqrget, called gate synthesis. The latter of these is most important in
quantum computation.

3.9.3 The GRAPE algorithm

The GRadient Ascent Pulse Engineering was first proposed in [2]. Solutions to Schrodinger’s equation for a
time-dependent Hamiltonian are not generally possible to obtain analytically. Therefore, a piecewise constant
approximation to the pulse amplitudes is made. Time allowed for the system to evolve 7' is split into M timeslots
(typically these are of equal duration), during which the control amplitude is assumed to remain constant. The
combined Hamiltonian can then be approximated as:

N
H(t)~ H(ty) = Ho+ Y ujH,

Jj=1

where k is a timeslot index, j is the control index, and N is the number of controls. Hence t; is the evolution
time at the start of the timeslot, and uy, is the amplitude of control j throughout timeslot k. The time evolution
operator, or propagator, within the timeslot can then be calculated as:

Xk: — e—iH(tk-)Atk-

where Aty is the duration of the timeslot. The evolution up to (and including) any timeslot &£ (including the full
evolution £ = M) can the be calculated as

X(ty) = XpXp—1--- X1Xo

If the objective is state-to-state transfer then Xy = |1)) and the target Xqry = |t1), for gate synthesis Xy =
U(0) = ¥ and the target X;4,g = Utarg.

A figure of merit or fidelity is some measure of how close the evolution is to the target, based on the control
amplitudes in the timeslots. The typical figure of merit for unitary systems is the normalised overlap of the
evolution and the target.

fPSU = é’ tr{XtTaqu(T)}’

where d is the system dimension. In this figure of merit the absolute value is taken to ignore any differences in
global phase, and 0 < f < 1. Typically the fidelity error (or infidelity) is more useful, in this case defined as
€ =1 — fpsy. There are many other possible objectives, and hence figures of merit.

As there are now N x M variables (the u;;) and one parameter to minimise ¢, then the problem becomes a finite
multi-variable optimisation problem, for which there are many established methods, often referred to as ‘hill-
climbing’ methods. The simplest of these to understand is that of steepest ascent (or descent). The gradient of the
fidelity with respect to all the variables is calculated (or approximated) and a step is made in the variable space
in the direction of steepest ascent (or descent). This method is a first order gradient method. In two dimensions
this describes a method of climbing a hill by heading in the direction where the ground rises fastest. This analogy
also clearly illustrates one of the main challenges in multi-variable optimisation, which is that all methods have a
tendency to get stuck in local maxima. It is hard to determine whether one has found a global maximum or not - a
local peak is likely not to be the highest mountain in the region. In quantum optimal control we can typically define
an infidelity that has a lower bound of zero. We can then look to minimise the infidelity (from here on we will

138 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

only consider optimising for infidelity minima). This means that we can terminate any pulse optimisation when
the infidelity reaches zero (to a sufficient precision). This is however only possible for fully controllable systems;
otherwise it is hard (if not impossible) to know that the minimum possible infidelity has been achieved. In the hill
walking analogy the step size is roughly fixed to a stride, however, in computations the step size must be chosen.
Clearly there is a trade-off here between the number of steps (or iterations) required to reach the minima and the
possibility that we might step over a minima. In practice it is difficult to determine an efficient and effective step
size.

The second order differentials of the infidelity with respect to the variables can be used to approximate the local
landscape to a parabola. This way a step (or jump) can be made to where the minima would be if it were parabolic.
This typically vastly reduces the number of iterations, and removes the need to guess a step size. The method where
all the second differentials are calculated explicitly is called the Newton-Raphson method. However, calculating
the second-order differentials (the Hessian matrix) can be computationally expensive, and so there are a class of
methods known as quasi-Newton that approximate the Hessian based on successive iterations. The most popular
of these (in quantum optimal control) is the Broyden—Fletcher—Goldfarb—Shanno algorithm (BFGS). The default
method in the QuTiP Qtrl GRAPE implementation is the L-BFGS-B method in Scipy, which is a wrapper to the
implementation described in [Byrd95]. This limited memory and bounded method does not need to store the entire
Hessian, which reduces the computer memory required, and allows bounds to be set for variable values, which
considering these are field amplitudes is often physical.

The pulse optimisation is typically far more efficient if the gradients can be calculated exactly, rather than approxi-
mated. For simple fidelity measures such as fpgs this is possible. Firstly the propagator gradient for each timeslot
with respect to the control amplitudes is calculated. For closed systems, with unitary dynamics, a method using
the eigendecomposition is used, which is efficient as it is also used in the propagator calculation (to exponentiate
the combined Hamiltonian). More generally (for example open systems and symplectic dynamics) the Frechet
derivative (or augmented matrix) method is used, which is described in [Flo12]. For other optimisation goals it
may not be possible to calculate analytic gradients. In these cases it is necessary to approximate the gradients, but
this can be very expensive, and can lead to other algorithms out-performing GRAPE.

3.9.4 The CRAB Algorithm

It has been shown [Lloyd14], the dimension of a quantum optimal control problem is a polynomial function of the
dimension of the manifold of the time-polynomial reachable states, when allowing for a finite control precision
and evolution time. You can think of this as the information content of the pulse (as being the only effective input)
being very limited e.g. the pulse is compressible to a few bytes without loosing the target.

This is where the Chopped RAndom Basis (CRAB) algorithm [Dorial 1], [Caneval 1] comes into play: Since the
pulse complexity is usually very low, it is sufficient to transform the optimal control problem to a few parameter
search by introducing a physically motivated function basis that builds up the pulse. Compared to the number
of time slices needed to accurately simulate quantum dynamics (often equals basis dimension for Gradient based
algorithms), this number is lower by orders of magnitude, allowing CRAB to efficiently optimize smooth pulses
with realistic experimental constraints. It is important to point out, that CRAB does not make any suggestion
on the basis function to be used. The basis must be chosen carefully considered, taking into account a priori
knowledge of the system (such as symmetries, magnitudes of scales,...) and solution (e.g. sign, smoothness,
bang-bang behavior, singularities, maximum excursion or rate of change,....). By doing so, this algorithm allows
for native integration of experimental constraints such as maximum frequencies allowed, maximum amplitude,
smooth ramping up and down of the pulse and many more. Moreover initial guesses, if they are available, can
(however not have to) be included to speed up convergence.

As mentioned in the GRAPE paragraph, for CRAB local minima arising from algorithmic design can occur, too.
However, for CRAB a ‘dressed’ version has recently been introduced [Rach15] that allows to escape local minima.

For some control objectives and/or dynamical quantum descriptions, it is either not possible to derive the gradient
for the cost functional with respect to each time slice or it is computationally expensive to do so. The same can
apply for the necessary (reverse) propagation of the co-state. All this trouble does not occur within CRAB as
those elements are not in use here. CRAB, instead, takes the time evolution as a black-box where the pulse goes
as an input and the cost (e.g. infidelity) value will be returned as an output. This concept, on top, allows for
direct integration in a closed loop experimental environment where both the preliminarily open loop optimization,
as well as the final adoption, and integration to the lab (to account for modeling errors, experimental systematic
noise, ...) can be done all in one, using this algorithm.

3.9. Quantum Optimal Control 139

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.9.5 Optimal Quantum Control in QuTiP

There are two separate implementations of optimal control inside QuTiP. The first is an implementation of first
order GRAPE, and is not further described here, but there are the example notebooks. The second is referred to as
Qtrl (when a distinction needs to be made) as this was its name before it was integrated into QuTiP. Qtrl uses the
Scipy optimize functions to perform the multi-variable optimisation, typically the L-BFGS-B method for GRAPE
and Nelder-Mead for CRAB. The GRAPE implementation in Qtrl was initially based on the open-source package
DYNAMO, which is a MATLAB implementation, and is described in [DYNAMOJ]. It has since been restructured
and extended for flexibility and compatibility within QuTiP.

The rest of this section describes the Qtrl implementation and how to use it.

Object Model The Qtrl code is organised in a hierarchical object model in order to try and maximise configura-
bility whilst maintaining some clarity. It is not necessary to understand the model in order to use the pulse
optimisation functions, but it is the most flexible method of using Qtrl. If you just want to use a simple
single function call interface, then jump to Using the pulseoptim functions

Optimizer

| OptimCaonfig |

PropagatorComputer

TerminationConditions

Fig. 4: Qtrl code object model.

The object’s properties and methods are described in detail in the documentation, so that will not be repeated here.

OptimConfig The OptimConfig object is used simply to hold configuration parameters used by all the objects.
Typically this is the subclass types for the other objects and parameters for the users specific requirements.
The 1oadparams module can be used read parameter values from a configuration file.

Optimizer This acts as a wrapper to the Scipy.optimize functions that perform the work of the pulse opti-
misation algorithms. Using the main classes the user can specify which of the optimisation methods are to
be used. There are subclasses specifically for the BFGS and L-BFGS-B methods. There is another subclass
for using the CRAB algorithm.

Dynamics This is mainly a container for the lists that hold the dynamics generators, propagators, and time evo-
lution operators in each timeslot. The combining of dynamics generators is also complete by this object.
Different subclasses support a range of types of quantum systems, including closed systems with unitary
dynamics, systems with quadratic Hamiltonians that have Gaussian states and symplectic transforms, and a
general subclass that can be used for open system dynamics with Lindbladian operators.

PulseGen There are many subclasses of pulse generators that generate different types of pulses as the initial
amplitudes for the optimisation. Often the goal cannot be achieved from all starting conditions, and then
typically some kind of random pulse is used and repeated optimisations are performed until the desired
infidelity is reached or the minimum infidelity found is reported. There is a specific subclass that is used by
the CRAB algorithm to generate the pulses based on the basis coefficients that are being optimised.

TerminationConditions This is simply a convenient place to hold all the properties that will determine when the
single optimisation run terminates. Limits can be set for number of iterations, time, and of course the target
infidelity.

Stats Performance data are optionally collected during the optimisation. This object is shared to a single location
to store, calculate and report run statistics.

140 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

FidelityComputer The subclass of the fidelity computer determines the type of fidelity measure. These are
closely linked to the type of dynamics in use. These are also the most commonly user customised subclasses.

PropagatorComputer This object computes propagators from one timeslot to the next and also the propagator
gradient. The options are using the spectral decomposition or Frechet derivative, as discussed above.

TimeslotComputer Here the time evolution is computed by calling the methods of the other computer objects.

OptimResult The result of a pulse optimisation run is returned as an object with properties for the outcome in
terms of the infidelity, reason for termination, performance statistics, final evolution, and more.

3.9.6 Using the pulseoptim functions

The simplest method for optimising a control pulse is to call one of the functions in the pulseopt im module.
This automates the creation and configuration of the necessary objects, generation of initial pulses, running the
optimisation and returning the result. There are functions specifically for unitary dynamics, and also specifically
for the CRAB algorithm (GRAPE is the default). The opt imise_pulse function can in fact be used for unitary
dynamics and / or the CRAB algorithm, the more specific functions simply have parameter names that are more
familiar in that application.

A semi-automated method is to use the create_optimizer_objects function to generate and configure
all the objects, then manually set the initial pulse and call the optimisation. This would be more efficient when
repeating runs with different starting conditions.

3.10 Plotting on the Bloch Sphere

3.10.1 Introduction

When studying the dynamics of a two-level system, it is often convenient to visualize the state of the system by
plotting the state-vector or density matrix on the Bloch sphere. In QuTiP, we have created two different classes
to allow for easy creation and manipulation of data sets, both vectors and data points, on the Bloch sphere. The
gqutip.Bloch class, uses Matplotlib to render the Bloch sphere, where as qut ip.Bloch3d uses the Mayavi
rendering engine to generate a more faithful 3D reconstruction of the Bloch sphere.

3.10.2 The Bloch and Bloch3d Classes

In QuTiP, creating a Bloch sphere is accomplished by calling either:

’b = qutip.Bloch()

which will load an instance of the qut ip.Bloch class, or using

’>>> b3d = qutip.Bloch3d()

that loads the qut ip.Bloch3d version. Before getting into the details of these objects, we can simply plot the
blank Bloch sphere associated with these instances via:

’b.make_sphere()

3.10. Plotting on the Bloch Sphere 141

QuTiP: Quantum Toolbox in Python, Release 4.7.0

or

In addition to the show command, see the API documentation for B1 och for a full list of other available functions.
As an example, we can add a single data point:

142 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

pnt = [1/np.sqrt(3), 1/np.sqrt(3), 1/np.sqrt(3)]
b.add_points (pnt)
b.render ()

and then a single vector:

b.fig.clf ()

vec = [0, 1, 0]
b.add_vectors (vec)
b.render ()

3.10. Plotting on the Bloch Sphere 143

QuTiP: Quantum Toolbox in Python, Release 4.7.0

and then add another vector corresponding to the |up) state:

up = qutip.basis (2, 0)
b.add_states (up)
b.render ()

144 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

|0)

Notice that when we add more than a single vector (or data point), a different color will automatically be applied
to the later data set (mod 4). In total, the code for constructing our Bloch sphere with one vector, one state, and a
single data point is:

b = gutip.Bloch()

pnt = [1./np.sgrt(3), 1./np.sqgrt(3), 1./np.sqrt(3)]
b.add_points (pnt)
vec = [0, 1, 0]

b.add_vectors (vec)

up qutip.basis (2, 0)
b.add_states (up)
b.render ()

3.10. Plotting on the Bloch Sphere 145

QuTiP: Quantum Toolbox in Python, Release 4.7.0

|0)

1)

where we have removed the extra show () commands. Replacing b=Bloch () with b=Bloch3d () in the
above code generates the following 3D Bloch sphere.

0>

ly>
1>

We can also plot multiple points, vectors, and states at the same time by passing list or arrays instead of individual

elements. Before giving an example, we can use the clear() command to remove the current data from our Bloch
sphere instead of creating a new instance:

146 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

b.clear ()
b.render ()

10)

1)

Now on the same Bloch sphere, we can plot the three states associated with the x, y, and z directions:

x = (qutip.basis (2, 0) + (1+07j)~*qutip.basis (2, 1)) .unit ()
y = (qutip.basis (2, 0) + (0+1j)+*qutip.basis (2, 1)) .unit ()
z = (qutip.basis (2, 0) + (0+03j)+*qutip.basis(2, 1)) .unit()

b.add_states([x, vy, z])
b.render ()

3.10. Plotting on the Bloch Sphere 147

QuTiP: Quantum Toolbox in Python, Release 4.7.0

a similar method works for adding vectors:

b.clear ()

vec = [[1, O, O], [0, 1, 01, [0, O, 111
b.add_vectors (vec)

b.render ()

148

Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

|0)

Adding multiple points to the Bloch sphere works slightly differently than adding multiple states or vectors. For
example, lets add a set of 20 points around the equator (after calling clear()):

b.clear ()

th = np.linspace (0, 2+np.pi, 20)
Xp = np.cos (th)

yp = np.sin(th)

zp = np.zeros (20)

pnts = [Xpl Yo, ZP]
b.add_points (pnts)
b.render ()

3.10. Plotting on the Bloch Sphere 149

QuTiP: Quantum Toolbox in Python, Release 4.7.0

0)

1)

Notice that, in contrast to states or vectors, each point remains the same color as the initial point. This is because
adding multiple data points using the add_points function is interpreted, by default, to correspond to a single
data point (single qubit state) plotted at different times. This is very useful when visualizing the dynamics of a
qubit. An example of this is given in the example . If we want to plot additional qubit states we can call additional
add_points functions:

Xz = np.zeros (20)

yz = np.sin(th)

zz = np.cos(th)
b.add_points([xz, vz, zz])
b.render ()

150 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

The color and shape of the data points is varied automatically by the Bloch class. Notice how the color and point
markers change for each set of data. Again, we have had to call add_points twice because adding more than
one set of multiple data points is not supported by the add_points function.

What if we want to vary the color of our points. We can tell the qut ip.Bloch class to vary the color of each
point according to the colors listed in the b. point_color list (see Configuring the Bloch sphere below). Again
after clear ():

b.clear ()

xp = np.cos (th)

yp = np.sin(th)

zp = np.zeros (20)

pnts = [xp, yp, zp]

b.add_points (pnts, 'm'") # <-— add a 'm' string to signify 'multi' colored points
b.render ()

3.10. Plotting on the Bloch Sphere 151

QuTiP: Quantum Toolbox in Python, Release 4.7.0

|0)

Now, the data points cycle through a variety of predefined colors. Now lets add another set of points, but this time
we want the set to be a single color, representing say a qubit going from the |up) state to the [down) state in the
y-z plane:

Xz = np.zeros (20)
yz = np.sin(th)
zz = np.cos (th)

b.add_points([xz, yz, zz]) # no 'm'
b.render ()

152 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Again, the same plot can be generated using the qut ip.Bloch3d class by replacing Bloch with Bloch3d:

0>
Pe
®
°
e
®
® . ‘ o * @
[¥ |]
o e e
[] '3 ¢
@ ..\'
y>
C . p .:
.
Gyl

A more slick way of using this ‘multi’ color feature is also given in the example, where we set the color of the
markers as a function of time.

3.10. Plotting on the Bloch Sphere 153

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Differences Between Bloch and Bloch3d

While in general the Bloch and Bloch3d classes are interchangeable, there are some important differences to
consider when choosing between them.

* The Bloch class uses Matplotlib to generate figures. As such, the data plotted on the sphere is in reality
just a 2D object. In contrast the Bloch3d class uses the 3D rendering engine from VTK via mayavi to
generate the sphere and the included data. In this sense the Bloch3d class is much more advanced, as
objects are rendered in 3D leading to a higher quality figure.

* Only the Bloch class can be embedded in a Matplotlib figure window. Thus if you want to combine a
Bloch sphere with another figure generated in QuTiP, you can not use B1och3d. Of course you can always
post-process your figures using other software to get the desired result.

* Due to limitations in the rendering engine, the B1och3d class does not support LaTeX for text. Again, you
can get around this by post-processing.

* The user customizable attributes for the Bloch and Bloch3d classes are not identical. Therefore, if you
change the properties of one of the classes, these changes will cause an exception if the class is switched.

3.10.3 Configuring the Bloch sphere

Bloch Class Options

At the end of the last section we saw that the colors and marker shapes of the data plotted on the Bloch sphere are
automatically varied according to the number of points and vectors added. But what if you want a different choice
of color, or you want your sphere to be purple with different axes labels? Well then you are in luck as the Bloch
class has 22 attributes which one can control. Assuming b=Bloch ():

Attribute Function Default Setting
b.axes Matplotlib axes instance for animations. Set by | None
axes keyword arg.
b.fig User supplied Matplotlib Figure instance. Set by | None
fig keyword arg.
b.font_color Color of fonts ‘black’
b.font_size Size of fonts 20
b.frame_alpha Transparency of wireframe 0.1
b.frame_color Color of wireframe ‘gray’
b.frame_width Width of wireframe 1
b.point_color List of colors for Bloch point markers to cycle | ['b', 'r', 'g', '#CC6600"']
through
b.point_marker List of point marker shapes to cycle through ['o', 's', 'd', '""']
b.point_size List of point marker sizes (not all markers look the | [55, 62, 65, 75]
same size when plotted)
b.sphere_alpha Transparency of Bloch sphere 0.2
b.sphere_color Color of Bloch sphere '#FFDDDD
b.size Sets size of figure window [7, 71 (700x700 pixels)
b.vector_color List of colors for Bloch vectors to cycle through ['g', '"#CC6600', 'b', 'r']
b.vector_width Width of Bloch vectors 4
b.view Azimuthal and Elevation viewing angles [-60,30]
b.xlabel Labels for x-axis ['xS', ''] +xand -x (labels use LaTeX)
b.xlpos Position of x-axis labels [1.1, -1.1]
b.ylabel Labels for y-axis ['Sy', ''] +yand -y (labels use LaTeX)
b.ylpos Position of y-axis labels (1.2, -1.2]
b.zlabel Labels for z-axis ["$\left|O\right>$', 'S$\left|1\
right>$"'] +z and -z (labels use LaTeX)
b.zlpos Position of z-axis labels [1.2, -1.2]

154 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Bloch3d Class Options

The Bloch3d sphere is also customizable. Note however that the attributes for the Bloch3d class are not in one-
to-one correspondence to those of the Bloch class due to the different underlying rendering engines. Assuming

b=Bloch3d():

Attribute Function Default Setting
b.fig User supplied Mayavi Figure instance. Set by | None
fig keyword arg.
b.font_color Color of fonts 'black'
b.font_scale Scale of fonts 0.08
b.frame Draw wireframe for sphere? True
b.frame_alpha Transparency of wireframe 0.05
b.frame_color Color of wireframe 'gray'
b.frame_num Number of wireframe elements to draw 8
b.frame_radius Radius of wireframe lines 0.005
b.point_color List of colors for Bloch point markers to cycle | ['r', 'g', 'b', 'y']
through
b.point_mode Type of point markers to draw 'sphere'
b.point_size Size of points 0.075
b.sphere_alpha Transparency of Bloch sphere 0.1
b.sphere_color Color of Bloch sphere '#808080"

b.size

Sets size of figure window

50 O 5001 (500x500 pixels)

b.vector_color

List of colors for Bloch vectors to cycle through

'g', 'b‘, 'y']

b.vector_width

Width of Bloch vectors

[

['

3
b.view Azimuthal and Elevation viewing angles [45, 65]
b.xlabel Labels for x-axis ["|x>', '"'] 4+xand-x
b.xlpos Position of x-axis labels [1.07, -1.07]
b.ylabel Labels for y-axis ['Sy', '']+yand-y
b.ylpos Position of y-axis labels [1.07, -1.07]
b.zlabel Labels for z-axis ["10>", '"|1>'] +zand-z
b.zlpos Position of z-axis labels [1.07, -1.07]

These properties can also be accessed via the print command:

>>> b = qutip.Bloch()

>>> print (b)
Bloch data:

Number of points: 0
Number of vectors: 0

Bloch sphere properties:

font_color: black

font_size: 20

frame_alpha: 0.2

frame_color: gray

frame_width: 1

point_color: ['b', 'r', 'g', '"#CC6600"]
point_marker: ['o', 's', 'd', '""'"]
point_size: [25, 32, 35, 45]
sphere_alpha: 0.2

sphere_color: #FFDDDD

figsize: [5, 5]

vector_color: ['g', '"#CC6600" 'b', 'r']
vector_width: 3

(continues on next page)

3.10. Plotting on the Bloch Sphere

155

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

vector_style: - >

vector_mutation: 20

view: [-60, 301

xlabel: ["$xS', '']

xlpos: [1.2, —-1.2]

ylabel: ['Sys', '"']

ylpos: [1.2, -1.2]

zlabel: ['S$\\1left|0\\right>$", '$\\left|I\\right>$"]
zlpos: [1.2, -1.2]

3.10.4 Animating with the Bloch sphere

The Bloch class was designed from the outset to generate animations. To animate a set of vectors or data points
the basic idea is: plot the data at time t1, save the sphere, clear the sphere, plot data at t2,... The Bloch sphere
will automatically number the output file based on how many times the object has been saved (this is stored in
b.savenum). The easiest way to animate data on the Bloch sphere is to use the save () method and generate
a series of images to convert into an animation. However, as of Matplotlib version 1.1, creating animations is
built-in. We will demonstrate both methods by looking at the decay of a qubit on the bloch sphere.

Example: Qubit Decay

The code for calculating the expectation values for the Pauli spin operators of a qubit decay is given below. This
code is common to both animation examples.

import numpy as np
import qutip

def qubit_integrate(w, theta, gammal, gamma2, psi0O, tlist):
operators and the hamiltonian
sx = qutip.sigmax()
sy = qutip.sigmay ()
sz = qutip.sigmaz()
sm qutip.sigmam()
H = w % (np.cos(theta) * sz + np.sin(theta) * sx)
collapse operators

c_op_list = []

n_th = 0.5 # temperature

rate = gammal * (n_th + 1)

if rate > 0.0: c_op_list.append(np.sgrt (rate) * sm)

rate = gammal * n_th

if rate > 0.0: c_op_list.append(np.sqgrt (rate) * sm.dag())
rate = gamma?2

if rate > 0.0: c_op_list.append(np.sqgrt (rate) = sz)

evolve and calculate expectation values

output = qutip.mesolve(H, psiO, tlist, c_op_list, [sx, sy, sz])
return output.expect[0], output.expect[l], output.expect[2]

calculate the dynamics

w = 1.0 x 2 x np.pi # qubit angular frequency

theta 0.2 * np.pi # qubit angle from sigma_z axis (toward sigma_x axis)
gammal = 0.5 # qubit relaxation rate

gamma2 = 0.2 # qubit dephasing rate

initial state

a=1.0

psi0 = (axqutip.basis (2, 0) + (l-a)*qutip.basis(2, 1)) /np.sqgrt(a*+2 + (l-a)=*=2)
tlist np.linspace (0, 4, 250)

#expectation values for ploting
sx, sy, sz = qubit_integrate(w, theta, gammal, gamma2, psi0O, tlist)

156 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Generating Images for Animation

An example of generating images for generating an animation outside of Python is given below:

import numpy as np
b = gutip.Bloch()
b.vector_color = ['r']
b.view = [-40, 30]
for i in range(len(sx)):
b.clear ()
b.add_vectors([np.sin(theta), 0, np.cos(theta)])
b.add_points([sx[:1i+1], sy[:1i+1], sz[:1i+1]1])
b.save(dirc='"temp') # saving images to temp directory in current working,
—directory

Generating an animation using FFmpeg (for example) is fairly simple:

ffmpeg -1 temp/bloch_%01d.png bloch.mp4

Directly Generating an Animation

Important: Generating animations directly from Matplotlib requires installing either MEncoder or FFmpeg.
While either choice works on linux, it is best to choose FFmpeg when running on the Mac. If using macports just
do: sudo port install ffmpegqg.

The code to directly generate an mp4 movie of the Qubit decay is as follows

from matplotlib import pyplot, animation
from mpl_ toolkits.mplot3d import Axes3D

fig = pyplot.figure ()
ax = Axes3D(fig, azim=-40, elev=30)
sphere = qutip.Bloch (axes=ax)

def animate (i) :
sphere.clear ()
sphere.add_vectors([np.sin(theta), 0, np.cos(theta)])
sphere.add_points ([sx[:i+1], sy[:i+1], sz[:i+1]])
sphere.make_sphere ()
return ax

def init () :
sphere.vector_color = ['r']
return ax

ani = animation.FuncAnimation(fig, animate, np.arange(len(sx)),
init_func=init, blit=False, repeat=False)
ani.save('bloch_sphere.mp4', fps=20)

The resulting movie may be viewed here: bloch_decay.mp4

3.10. Plotting on the Bloch Sphere 157

https://raw.githubusercontent.com/qutip/qutip/master/doc/figures/bloch_decay.mp4

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.11 Visualization of quantum states and processes

Visualization is often an important complement to a simulation of a quantum mechanical system. The first method
of visualization that come to mind might be to plot the expectation values of a few selected operators. But on top
of that, it can often be instructive to visualize for example the state vectors or density matices that describe the
state of the system, or how the state is transformed as a function of time (see process tomography below). In this
section we demonstrate how QuTiP and matplotlib can be used to perform a few types of visualizations that often
can provide additional understanding of quantum system.

3.11.1 Fock-basis probability distribution

In quantum mechanics probability distributions plays an important role, and as in statistics, the expectation values
computed from a probability distribution does not reveal the full story. For example, consider an quantum har-
monic oscillator mode with Hamiltonian H = hwa'a, which is in a state described by its density matrix p, and
which on average is occupied by two photons, Tr[pa’a] = 2. Given this information we cannot say whether the
oscillator is in a Fock state, a thermal state, a coherent state, etc. By visualizing the photon distribution in the Fock
state basis important clues about the underlying state can be obtained.

One convenient way to visualize a probability distribution is to use histograms. Consider the following histogram
visualization of the number-basis probability distribution, which can be obtained from the diagonal of the density
matrix, for a few possible oscillator states with on average occupation of two photons.

First we generate the density matrices for the coherent, thermal and fock states.

N = 20
rho_coherent = coherent_dm(N, np.sqrt(2))
rho_thermal = thermal_dm(N, 2)

rho_fock = fock_dm(N, 2)

Next, we plot histograms of the diagonals of the density matrices:

fig, axes = plt.subplots(l, 3, figsize=(12,3))

bar0 = axes[0].bar (np.arange (0, N)-.5, rho_coherent.diag())
1b1l0 = axes|[0].set_title("Coherent state")

1im0 = axes[0].set_xlim([-.5, NJ)

barl = axes[l].bar (np.arange (0, N)-.5, rho_thermal.diag())
1bll = axes[1l].set_title("Thermal state")

liml = axes[1l].set_xlim([-.5, NJ)

bar2 = axes[2].bar (np.arange (0, N)-.5, rho_fock.diag())
1bl2 = axes[2].set_title("Fock state™)

1lim2 = axes[2].set_xlim([-.5, NJ)

plt.show ()

158 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Coherent state Thermal state Fock state
0.35
1.0
0.25 0.30
0.8
0.20 0.25
015 0.20 0.6
0.15
0.10 0.41
0.10
0.2
0.05 0.05
0.00 0.00 0.0 " " "
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

All these states correspond to an average of two photons, but by visualizing the photon distribution in Fock basis
the differences between these states are easily appreciated.

One frequently need to visualize the Fock-distribution in the way described above, so QuTiP provides a conve-
nience function for doing this, see qutip.visualization.plot_fock _distribution,and the follow-
ing example:

fig, axes = plt.subplots(l, 3, figsize=(12,3))
plot_fock_distribution (rho_coherent, fig=fig, ax=axes[0], title="Coherent state");
plot_fock_distribution(rho_thermal, fig=fig, ax=axes[l], title="Thermal state");

plot_fock_distribution(rho_fock, fig=fig, ax=axes[2], title="Fock state");

fig.tight_layout ()

plt.show ()
Coherent state Thermal state Fock state

1.0 1.0 1.0 7
> > >
£ £ £
5 0.8 5 0.8 208
© © ©
S S S
506 506 506
s 5 S
S04 S04 2 0.4
© © ©
o o o
202 202 202
o O o
o (@] (o]

0.0 = T T 0.0 - T T 0.0 T T T

0 5 10 15 20 0 5 10 15 20 5 10 15 20

Fock number

Fock number

Fock number

3.11.2 Quasi-probability distributions

The probability distribution in the number (Fock) basis only describes the occupation probabilities for a discrete
set of states. A more complete phase-space probability-distribution-like function for harmonic modes are the
Wigner and Husumi Q-functions, which are full descriptions of the quantum state (equivalent to the density ma-
trix). These are called quasi-distribution functions because unlike real probability distribution functions they can
for example be negative. In addition to being more complete descriptions of a state (compared to only the oc-
cupation probabilities plotted above), these distributions are also great for demonstrating if a quantum state is
quantum mechanical, since for example a negative Wigner function is a definite indicator that a state is distinctly
nonclassical.

3.11. Visualization of quantum states and processes 159

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Wigner function

In QuTiP, the Wigner function for a harmonic mode can be calculated with the function qutip.wigner.
wigner. It takes a ket or a density matrix as input, together with arrays that define the ranges of the phase-space
coordinates (in the x-y plane). In the following example the Wigner functions are calculated and plotted for the
same three states as in the previous section.

xvec = np.linspace(-5,5,200)

W_coherent = wigner (rho_coherent, xvec, xvec)
W_thermal = wigner (rho_thermal, xvec, xvec)

W_fock = wigner (rho_fock, xvec, xvec)

plot the results

fig, axes = plt.subplots(l, 3, figsize=(12,3))

cont0 = axes[0].contourf (xvec, xvec, W_coherent, 100)
1bl0 = axes[0].set_title("Coherent state™)

contl = axes[1l].contourf (xvec, xvec, W_thermal, 100)
1bll = axes[1l].set_title("Thermal state")

cont0 = axes[2].contourf (xvec, xvec, W_fock, 100)
1bl2 = axes[2].set_title("Fock state')

plt.show ()

Coherent state Thermal state Fock state

Custom Color Maps

The main objective when plotting a Wigner function is to demonstrate that the underlying state is nonclassical,
as indicated by negative values in the Wigner function. Therefore, making these negative values stand out in
a figure is helpful for both analysis and publication purposes. Unfortunately, all of the color schemes used in
Matplotlib (or any other plotting software) are linear colormaps where small negative values tend to be near the
same color as the zero values, and are thus hidden. To fix this dilemma, QuTiP includes a nonlinear colormap
function qutip.matplotlib utilities.wigner_cmap that colors all negative values differently than
positive or zero values. Below is a demonstration of how to use this function in your Wigner figures:

import matplotlib as mpl
from matplotlib import cm

psi = (basis (10, 0) + basis (10, 3) + basis (10, 9)).unit()

(continues on next page)

160 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

xvec = np.linspace (-5, 5, 500)

W = wigner (psi, xvec, xvec)

wmap = wigner_cmap (W) # Generate Wigner colormap

nrm = mpl.colors.Normalize (-W.max (), W.max())

fig, axes = plt.subplots(l, 2, figsize=(10, 4))

pltl = axes[0].contourf (xvec, xvec, W, 100, cmap=cm.RdBu, norm=nrm)
axes[0] .set_title("Standard Colormap");

cbl = fig.colorbar(pltl, ax=axes[0])

plt2 = axes[1l].contourf (xvec, xvec, W, 100, cmap=wmap) # Apply Wigner colormap
axes[1l] .set_title("Wigner Colormap");

cb2 = fig.colorbar(plt2, ax=axes[l])

fig.tight_layout ()

plt.show ()
Standard Colormap Wigner Colormap
0.180 0.180
44 4
0.144 0.144
0.108 0.108
2 1 2 1
- 0.072 0.072
- 0.036 0.036
0 8 0 -
- 0.000 0.000
- —0.036 -0.036
_2 B _2 4
- —0.072 -0.072
-0.108 -0.108
—4 —4
—-0.144 -0.144
-4 -2 0 2 4 -4 -2 0 2 4

Husimi Q-function

The Husimi Q function is, like the Wigner function, a quasiprobability distribution for harmonic modes. It is
defined as

= _ {alpla)

Qo)

where |a) is a coherent state and o« = = + iy. In QuTiP, the Husimi Q function can be computed given a state ket
or density matrix using the function gfunc, as demonstrated below.

Q_coherent = gfunc(rho_coherent, xvec, xvec)
Q_thermal = gfunc(rho_thermal, xvec, xvec)

Q_fock = gfunc(rho_fock, xvec, xvec)

fig, axes = plt.subplots(l, 3, figsize=(12,3))

cont0 = axes[0].contourf (xvec, xvec, Q_coherent, 100)

(continues on next page)

3.11. Visualization of quantum states and processes 161

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

1bl0 = axes[0].set_title("Coherent state™)

(
contl = axes[1l].contourf (xvec, xvec, Q_thermal, 100)
1bll = axes[1l].set_title("Thermal state")
cont0 = axes[2].contourf (xvec, xvec, Q fock, 100)
1bl2 = axes[2].set_title("Fock state'")

plt.show ()

Coherent state Thermal state Fock state

If you need to calculate the Q function for many states with the same phase-space coordinates, it is more efficient
to use the OF'unc class. This stores various intermediary results to achieve an order-of-magnitude improvement
compared to calling gfunc in a loop.

xs = np.linspace(-1, 1, 101)

gfunc_calculator = qutip.QFunc(xs, xs)

g_statel = gfunc_calculator (qutip.rand_dm(5))
g_state2 = gfunc_calculator (qutip.rand_ket (100))

3.11.3 Visualizing operators

Sometimes, it may also be useful to directly visualizing the underlying matrix representation of an operator. The
density matrix, for example, is an operator whose elements can give insights about the state it represents, but one
might also be interesting in plotting the matrix of an Hamiltonian to inspect the structure and relative importance
of various elements.

QuTiP offers a few functions for quickly visualizing matrix data in the form of his-
tograms, qutip.visualization.matrix_histogram and qutip.visualization.
matrix_histogram_complex, and as Hinton diagram of weighted squares, qutip.visualization.
hinton. These functions takes a qutip.Qobj.Qobj as first argument, and optional arguments to, for
example, set the axis labels and figure title (see the function’s documentation for details).

For example, to illustrate the use of qutip.visualization.matrix_histogram, let’s visualize of the
Jaynes-Cummings Hamiltonian:

N =5

a = tensor (destroy(N), geye(2))

b = tensor (geye(N), destroy(2))

sx = tensor (geye(N), sigmax())

H = a.dag() » a + sx — 0.5 » (a » b.dag() + a.dag() = b)

visualize H

1bls_list = [[str(d) for d in range(N)], ["u", "d"]]

xlabels = []

(continues on next page)

162 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

for inds in tomography._index_permutations([len(lbls) for 1lbls in lbls_1list]):
xlabels.append ("".join([1lbls_list[k] [inds[k]] for k in range(len(lbls_list))]))

fig, ax = matrix_histogram(H, xlabels, xlabels, limits=[-4,4])
ax.view_init (azim=-55, elev=45)

plt.show ()

Similarly, we can use the function qutip.visualization.hinton, which is used below to visualize the
corresponding steadystate density matrix:

rho_ss = steadystate(H, [np.sqgrt(0.1) * a, np.sqgrt(0.4) = b.dag()])
hinton (rho_ss)

plt.show ()

3.11. Visualization of quantum states and processes 163

QuTiP: Quantum Toolbox in Python, Release 4.7.0

|0,0]0, 1}1, 0]1, 1]2, 02, 1]3, 03, 1}4, 0]4, 1)

(0,0] -
(0, 1] -

(1’0|_ - 0.2

(1,1]-
(2,0[-
(2,1]-
(3,0]-
(3,1] -
{4,0]-

(4,1] -

3.11.4 Quantum process tomography

Quantum process tomography (QPT) is a useful technique for characterizing experimental implementations of
quantum gates involving a small number of qubits. It can also be a useful theoretical tool that can give insight
in how a process transforms states, and it can be used for example to study how noise or other imperfections
deteriorate a gate. Whereas a fidelity or distance measure can give a single number that indicates how far from
ideal a gate is, a quantum process tomography analysis can give detailed information about exactly what kind of
errors various imperfections introduce.

The idea is to construct a transformation matrix for a quantum process (for example a quantum gate) that describes
how the density matrix of a system is transformed by the process. We can then decompose the transformation in
some operator basis that represent well-defined and easily interpreted transformations of the input states.

To see how this works (see e.g. [Moh08] for more details), consider a process that is described by quantum map
€(pin) = Pout, Which can be written

N2
e(pin) = Pout = Z AipinA;'ra (3.38)

where NV is the number of states of the system (that is, p is represented by an [N x N| matrix). Given an orthogonal
operator basis of our choice { B; }V *, which satisfies ’I‘r[B:r B;] = Né;;, we can write the map as

€(pin) = pout = Y _ XmnBmpin B, (3.39)

where Xon = Y, y bimb;fn and A; =), bim By, Here, matrix x is the transformation matrix we are after, since
it describes how much B,,, pinB}: contributes to Pous-

In a numerical simulation of a quantum process we usually do not have access to the quantum map in the form Eq.
(3.38). Instead, what we usually can do is to calculate the propagator U for the density matrix in superoperator

164 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

form, using for example the QuTiP function qutip.propagator.propagator. We can then write
E(ﬁin) = Uﬁin = p~out

where p is the vector representation of the density matrix p. If we write Eq. (3.39) in superoperator form as well
we obtain

ﬁout = ZanBmBlﬁm - Uﬁin~
mn
so we can identify

U= ZanBmBl-

mn

Now this is a linear equation systems for the N2 x N2 elements in y. We can solve it by writing x and the
superoperator propagator as [N4] vectors, and likewise write the superoperator product B,, Bl as a [N* x N%]
matrix M:

N4
Ur = Z Mryxs
7

with the solution
x=M"'U.

Note that to obtain with this method we have to construct a matrix M with a size that is the square of the size of
the superoperator for the system. Obviously, this scales very badly with increasing system size, but this method
can still be a very useful for small systems (such as system comprised of a small number of coupled qubits).

Implementation in QuTiP

In QuTiP, the procedure described above is implemented in the function qutip.tomography.gpt, which
returns the y matrix given a density matrix propagator. To illustrate how to use this function, let’s consider the
i-SWAP gate for two qubits. In QuTiP the function qutip.gip.operations.iswap generates the unitary
transformation for the state kets:

from qutip.gip.operations import iswap

U_psi = iswap/()

To be able to use this unitary transformation matrix as input to the function qut ip. tomography . got, we first
need to convert it to a transformation matrix for the corresponding density matrix:

U_rho = spre(U_psi) * spost (U_psi.dag())

Next, we construct a list of operators that define the basis { B; } in the form of a list of operators for each composite
system. At the same time, we also construct a list of corresponding labels that will be used when plotting the x
matrix.

op_basis = [[geye(2), sigmax(), sigmay (), sigmaz()]] = 2

Op_label — ["i", an, uyn, "ZII]J * 2

We are now ready to compute x using qut ip.tomography.gpt, andto plotitusing qutip.tomography.
gpt_plot_combined.

chi = gpt (U_rho, op_basis)
fig = gpt_plot_combined(chi, op_label, r'SiSSWAP'")

plt.show ()

3.11. Visualization of quantum states and processes 165

QuTiP: Quantum Toolbox in Python, Release 4.7.0

4
n/2

0o g
—1/2
-

For a slightly more advanced example, where the density matrix propagator is calculated from the dynam-
ics of a system defined by its Hamiltonian and collapse operators using the function qutip.propagator.
propagator, see notebook “Time-dependent master equation: Landau-Zener transitions” on the tutorials sec-
tion on the QuTiP web site.

3.12 Parallel computation

3.12.1 Parallel map and parallel for-loop

Often one is interested in the output of a given function as a single-parameter is varied. For instance, we can
calculate the steady-state response of our system as the driving frequency is varied. In cases such as this, where
each iteration is independent of the others, we can speedup the calculation by performing the iterations in parallel.
In QuTiP, parallel computations may be performed using the qutip.parallel.parallel_ map function or
the qutip.parallel.parfor (parallel-for-loop) function.

To use the these functions we need to define a function of one or more variables, and the range over which one of
these variables are to be evaluated. For example:

>>> def funcl (x): return x, x**2, X**3
>>> a, b, ¢ = parfor (funcl, range(10))

>>> print (a)
[01 23456728 9]

>>> print (b)
[0 1 4 9 16 25 36 49 64 81]

(continues on next page)

166 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

>>> print (c)
[0 1 8 27 64 125 216 343 512 729]

or

>>> result = parallel_map (funcl, range(10))

>>> result_array = np.array (result)
>>> print (result_arrayl[:, 0]) # == a
[01 234556 78 9]

>>> print (result_arrayl:, 11]) # == Db
[0O 1 4 9 16 25 36 49 64 81]

>>> print (result_arrayl:, 21]) # == cC

[O 1 8 27 64 125 216 343 512 729]

Note that the return values are arranged differently for the qutip.parallel.parallel_map and the
qutip.parallel.parfor functions, as illustrated below. In particular, the return value of qutip.
parallel.parallel map is not enforced to be NumPy arrays, which can avoid unnecessary copying if
all that is needed is to iterate over the resulting list:

>>> result = parfor(funcl, range(5))

>>> print (result)
[array ([0, 1, 2, 3, 41), array([O, 1, 4, 9, 16]), array ([O, 1, 8, 27, 64])]

>>> result = parallel_map(funcl, range(5))

>>> print (result)
(o, o, 0), (1, 1, 1), (2, 4, 8), (3, 9, 27), (4, 16, 64)]

The qutip.parallel.parallel_mapand qutip.parallel.parfor functions are not limited to just
numbers, but also works for a variety of outputs:

>>> def func2(x): return x, Qobj(x), 'a' % x
>>> a, b, c¢c = parfor(func2, range(5))

>>> print (a)
[001 2 3 4]

>>> print (b)

[Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =

[[0.]]

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =

[[1.1]

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =

[[2.]1]

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =

[[3.]]

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =

([4.111

(continues on next page)

3.12. Parallel computation 167

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

>>>print (c)
[ll ra! 'aa' 'aaa' laaaal]

One can also define functions with multiple input arguments and even keyword arguments. Here
the qutip.parallel.parallel_map and qutip.parallel.parfor functions behaves differently:
While qutip.parallel.parallel_map only iterate over the values arguments, the qut ip.parallel.
parfor function simultaneously iterates over all arguments:

>>> def sum_diff(x, y, z=0): return x + vy, x - vy, 2z

>>> parfor (sum_diff, [1, 2, 31, [4, 5, 6], z=5.0)
larray ([5, 7, 9]), array([-3, -3, -3]), array([5., 5., 5.]1)]

>>> parallel_map(sum_diff, [1, 2, 3], task_args=(np.array([4, 5, 6]1),), task_
—kwargs=dict (z=5.0))
[(array ([5, 6, 71), array([-3, -4, -51), 5.0),
(array([6, 7, 8]), array([-2, -3, —-41), 5.0)
91) 1

(array ([7, 8, , array([-1, -2, =-3]), 5.0)]

Note that the keyword arguments can be anything you like, but the keyword values are not iterated over. The
keyword argument num_cpus is reserved as it sets the number of CPU’s used by parfor. By default, this value
is set to the total number of physical processors on your system. You can change this number to a lower value,
however setting it higher than the number of CPU’s will cause a drop in performance. In qutip.parallel.
parallel_map, keyword arguments to the task function are specified using task_kwargs argument, so there is
no special reserved keyword arguments.

The qutip.parallel.parallel_map function also supports progressbar, using the keyword argument
progress_bar which can be set to True or to an instance of qutip.ui.progressbar.BaseProgressBar.
There is a function called qutip.parallel.serial_ map that works as a non-parallel drop-in replacement
for qutip.parallel.parallel_map, which allows easy switching between serial and parallel computa-
tion.

>>> import time
>>> def func(x): time.sleep (1)

>>> result = parallel_map (func, range(50), progress_bar=True)

10.0%. Run time: 3.10s. Est. time left: 00:00:00:27
20.0%. Run time: 5.11s. Est. time left: 00:00:00:20
30.0%. Run time: 8.1ls. Est. time left: 00:00:00:18

40.0%. Run time: 10.15s. Est. time left: 00:00:00:15

50.0%. Run time: 13.15s. Est. time left: 00:00:00:13

60.0%. Run time: 15.15s. Est. time left: 00:00:00:10

70.0%. Run time: 18.15s. Est. time left: 00:00:00:07

80.0%. Run time: 20.15s. Est. time left: 00:00:00:05

90.0%. Run time: 23.15s. Est. time left: 00:00:00:02

100.0%. Run time: 25.15s. Est. time left: 00:00:00:00
Total run time: 28.91s

Parallel processing is useful for repeated tasks such as generating plots corresponding to the dynamical evolution
of your system, or simultaneously simulating different parameter configurations.

168 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.12.2 IPython-based parallel_map

When QuTiP is used with IPython interpreter, there is an alternative parallel for-loop implementation in the QuTiP
module qutip.ipynbtools, see qutip.ipynbtools.parallel_map. The advantage of this paral-
lel_map implementation is based on IPython’s powerful framework for parallelization, so the compute processes
are not confined to run on the same host as the main process.

3.13 Saving QuTiP Objects and Data Sets

With time-consuming calculations it is often necessary to store the results to files on disk, so it can be post-
processed and archived. In QuTiP there are two facilities for storing data: Quantum objects can be stored to files
and later read back as python pickles, and numerical data (vectors and matrices) can be exported as plain text files
in for example CSV (comma-separated values), TSV (tab-separated values), etc. The former method is preferred
when further calculations will be performed with the data, and the latter when the calculations are completed and
data is to be imported into a post-processing tool (e.g. for generating figures).

3.13.1 Storing and loading QuTiP objects

To store and load arbitrary QuTiP related objects (qut ip.Qob j, qutip.solver.Result, etc.) there are two
functions: qutip.fileio.gsave and qutip.fileio.gload. The function qutip.fileio.gsave
takes an arbitrary object as first parameter and an optional filename as second parameter (default filename is
qutip_data.qu). The filename extension is always .qu. The function qutip. fileio.gload takes a mandatory
filename as first argument and loads and returns the objects in the file.

To illustrate how these functions can be used, consider a simple calculation of the steadystate of the harmonic
oscillator

>>> a = destroy(10); H = a.dag() * a
>>> c_ops = [np.sqgrt(0.5) %= a, np.sgrt(0.25) * a.dag()]
>>> rho_ss = steadystate(H, c_ops)

The steadystate density matrix rho_ss is an instance of qutip.Qob 7. It can be stored to a file steadystate.qu
using

>>> gsave (rho_ss, 'steadystate')
>>> Ils *.qu
density_matrix_vs_time.qu steadystate.qu

and it can later be loaded again, and used in further calculations

>>> rho_ss_loaded = gload('steadystate')
Loaded Qobj object:
Quantum object: dims = [[10], [10]], shape = (10, 10), type = oper, isHerm = True

>>> a = destroy (10)
>>> np.testing.assert_almost_equal (expect (a.dag() = a, rho_ss_loaded), O.
—9902248289345061)

The nice thing about the qutip. fileio.gsave and qutip. fileio.qgload functions is that almost any
object can be stored and load again later on. We can for example store a list of density matrices as returned by
qutip.mesolve

>>> a = destroy(10); H = a.dag() = a ; c_ops = [np.sqgrt(0.5) x a, np.sqrt(0.25) =,
—a.dag ()]

>>> psi0 = rand_ket (10)

>>> times = np.linspace (0, 10, 10)

>>> dm_list = mesolve(H, psiO, times, c_ops, [])
>>> gsave (dm_list, 'density matrix_ vs_time')

3.13. Saving QuTiP Objects and Data Sets 169

QuTiP: Quantum Toolbox in Python, Release 4.7.0

And it can then be loaded and used again, for example in an other program

>>> dm_list_loaded = gload('density_matrix_vs_time')

Loaded Result obiject:

Result object with mesolve data.

states = True

num_collapse = 0

>>> a = destroy (10)

>>> expect(a.dag() * a, dm_list_loaded.states)

array ([4.63317086, 3.59150315, 2.90590183, 2.41306641, 2.05120716,
1.78312503, 1.58357995, 1.4346382 , 1.32327398, 1.23991233])

3.13.2 Storing and loading datasets

The qutip.fileio.gsave and qutip.fileio.qgload are great, but the file format used is only under-
stood by QuTiP (python) programs. When data must be exported to other programs the preferred method is
to store the data in the commonly used plain-text file formats. With the QuTiP functions qutip.fileio.
file data_storeand qutip.fileio.file data_read we can store and load numpy arrays and ma-
trices to files on disk using a deliminator-separated value format (for example comma-separated values CSV).
Almost any program can handle this file format.

The qutip.fileio.file data store takes two mandatory and three optional arguments:

>>> file_data_store(filename, data, numtype="complex", numformat="decimal", sep=",

(_}u)

where filename is the name of the file, data is the data to be written to the file (must be a numpy array), numtype
(optional) is a flag indicating numerical type that can take values complex or real, numformat (optional) specifies
the numerical format that can take the values exp for the format /.0el and decimal for the format /0.0, and sep
(optional) is an arbitrary single-character field separator (usually a tab, space, comma, semicolon, etc.).

A common use for the qutip.fileio.file data_store function is to store the expectation values of a
set of operators for a sequence of times, e.g., as returned by the qut ip.mesolve function, which is what the
following example does

>>> a = destroy(10); H = a.dag() = a ; c_ops = [np.sqgrt(0.5) * a, np.sqrt(0.25) =«
—a.dag ()]

>>> psi0 = rand_ket (10)

>>> times np.linspace (0, 100, 100)

>>> medata = mesolve(H, psiO, times, c_ops, [a.dag() * a, a + a.dag(), -1 % (a —_
—a.dag())])

>>> np.shape (medata.expect)

(3, 100)

>>> times.shape

(100,)

>>> output_data = np.vstack((times, medata.expect)) # join time and expt data

>>> file_data_store('expect.dat', output_data.T) # Note the .T for transpose!
>>> with open ("expect.dat", "r") as f:

print ("\n'.join(f.readlines () [:10]))
Generated by QuTiP: 100x4 complex matrix in decimal format [',' separated,
—values].
0.0000000000+0.000000000073,3.2109553666+0.000000000073,0.3689771549+0.00000000007,0.
—0185002867+0.00000000007
1.0101010101+0.000000000073,2.6754598872+0.000000000073,0.1298251132+0.000000000073, —
—0.3303672956+0.00000000007
2.0202020202+0.000000000073,2.2743186810+0.000000000073,-0.2106241300+0.00000000007, —
—0.2623894277+0.00000000007
3.0303030303+0.000000000053,1.9726633457+0.000000000073,-0.3037311621+0.00000000007,
—0.0397330921+0.00000000007
4.0404040404+0.00000000003,1.7435892209+0.00000000003,-0.1126550232+0.00000000007,

—0.2497182058F0.00000000007 (continues on next page)

170 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

5.0505050505+0.00000000003,1.5687324121+40.00000000003,0.1351622725+0.00000000003,0.
—2018398581+0.00000000007
6.0606060606+0.00000000007,1.4348632045+0.00000000003,0.2143080535+0.00000000007, —
—0.0067820038+0.00000000007
7.0707070707+0.00000000003,1.3321818015+0.00000000005,0.0950352763+0.000000000073, —
—0.1630920429+0.00000000007
8.0808080808+0.00000000003,1.2533244850+0.00000000003,-0.0771210981+0.00000000007, —
—0.1468923919+0.00000000007

3.13. Saving QuTiP Objects and Data Sets 171

QuTiP: Quantum Toolbox in Python, Release 4.7.0

1.0 + — 0.5
— 1.0
0.8 A —_— 2.0
0.6
S
x
* 0.4
x
C
2 0.21
©
o
S 0.0 <

—-0.2 1

~0.4 1

In this case we didn’t really need to store both the real and imaginary parts, so instead we could use the
numtype="real" option

>>> file_data_store('expect.dat', output_data.T, numtype="real')
>>> with open ("expect.dat", "r") as f:

print ("\n'.Jjoin(f.readlines () [:5]))
Generated by QuTiP: 100x4 real matrix in decimal format [',' separated values].
.0000000000,3.2109553666,0.3689771549,0.0185002867
.0101010101,2.6754598872,0.1298251132,-0.3303672956
.0202020202,2.2743186810,-0.2106241300,-0.2623894277
.0303030303,1.9726633457,-0.3037311621,0.0397330921

w N = O H= .

172 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

1.0 A — 0.5
1.0

0.8 4 — 2.0

0.6 4

0.4

0.0 \/

—-0.2 1

Correlation (x(t)x(0))

—0.4

10

o
N
1N
[@)]
(o)

and if we prefer scientific notation we can request that using the numformat="exp" option

>>> file_data_store('expect.dat', output_data.T, numtype="real", numformat="exp")

174 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

1.0 - — 0.5
1.0
0.8 — 2.0
__ 0.6
S
X
= 0.4-
x
C
£ 0.2
©
o
8 0.0 \/
_02 _
-0.4
0 2 4 6 8 10
Time t

Loading data previously stored using qutip.fileio.file_data_store (or some other software) is a even
easier. Regardless of which deliminator was used, if data was stored as complex or real numbers, if it is in decimal
or exponential form, the data can be loaded using the qutip. fileio.file_ data_read, which only takes
the filename as mandatory argument.

input_data = file_data_read('expect.dat")
plt.plot (input_datal:,0], input_datal:,1]); # plot the data

176 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

— 0.5
1.0
4 - —_— 2.0
S 3-
<
=
x
S 2-
)
©
o
o
@] 1 -
O_
0 20 40 60 80 100

Time t

(If a particularly obscure choice of deliminator was used it might be necessary to use the optional second argument,
for example sep="_" if _ is the deliminator).

3.14 Generating Random Quantum States & Operators

QuTiP includes a collection of random state, unitary and channel generators for simulations, Monte Carlo evalu-
ation, theorem evaluation, and code testing. Each of these objects can be sampled from one of several different

distributions including the default distributions used by QuTiP versions prior to 3.2.0.

For example, a random Hermitian operator can be sampled by calling rand_herm function:

>>> rand_herm(5)

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True

Qobj data =

[[-0.25091976+0.7 0. +0.7 +0.7
-0.21793701+0.470376337 -0.23212846-0.616071877]
[0. +0.7 -0.88383278+0.7 .836086 -0.239562187
-0.09464275+0.453708637 -0.15243356+0.653920967]
[0. +0.73 0.836086 +0.239562187 .66488528+0. 7
-0.26290446+0.649844517 -0.52603038-0.079915537]
[-0.21793701-0.470376337 —-0.09464275-0.453708637 —-0.26290446-0.649844517
-0.13610996+0.7 -0.34240902-0.287930375]
[-0.23212846+0.616071877 —-0.15243356-0.653920967 -0.52603038+0.079915537
-0.34240902+0.28793037 0. +0.7 11

178 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Random Sampling Func- Dimensions
Variable tions
Type
State vector | rand_ket, N x1
(ket) rand_ket_haar
Hermitian op- | rand_herm N x1
erator (oper)
Density oper- | rand_dm, N x N
ator (oper) rand_dm_hs,

rand_dm_ginibre
Unitary oper- | rand_unitary, N x N

rand_unitary_haar
rand_super,
rand_super_bcsz

ator (oper)
CPTP channel
(super)

(N X N)x (N xN)

In all cases, these functions can be called with a single parameter /N that specifies the dimension of the relevant
Hilbert space. The optional dims keyword argument allows for the dimensions of a random state, unitary or
channel to be broken down into subsystems.

>>> rand_super_bcsz (7) .dims

Lee71, 711, (071, [711]

>>> rand_super_bcsz (6, dims=[[[2, 3], [2, 311, [[2, 3], [2, 3]]1]).dims
[etz2, 31, (2, 311, [([2, 31, [2, 3111

Several of the distributions supported by QuTiP support additional parameters as well, namely density and rank.
In particular, the rand_herm and rand_dm functions return quantum objects such that a fraction of the elements
are identically equal to zero. The ratio of nonzero elements is passed as the density keyword argument. By
contrast, the rand_dm_ginibre and rand_super_bcsz take as an argument the rank of the generated object, such
that passing rank=1 returns a random pure state or unitary channel, respectively. Passing rank=None specifies
that the generated object should be full-rank for the given dimension.

For example,

>>> rand_dm (5, density=0.5)

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0.05157906+0.7 0.04491736+0.010433297 0.06966148+0.003447137

0. +0.7 0.04031493-0.018867917]

[0.04491736-0.010433293 0.33632352+0.7 -0.08046093+0.02954712j
0.0037455 +0.039402567 -0.05679126-0.013223927]

[0.06966148-0.003447133 -0.08046093-0.029547127 .2938209 +0.7
0.0029377 +0.044635317 0.05318743-0.028176897]

[0. +0.73 0.0037455 -0.039402567 .0029377 -0.044635317
0.22553181+0.7 0.01657495+0.069638457]

[0.04031493+0.018867917 -0.05679126+0.013223927 .05318743+0.028176897
0.01657495-0.069638457 0.09274471+0.7 11

>>> rand_dm_ginibre (5, rank=2)

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =

[[0.07318288+2.60675616e-197 0.10426866-6.63115850e-037

-0.05377455-2.66949369e-027 -0.01623153+7.66824687e-027]

-0.12255602+6.11342416e-027]

[0.10426866+6.63115850e-037 0.30603789+1.44335373e-187

-0.03129486-4.16194216e-037 -0.09832531+1.74110000e-017

-0.27176358-4.84608761e-027]

[-0.05377455+2.66949369e-027 -0.03129486+4.16194216e-037
0.07055265-8.76912454e-197 -0.0183289 -2.72720794e-027
0.01196277-1.01037189%9e-017]

[-0.01623153-7.66824687e-027 -0.09832531-1.74110000e-017

(continues on next page)
3.14. Generating Random Quantum States & Operators 179

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

.0183289 +2.72720794e-027 0.14168414-1.51340961e-197
.0784762842.07735199e-017]
.12255602-6.11342416e-023 -0.27176358+4.84608761e-027
.0119627741.01037189%9e-01j 0.07847628-2.07735199e-017
.40854244-6.75775934e-197]]

|
O O O O o

See the API documentation: Quantum Objects for details.

Warning: When using the density keyword argument, setting the density too low may result in not enough
diagonal elements to satisfy trace constraints.

3.14.1 Random objects with a given eigen spectrum

It is also possible to generate random Hamiltonian (rand_herm) and densitiy matrices (rand_dm) with a given
eigen spectrum. This is done by passing an array of eigenvalues as the first argument to either function. For
example,

>>> eigs = np.arange (5)

>>> H = rand_herm(eigs, density=0.5)

>>> H

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True

Qobj data =

[[2.51387054-5.55111512e-177 0.81161447+2.02283642e-017
0. +0.00000000e+003 0.875 +3.35634092e-017
0.81161447+2.02283642e-017]

[0.81161447-2.02283642e-013 1.375 +0.00000000e+007
0. +0.00000000e+003j -0.76700198+5.53011066e-017
0.375 +0.00000000e+007]

[0. +0.00000000e+003 O. +0.00000000e+007
2. +0.00000000e+003 O. +0.00000000e+007
0. +0.00000000e+007]

[0.875 -3.35634092e-017 -0.76700198-5.53011066e-017
0. +0.00000000e+003 2.73612946+0.00000000e+007

-0.76700198-5.53011066e-017]

[0.81161447-2.02283642e-013 0.375 +0.00000000e+007
0. +0.00000000e+00j -0.76700198+5.53011066e-017
1.375 +0.00000000e+0077]

>>> H.eigenenergies|()
array ([7.70647994e-17, 1.00000000e+00, 2.00000000e+00, 3.00000000e+00,
4.00000000e+001)

In order to generate a random object with a given spectrum QuTiP applies a series of random complex Jacobi
rotations. This technique requires many steps to build the desired quantum object, and is thus suitable only for
objects with Hilbert dimensionality < 1000.

180 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.14.2 Composite random objects

In many cases, one is interested in generating random quantum objects that correspond to composite systems
generated using the qutip. tensor. tensor function. Specifying the tensor structure of a quantum object is
done using the dims keyword argument in the same fashion as one would do for a qutip. Qob j object:

>>> rand_dm (4, 0.5, dims=[[2,2], [2,21])
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[0.13622928+0.7 0. +0.7 0.01180807-0.017391667
0. +0.73]
[0. +0.7 0.14600238+0.73 0.10335328+0.217907867

-0.00426027-0.021936277]

[0.01180807+0.017391667

-0.0670631 +0.041240947]

[O. +0.3J -0.0042602740.021936273 -0.0670631 —-0.041240947
0.14210761+0.73 1]

0.10335328-0.217907863 0.57566072+0.7

3.15 Modifying Internal QuTiP Settings

3.15.1 User Accessible Parameters

In this section we show how to modify a few of the internal parameters used by QuTiP. The settings that can be
modified are given in the following table:

Setting

Description

Options

auto_herm

Automatically calculate the hermic-
ity of quantum objects.

True / False

auto_tidyup

Automatically tidyup quantum ob-
jects.

True / False

auto_tidyup_atol

Tolerance used by tidyup

any float value > 0

atol General tolerance any float value > 0
num_cpus Number of CPU’s used for multi- | int between 1 and # cpu’s
processing.
debug Show debug printouts. True / False
openmp_thresh NNZ matrix must have for | Int
OPENMP.

3.15.2 Example: Changing Settings

The two most important settings are auto_tidyup and auto_tidyup_atol as they control whether the
small elements of a quantum object should be removed, and what number should be considered as the cut-off
tolerance. Modifying these, or any other parameters, is quite simple:

>>> qutip.settings.auto_tidyup False

These settings will be used for the current QuTiP session only and will need to be modified again when restarting
QuTiP. If running QuTiP from a script file, then place the qutip.settings.xxxx commands immediately after from
qutip import * at the top of the script file. If you want to reset the parameters back to their default values then call
the reset command:

>>> qutip.settings.reset ()

3.15. Modifying Internal QuTiP Settings 181

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.15.3 Persistent Settings

When QuTiP is imported, it looks for a file named qut iprc in a folder called . qut ip user’s home directory. If
this file is found, it will be loaded and overwrite the QuTiP default settings, which allows for persistent changes in
the QuTiP settings to be made. A sample qut iprc file is show below. The syntax is a simple key-value format,
where the keys and possible values are described in the table above:

[qutip]
auto_tidyup=True
auto_herm=True
auto_tidyup_atol=le-12
num_cpus=4
debug=False

Note that the openmp_thresh value is automatically generatd by QuTiP. It is also possible to set a specific
compiler for QuTiP to use when generating runtime Cython code for time-dependent problems. For example, the
following section in the qut iprc file will set the compiler to be clang-3. 9:

[compiler]
cc = clang-3.9
cxx = clang-3.9

3.16 Quantum Information Processing

3.16.1 Quantum Information Processing

Introduction

The Quantum Information Processing (QIP) module aims at providing basic tools for quantum computing simula-
tion both for simple quantum algorithm design and for experimental realization. It offers two different approaches,
one with QubitCircuit calculating unitary evolution under quantum gates by matrix product, another called
Processor using open system solvers in QuTiP to simulate noisy quantum device.

Quantum Circuit

The most common model for quantum computing is the quantum circuit model. In QuTiP, we use
QubitCircuit to represent a quantum circuit. The circuit is characterized by registers and gates:

* Registers: The argument N specifies the number of qubit registers in the circuit and the argument
num_cbits (optional) specifies the number of classical bits available for measurement and control.

» Gates: Each quantum gate is saved as a class object Gat e with information such as gate name, target qubits
and arguments. Gates can also be controlled on a classical bit by specifying the register number with the
argument classical_controls.

* Measurements: We can also carry out measurements on individual qubit (both in the middle and at the
end of the circuit). Each measurement is saved as a class object Measurement with parameters such as
targets, the target qubit on which the measurement will be carried out, and classical_store, the index of the
classical register which stores the result of the measurement.

A circuit with the various gates and registers available is demonstrated below:

from qutip.qgip.circuit import QubitCircuit, Gate
from qutip import tensor, basis

gc = QubitCircuit (N=2, num_cbits=1)
swap_gate = Gate (name="SWAP", targets=[0, 1])

(continues on next page)

182 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

gc.add_gate (swap_gate)

gc.add_measurement ("M0", targets=[1], classical_store=0) # measurement gate
gc.add_gate ("CNOT", controls=0, targets=1)

gc.add_gate ("X", targets=0, classical_controls=[0]) # classically controlled gate

.add_gate (swap_gate)

print (gc.gates)

Output:

[Gate (SWAP, targets=[0, 1], controls=None, classical controls=None, control_
—value=None),

Measurement (MO, target=[1l], classical_store=0),

Gate (CNOT, targets=[1], controls=[0], classical controls=None, control_
—value=None),

Gate (X, controls=None, classical controls=[0], control_value=None),

targets=[0]
Gate (SWAP, targets=
—value=None)]

’
[0, 1], controls=None, classical controls=None, control_

Unitaries

There are a few useful functions associated with the circuit object. For example, the propagators method
returns a list of the unitaries associated with the sequence of gates in the circuit. By default, the unitaries are
expanded to the full dimension of the circuit:

U_list = gc.propagators()
print (U_list)

Output:
[Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm =_
—True
Qobj data =
[[1. 0. 0. 0.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 1.]], Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type =,
—oper, isherm = True
Qobj data =
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 1. 0.]], Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type =,
—oper, isherm = True
Qobj data =
[[0. 0. 1. 0.]
[0. 0. 0. 1.]
[1. 0. 0. 0.]
[0. 1. 0. 0.]], Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type =
—oper, isherm = True
Qobj data =
[[1. 0. 0. 0.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 1.11]

Another option is to only return the unitaries in their original dimension. This can be achieved with the argument
expand=False specified to the propagators.

3.16. Quantum Information Processing 183

QuTiP: Quantum Toolbox in Python, Release 4.7.0

U_list = gc.propagators (expand=False)

print (U_list)

QOutput:

[Quantum object: dims =
—True

21, [2, 2]], shape = (4, 4), type = oper, isherm

Qobj data =
[[1. 0. 0. 0.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 1.]], Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4),
—oper, isherm = True
Qobj data =
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 1. 0.]], Quantum object: dims = [[2], [2]], shape = (2, 2), type
—isherm = True
Qobj data =
[[0. 1.]
[1. 0.]], Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type
—isherm = True
Qobj data =
[[1. O.

= O O O

0 .
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[0. 0. O 171

Gates

The pre-defined gates for the class qutip. gip. Gate are shown in the table below:

Gate name Description

“RX” Rotation around x axis

“RY” Rotation around y axis

“RZ” Rotation around z axis

“X” Pauli-X gate

“Y” Pauli-Y gate

“z Pauli-Z gate

“S” Single-qubit rotation or Z90

“T” Square root of S gate
“SQRTNOT” Square root of NOT gate
“SNOT” Hardmard gate

“PHASEGATE” Add a phase one the state 1
“CRX” Controlled rotation around x axis
“CRY” Controlled rotation around y axis
“CRZ” Controlled rotation around z axis
“CX” Controlled X gate

“CY” Controlled Y gate

“czr Controlled Z gate

“CS” Controlled S gate

“CT” Controlled T gate

“CPHASE” Controlled phase gate

“CNOT” Controlled NOT gate

“CSIGN” Same as CPHASE

“QASMU” U rotation gate used as a primitive in the QASM standard

continues on next page

184

Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Table 2 — continued from previous page

Gate name Description

“BERKELEY” Berkeley gate

“SWAPalpha” SWAPalpha gate

“SWAP” Swap the states of two qubits

“ISWAP” Swap gate with additional phase for O1 and 10 states
“SQRTSWAP” Square root of the SWAP gate

“SQRTISWAP” Square root of the ISWAP gate

“FREDKIN” Fredkin gate

“TOFFOLI” Toffoli gate

“GLOBALPHASE” | Global phase

For some of the gates listed above, QubitCircuit also has a primitive resolve_gates method that decom-
poses them into elementary gate sets such as CNOT or SWAP with single-qubit gates (RX, RY and RZ). However,
this method is not fully optimized. It is very likely that the depth of the circuit can be further reduced by merging
quantum gates. It is required that the gate resolution be carried out before the measurements to the circuit are
added.

Custom Gates

In addition to these pre-defined gates, QuTiP also allows the user to define their own gate. The following example
shows how to define a customized gate. The key step is to define a gate function returning a qutip.Qobj and
save it in the attribute user_gates.

from qutip.gip.circuit import Gate
from qutip.qgip.operations import rx

def user_gatel (arg_value):
controlled rotation X

mat = np.zeros((4, 4), dtype=np.complex)
mat [0, 0] = mat[l, 1] = 1.
mat[2:4, 2:4] = rx(arg_value)

return Qobj(mat, dims=[[2, 2], [2, 21])

def user_gate2():

S gate
mat = np.array([[1l., 01,

(0., 1.311)
return Qobj(mat, dims=[[2], [2]])

gc = QubitCircuit (2)
gc.user_gates = {"CTRLRX": user_gatel,
"s" : user_gate2}

qubit 0 controls qubit 1
gc.add_gate ("CTRLRX", targets=[0,1], arg_value=np.pi/2)

qubit 1 controls qubit 0
gc.add_gate ("CTRLRX", targets=[1,0], arg_value=np.pi/2)

we also add a gate using a predefined Gate object
g_T = Gate("S", targets=[1])

qgc.add_gate (g_T)

props = gc.propagators ()

print (props[0])

Output:

3.16. Quantum Information Processing 185

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm =
—False
Qobj data =
[[1. +0. 7 0. +0.7 0. +0.73
0. +0.7]
[0. +0.7 1. +0.7 0. +0.73
0. +0. 7]
[0. +0.7 0. +0.7 0.70710678+0.7
0. -0.707106787]
[0. +0. 7 0. +0.7 0. -0.707106787
0.70710678+0.7] 11

print (props([1])

Output:

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm =_

—False

Qobj data =

[[1. +0. 7 0. +0.7 0. +0.73
0. +0.7]
[0. +0. 3 0.70710678+0. 7 0. +0.73
0. -0.707106787]
[0. +0.7 0. +0.7 1. +0.73
0. +0. 7]
[0. +0.7 0. -0.707106787 0. +0.73
0.70710678+0. 7] 11

print (propsl[2])

Output:

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm =
—False

Qobj data =

[[1.40.7 0.40.7 0.40.3 0.40.7]

[0.+0.3 O0.+1.3 0.+40.3 0.40.7]

[0.40.3 0.40.3 1.40.3 0.40.3]

[0.+0.7 0.+40.7 0.40.3 0.4+1.7371]

Plotting a Quantum Circuit

A quantum circuit (described above) can directly be plotted using the QCircuit library (https://github.com/CQuIC/
qcircuit). QCiruit is a quantum circuit drawing application and is implemented directly into QuTiP.

The circuit image visualization requires LaTeX and ImageMagick for display. The module automatically generates
the LaTeX code for plotting the circuit, produces the pdf and converts it to the png format. On Mac and Linux,
ImageMagick can be easily installed with the command conda install imagemagick if you have conda installed.
Otherwise, please follow the installation instructions on the ImageMagick documentation.

On windows, you need to download and install ImageMagick installer. In addition, you also need perl (for
pdfcrop) and Ghostscript (additional dependency of ImageMagick for png conversion).

If you want to check whether all dependencies are installed, see if the following three commands work correctly:
pdflatex, pdfcrop and magick anypdf.pdf anypdf.png, where anypdf.pdf is any pdf file you
have.

An example code for plotting the example quantum circuit from above is given:

186 Chapter 3. Users Guide

https://github.com/CQuIC/qcircuit
https://github.com/CQuIC/qcircuit

QuTiP: Quantum Toolbox in Python, Release 4.7.0

from qutip.gip.circuit import QubitCircuit, Gate

create the quantum circuit

gc = QubitCircuit (2, num_cbits=1)

gc.add_gate ("CNOT", controls=0, targets=1)

gc.add_gate ("H", targets=1)

gc.add_gate ("ISWAP", targets=[0,1])
gc.add_measurement ("MO", targets=1, classical_store=0)
plot the quantum circuit

gc.png

iISWAP

Circuit simulation

There are two different ways to simulate the action of quantum circuits using QuTiP:

* The first method utilizes unitary application through matrix products on the input states. This method
simulates circuits exactly in a deterministic manner. This is achieved through CircuitSimulator. A
short guide to exact simulation can be found at Operator-level circuit simulation. The teleportation notebook

is also useful as an example.

* A different method of circuit simulation employs driving Hamiltonians with the ability to simulate circuits
in the presence of noise. This can be achieved through the various classes in device.A short guide to

processors for QIP simulation can be found at Pulse-level circuit simulation.

3.16.2 Operator-level circuit simulation

Note: New in QuTiP 4.6

Run a quantum circuit

Let’s start off by defining a simple circuit which we use to demonstrate a few examples of circuit evolution. We

take a circuit from OpenQASM 2

from qutip.qgip.circuit import QubitCircuit, Gate
from qutip.qgip.operations import controlled_gate, hadamard_transform
def controlled_hadamard() :

Controlled Hadamard

return controlled_gate (

hadamard_transform(l), 2, control=0, target=1, control_value=1)

gc = QubitCircuit (N=3, num_cbits=3)
gc.user_gates = {"cH": controlled_hadamard}
qgc.add_gate ("QASMU", targets=[0], arg_value=[1.91063, 0, 0])
qgc.add_gate ("cH", targets=[0,1])
gc.add_gate ("TOFFOLI", targets=[2], controls=[0, 11])
gc.add_gate ("X", targets=[0])
qgc.add_gate ("X", targets=[1])
gc.add_gate ("CNOT", targets=[1], controls=0)

3.16. Quantum Information Processing

187

https://github.com/Qiskit/openqasm/blob/OpenQASM2.x/examples/W-state.qasm

QuTiP: Quantum Toolbox in Python, Release 4.7.0

It corresponds to the following circuit:

B

\U

[+ 1 | 1
] A
o
= 1 71

QASM — IT[{ X]f}é[

We will add the measurement gates later. This circuit prepares the W-state (|001) 4 [010) + [100))/v/3. The
simplest way to carry out state evolution through a quantum circuit is providing a input state to the run method.

from qutip import tensor

zero_state = tensor (basis (2, 0), basis (2, 0), basis (2, 0))
result = gc.run(state=zero_state)
wstate = result

print (wstate)

QOutput:

Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = (8, 1), type = ket
Qobj data =
[[0.

0.57734961
.57734961

0
0.
0.57735159
0.
0
0

[
[
[
[
[
[
[

As expected, the state returned is indeed the required W-state.

As soon as we introduce measurements into the circuit, it can lead to multiple outcomes with associated probabil-
ities. We can also carry out circuit evolution in a manner such that it returns all the possible state outputs along
with their corresponding probabilities. Suppose, in the previous circuit, we measure each of the three qubits at the
end.

gc.add_measurement ("MO", targets=[0], classical_store=0)
gc.add_measurement ("M1", targets=[1], classical_store=1)
gc.add_measurement ("M2", targets=[2], classical_store=2)

To get all the possible output states along with the respective probability of observing the outputs, we can use the
run_statistics function:

result = gc.run_statistics(state=tensor (basis(2, 0), basis (2, 0), basis (2, 0)))
states = result.get_final_states()
probabilities = result.get_probabilities/()

for state, probability in zip(states, probabilities):
print ("State:\n{}\nwith probability " format (state, probability))

188 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Output:

State:

Quantum object: dims = [[2, 2, 2], [1, 1, 1]1], shape = (8, 1), type = ket
Qobj data =

[[0.]

1.

O O O o o

[1.]
(0.1
[0.]
[0.]
[0.]
(0.1
o

.11

with probability 0.33333257054168813

State:

Quantum object: dims = [[2, 2, 2], [1, 1, 111, shape = (8, 1), type = ket
Qobj data =

[[0.]

0.

]
]
-1
]
]
]

O O O O

[
[
[
[
[
[
o

.11

with probability 0.33333257054168813

State:

Quantum object: dims = [[2, 2, 2], [1, 1, 111, shape = (8, 1), type = ket
Qobj data =

[[0.]

0.

O O OO

[
[
[
[
[
[
o

.11
with probability 0.33333485891662384

The function returns a Result object which contains the output states. The method get_results can be used
to obtain the possible states and probabilities. Since the state created by the circuit is the W-state, we observe the
states |001), |010) and |100) with equal probability.

Circuit simulator

The run and run statistics functions make use of the CircuitSimulator which enables exact simu-
lation with more granular options. The simulator object takes a quantum circuit as an argument. It can optionally
be supplied with an initial state. There are two modes in which the exact simulator can function. The default
mode is the “state_vector_simulator” mode. In this mode, the state evolution proceeds maintaining the ket state
throughout the computation. For each measurement gate, one of the possible outcomes is chosen probabilistically
and computation proceeds. To demonstrate, we continue with our previous circuit:

from qutip.qgip.circuit import CircuitSimulator

sim = CircuitSimulator (gc, state=zero_state)

This initializes the simulator object and carries out any pre-computation required. There are two ways to carry out
state evolution with the simulator. The primary way is to use the run and run_statistics functions just like
before (only now with the CircuitSimulator class).

The CircuitSimulator class also enables stepping through the circuit:

3.16. Quantum Information Processing 189

QuTiP: Quantum Toolbox in Python, Release 4.7.0

print (sim.step())

Output:

Quantum object: dims = [[2, 2, 2], [1, 1, 1]1], shape = (8, 1), type = ket
Qobj data =
[[0.57735159]
[O.]
[]
(0.]
[0.81649565]
[]
[1
[]

O O O O O O

]

This only excutes one gate in the circuit and allows for a better understanding of how the state evolution takes
place. The method steps through both the gates and the measurements.

Precomputing the unitary

By default, the CircuitSimulator class is initialized such that the circuit evolution is conducted by apply-
ing each unitary to the state interactively. However, by setting the argument precompute_unitary=True,
CircuitSimulator precomputes the product of the unitaries (in between the measurements):

sim = CircuitSimulator (gc, precompute_unitary=True)

print (sim.ops)

[Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = (8, 8), type = oper,,
—isherm = False
Qobj data =
[[O. 0.57734961 O. -0.57734961 0. 0.40824922
0. -0.40824922]
[0.57734961 O. -0.57734961 O. 0.40824922 0.
-0.40824922 0.]
[0.57734961 O. 0.57734961 0. 0.40824922 0.
0.40824922 0.]
[0. 0.57734961 0. 0.57734961 0. 0.40824922
0. 0.40824922]
[0.57735159 O. 0. 0. -0.81649565 0.
0. 0.]
[0. 0.57735159 0. 0. 0. -0.81649565
0. 0.]
[0. 0. 0.57735159 0. 0. 0.
-0.81649565 0.]
[0. 0. 0. 0.57735159 0. 0.
0. -0.81649565

Measurement (MO, target
Measurement (M1, target=
Measurement (M2, target=

’

0], classical_store=0),
1], classical_store=1),
2], classical_store=2)]

Here, sim. ops stores all the circuit operations that are going to be applied during state evolution. As observed
above, all the unitaries of the circuit are compressed into a single unitary product with the precompute optimization
enabled. This is more efficient if one runs the same circuit one multiple initial states. However, as the number of
qubits increases, this will consume more and more memory and become unfeasible.

190 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Density Matrix Simulation

By default, the state evolution is carried out in the “state_vector_simulator” mode (specified by the mode ar-
gument) as described before. In the “density_matrix_simulator” mode, the input state can be either a ket or a
density matrix. If it is a ket, it is converted into a density matrix before the evolution is carried out. Unlike the
“state_vector_simulator” mode, upon measurement, the state does not collapse to one of the post-measurement
states. Rather, the new state is now the density matrix representing the ensemble of post-measurement states. In
this sense, we measure the qubits and forget all the results.

To demonstrate this consider the original W-state preparation circuit which is followed just by measurement on
the first qubit:

gc = QubitCircuit (N=3, num_cbits=3)

qgc.user_gates = {"cH": controlled_hadamard}

qgc.add_gate ("QOASMU", targets=[0], arg_value=[1.91063, 0, 0])
gc.add_gate ("cH", targets=[0,1])

gc.add_gate ("TOFFOLI", targets=[2], controls=[0, 11])
gc.add_gate ("X", targets=[0])

gc.add_gate ("X", targets=[1])

qgc.add_gate ("CNOT", targets=[1], controls=0)
gc.add_measurement ("MO", targets=[0], classical_store=0)
gc.add_measurement ("MO", targets=[1], classical_store=0)
gc.add_measurement ("MO0", targets=[2], classical_store=0)
sim = CircuitSimulator (gc, mode="density_matrix_simulator")
print (sim.run(zero_state) .get_final_ states() [0])

Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = (8, 8), type = oper,
—isherm = True

Qobj data =

[[O. 0. 0. 0. 0. 0.
0. 0. 1
[0. 0.33333257 0. 0. 0. 0.
0. 0.]
[0. 0. 0.33333257 0. 0. 0.
0. 0.]
[0. 0. 0 0 0 0
0. 0.]
[0. 0. 0. 0. 0.33333486 0.
0. 0.]
[0. 0. 0 0 0 0
0. 0.]
[0. 0. 0 0 0 0
0. 0.]
[0. 0. 0 0 0 0
0. 0. 11

We are left with a mixed state.

Import and export quantum circuits

QuTiP supports importation and exportation of quantum circuit in the OpenQASM 2 format through the functions

read_gasmand save_gasm. We demonstrate this using the w-state generation circuit. The following code is
in OpenQASM format:

// Name of Experiment: W-state vl

OPENQASM 2.0;
include "gelibl.inc";

(continues on next page)

3.16. Quantum Information Processing 191

https://github.com/Qiskit/openqasm/tree/OpenQASM2.x

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

qreg gl4];
creg c[3];
gate cH a,b {
h b;

sdg b;

cx a,b;

u3(1.91063,0,0) ql[0];
cH ql0],qll];

cex gl0],qll]l,al2];
x ql0];

x qlll;

cx ql0],qll];

measure g[0] -> c[0];
measure ql[l] -> c[1];
measure q[2] -> c[2];

One can save it in a . gasm file and import it using the following code:

from qutip.qgip.gasm import read_gasm
gc = read_gasm("guide/gip/w-state.gasm")

3.16.3 Pulse-level circuit simulation

Modelling quantum hardware with Processor

Based on the open system solver, Processor in the qutip.gip module simulates quantum circuits at the
level of time evolution. One can consider the processor as a simulator of a quantum device, on which the quantum
circuit is to be implemented.

The procedure is illustrated in the figure below. It first compiles circuit into a Hamiltonian model, adds noisy
dynamics and then uses the QuTiP open time evolution solvers to simulation the evolution.

192 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

ot QASM Circuit
o) —{] H »
Qiskit
0 7l
10} LA H Cirq
10) O Project Q
@ compile Quantum System
oy
Cavity QED
! . Circuit QED
Spin chain

[(—
g1 —

] Optimal control
I N —

Noise
@ add noise
Decoherence
L — .. Amplitude noise
Cross-talk

Leakage error

@ solver

0,00 |0.1) |1,0F |1,1}

{0,0] 0.5
(0,1

0.0
11,0
1,1 . -0.5

Like a real quantum device, the processor is determined by a list of Hamiltonians, i.e. the control pulses driving the
evolution. Given the intensity of the control pulses and the corresponding time slices for each pulse, the evolution
is then computed. A control pulse is characterized by Pul se, consisting of the control Hamiltonian, the targets
qubit, the pulse coefficients and the time sequence. We can either use the coefficients as a step function or with
cubic spline. For step function, t 1ist specifies the start and the end of each pulse and thus is one element longer
the coeffs. One example of defining the control pulse coefficients and the time array is as follows:

Result

Density matrix
Evolution trajectory

import numpy as np
from qutip import sigmaz
from qutip.qgip.device import Processor

processor = Processor (2)

processor.add_control (sigmaz (), cyclic_permutation=True) # sigmaz for all qubits
processor.pulses[0] .coeffs = np.array([[1.0, 1.5, 2.0], [1.8, 1.3, 0.811)
processor.pulses[0].tlist = np.array([0.1, 0.2, 0.4, 0.5])

It defines a o, operator on both qubits and a pulse that acts on the first qubit. An equivalent approach is using the
add_pulse method.

from qutip.gip.pulse import Pulse

processor = Processor (2)

coeff=np.array([0.1, 0.2, 0.4, 0.5])

tlist=np.array([([1.0, 1.5, 2.0], [1.8, 1.3, 0.8]1])

pulse = Pulse(sigmaz (), targets=0, coeff=coeff, tlist=tlist)
processor.add_pulse (pulse)

One can also use choose the pulse_mode attribute of Processor between "discrete" and
"continuous".

3.16. Quantum Information Processing 193

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Note: If the coefficients represent dicrete pulse, the length of each array is 1 element shorter than t1ist. Ifitis
supposed to be a continuous function, the length should be the same as t 1ist.

The above example shows the framework and the most essential part of the simulator’s API. So far, it looks like just
a wrapper for the open system solvers. However, based on this, we can implement different physical realizations.
They differ mainly in how to find the control pulse for a quantum circuit, which gives birth to different sub-classes:

Processor

|— ModelProcessor

| — DispersiveCavityQED
| L— SpinChain

L— OptPulseProcessor

In general, there are two ways to find the control pulses. The first one, ModelProcessor, is more experiment-
oriented and based on physical models. A universal set of gates is defined in the processor as well as the pulse
implementing them in this particular physical model. This is usually the case where control pulses realizing
those gates are well known and can be concatenated to realize the whole quantum circuits. Two realizations have
already been implemented: the spin chain and the Cavity QED model for quantum computing. In those models,
the driving Hamiltonians are predefined. Another approach, based on the optimal control module in QuTiP (see
Quantum Optimal Control), is called OptPulseProcessor. In this subclass, one only defines the available
Hamiltonians in their system. The processor then uses algorithms to find the optimal control pulses that realize
the desired unitary evolution.

Despite this difference, the logic behind all processors is the same:

* One defines a processor by a list of available Hamiltonians and, as explained later, hardware-dependent
noise. In model based processors, the Hamiltonians are predefined and one only needs to give the device
parameters like frequency and interaction strength.

» The control pulse coefficients and time slices are either specified by the user or calculated by the method
load_circuit, which takes a QubitCircuit and find the control pulse for this evolution.

» The processor calculates the evolution using the QuTiP solvers. Collapse operators can be added to simulate
decoherence. The method run_state returns a object qutip.solver.Result.

It is also possible to calculate the evolution analytically with matrix exponentiation by setting
analytical=True. A list of the matrices representing the gates is returned just like for propagators.
However, this does not consider the collapse operators or other noise. As the system size gets larger, this approach
will become very inefficient.

In the following we describe the predefined subclasses for Processor:
SpinChain

LinearSpinChain and CircularSpinChain are quantum computing models base on the spin chain re-
alization. The control Hamiltonians are o, o, and 0,0, + 040,. This processor will first decompose the gate
into the universal gate set with ISWAP or SQRTISWAP as two-qubit gates, resolve them into quantum gates of
adjacent qubits and then calculate the pulse coefficients.

An example of simulating a simple circuit is shown below:

from qutip import basis
from qutip.qgip.circuit import QubitCircuit
from qutip.qgip.device import LinearSpinChain

QubitCircuit (2)
gc.add_gate ("X", targets=0)
gc.add_gate ("X", targets=1)

Q
Q
Il

(continues on next page)

194 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

processor = LinearSpinChain(2)
processor.load_circuit (gc)

result = processor.run_state(basis([2,2], [0,01))
print (result.states[-1].tidyup(1l.0e-6))

Quantum object: dims = [[2, 2], [1l, 111, shape = (4, 1), type = ket
Qobj data =
[[0.]

= O O

l]
[0.1
[-1.]

]

We can also visualize the pulses implementing this circuit:

from qutip import basis
from qutip.gip.circuit import QubitCircuit
from qutip.qgip.device import LinearSpinChain

gc = QubitCircuit (2)

gc.add_gate ("X", targets=0)
gc.add_gate ("X", targets=1)
processor = LinearSpinChain(2)
processor.load_circuit (gc)

fig, axis = processor.plot_pulses|()
fig.show ()

041 041
ofoy + ooy

DispersiveCavityQED

Same as above, DispersiveCavityQED is a simulator based on Cavity Quantum Electrodynamics. The
workflow is similar to the one for the spin chain, except that the component systems are a multi-level cavity and
a qubits system. The control Hamiltonians are the single-qubit rotation together with the qubits-cavity interaction
a'c™ 4 ao™t. The device parameters including the cavity frequency, qubits frequency, detuning and interaction
strength etc.

Note: The run_state method of DispersiveCavityQED returns the full simulation result of the solver,
hence including the cavity. To obtain the circuit result, one needs to first trace out the cavity state.

3.16. Quantum Information Processing 195

QuTiP: Quantum Toolbox in Python, Release 4.7.0

OptPulseProcessor

The OptPulseProcessor usesthe functionin optimize pulse unitary inthe optimal control module
to find the control pulses. The Hamiltonian includes a drift part and a control part and only the control part will
be optimized. The unitary evolution follows

U(At) =exp | i At[Hg+ > wiHj]
i

To let it find the optimal pulses, we need to give the parameters for opt imize pulse unitary as keyword
arguments to 1oad_circuit. Usually, the minimal requirements are the evolution time evo_time and the
number of time slices num_t s1lots for each gate. Other parameters can also be given in the keyword arguments.
For available choices, see optimize pulse unitary. Itis also possible to specify different parameters for
different gates, as shown in the following example:

from qutip.qgip.device import OptPulseProcessor
from qutip.operators import sigmaz, sigmax, sigmay
from qutip.tensor import tensor

Same parameter for all the gates
gc = QubitCircuit (N=1)
qgc.add_gate ("SNOT", O0)

num_tslots = 10

evo_time = 10

processor = OptPulseProcessor (N=1, drift=sigmaz())
processor.add_control (sigmax())

num_tslots and evo_time are two keyword arguments
tlist, coeffs = processor.load_circuit (

gc, num_tslots=num_tslots, evo_time=evo_time)

Different parameters for different gates
gc = QubitCircuit (N=2)

gc.add_gate ("SNOT", 0)

gc.add_gate ("SWAP", targets=[0, 1])
qc.add_gate ('CNOT', controls=1, targets=[0])

processor = OptPulseProcessor (N=2, drift=tensor([sigmaz()]*x2))
processor.add_control (sigmax (), cyclic_permutation=True)
processor.add_control (sigmay (), cyclic_permutation=True)
processor.add_control (tensor ([sigmay (), sigmay()]))

setting_args = {"SNOT": {"num_tslots": 10, "evo_time": 1},
"SWAP": {"num_tslots": 30, "evo_time": 3},
"CNOT": {"num_tslots": 30, "evo_time": 3}}

tlist, coeffs = processor.load_circuit (
gc, setting_args=setting_args, merge_gates=False)

Compiler and scheduler

Note: New in QuTiP 4.6

In order to simulate quantum circuits at the level of time evolution. We need to first compile the circuit into the
Hamiltonian model, i.e. the control pulses. Hence each Processor has a corresponding GateCompiler class.
The compiler takes a QubitCircuit and returns the compiled t 1ist and coeffs. Itis called implicitly when
calling the method run_state.

196 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

from qutip.gip.compiler import SpinChainCompiler
gc = QubitCircuit (2)

gc.add_gate ("X", targets=0)

qgc.add_gate ("X", targets=1)

processor = LinearSpinChain (2)
compiler = SpinChainCompiler (
2, params=processor.params, pulse_dict=processor.pulse_dict)
resolved_gc = gc.resolve_gates (["RX", "RzZ", "ISWAP"])
tlists, coeffs = compiler.compile (resolved_gc)
print (tlists)
print (coeffs)

Output
[array ([0., 1.]), array([O., 1., 2.]), None, None, None]
[array ([1.57079633]), array(I[O0. , 1.57079633]), None, None, None]

Here we first use resolve gates to decompose the X gate to its natural gate on Spin Chain model, the rotation
over X-axis. We pass the hardware parameters of the SpinChain ~ model, processor.params, as well as
a map between the pulse name and pulse index pulse_dict to the compiler. The later one allows one to address
the pulse more conveniently in the compiler.

The compiler returns a list of t 1ist and coeff, corresponding to each pulse. The first pulse starts from t=0
and ends at t=1, with the strengh 7 /2. The second one is turned on from t=1 to t=2 with the same strength. The
compiled pulse here is different from what is shown in the plot in the previous subsection because the scheduler
is turned off by default.

The scheduler is implemented in the class Scheduler, based on the idea of https://doi.org/10.1117/12.666419.
It schedules the order of quantum gates and instructions for the shortest execution time. It works not only for
quantum gates but also for pulse implementation of gates (Instruction) with varying pulse duration.

The scheduler first generates a quantum gates dependency graph, containing information about which gates have
to be executed before some other gates. The graph preserves the mobility of the gates, i.e. commuting gates are
not dependent on each other, even if they use the same qubits. Next, it computes the longest distance of each
node to the start and end nodes. The distance for each dependency arrow is defined by the execution time of the
instruction (By default, it is 1 for all gates). This is used as a priority measure in the next step. The gate with a
longer distance to the end node and a shorter distance to the start node has higher priority. In the last step, it uses
a list-schedule algorithm with hardware constraint and priority and returns a list of cycles for gates/instructions.
Since the algorithm is heuristics, sometimes it does not find the optimal solution. Hence, we offer an option that
randomly shuffles the commuting gates and repeats the scheduling a few times to get a better result.

from qutip.gip.circuit import QubitCircuit
from qutip.qgip.compiler import Scheduler
circuit = QubitCircuit (7)

circuit.add_gate ("SNOT", 3) # gatel
circuit.add_gate("Cz", 5, 3) # gatel
circuit.add_gate("Cz", 4, 3) # gatel
circuit.add_gate("Cz", 2, 3) # gate3
circuit.add_gate("Cz", 6, 5) # gated
circuit.add_gate("Cz", 2, 6) # gateb

circuit.add_gate ("ISWAP", [0, 2]) # gateb

scheduler = Scheduler ("ASAP")

result = scheduler.schedule(circuit, gates_schedule=True)

print (result)

Output

The result shows the scheduling order of each gate in the original circuit.

3.16. Quantum Information Processing 197

https://doi.org/10.1117/12.666419

QuTiP: Quantum Toolbox in Python, Release 4.7.0

For pulse schedule, or scheduling gates with different duration, one will need to wrap the qutip.gip.
circuit.Gate object with qutip.gip.compiler.instruction object, with a parameter duration.
The result will then be the start time of each instruction.

Noise Simulation

In the common way of QIP simulation, where evolution is carried out by gate matrix product, the noise is usually
simulated with bit flipping and sign flipping errors. The typical approaches are either applying bit/sign flipping
gate probabilistically or applying Kraus operators representing different noisy channels (e.g. amplitude damping,
dephasing) after each unitary gate evolution. In the case of a single qubit, they have the same effect and the
parameters in the Kraus operators are exactly the probability of a flipping error happens during the gate operation
time.

Since the processor simulates the state evolution at the level of the driving Hamiltonian, there is no way to apply
an error operator to the continuous-time evolution. Instead, the error is added to the pulses (coherent control
error) or the collapse operators (Lindblad error) contributing to the evolution. Mathematically, this is no different
from adding error channel probabilistically (it is actually how qut i p.mcsolve works internally). The collapse
operator for single-qubit amplitude damping and dephasing are exactly the destroying operator and the sign-
flipping operator. One just needs to choose the correct coefficients for them to simulate the noise, e.g. the
relaxation time T1 and dephasing time T2. Because it is based on the open system evolution instead of abstract
operators, this simulation is closer to the physical implementation and requires less pre-analysis of the system.

Compared to the approach of Kraus operators, this way of simulating noise is more computationally expensive. If
you only want to simulate the decoherence of single-qubit relaxation and the relaxation time is much longer than
the gate duration, there is no need to go through all the calculations. However, this simulator is closer to the real
experiment and, therefore, more convenient in some cases, such as when coherent noise or correlated noise exist.
For instance, a pulse on one qubit might affect the neighbouring qubits, the evolution is still unitary but the gate
fidelity will decrease. It is not always easy or even possible to define a noisy gate matrix. In our simulator, it can
be done by defining a Cont rolAmpNoise (Control Amplitude Noise).

In the simulation, noise can be added to the processor at different levels:

* The decoherence time T1 and T2 can be defined for the processor or for each qubit. When calculating the
evolution, the corresponding collapse operators will be added automatically to the solver.

* The noise of the physical parameters (e.g. detuned frequency) can be simulated by changing the parameters
in the model, e.g. laser frequency in cavity QED. (This can only be time-independent since QuTiP open
system solver only allows varying coefficients, not varying Hamiltonian operators.)

* The noise of the pulse intensity can be simulated by modifying the coefficients of the Hamiltonian operators
or even adding new Hamiltonians.

To add noise to a processor, one needs to first define a noise object Noise. The simplest relaxation noise can
be defined directly in the processor with relaxation time. Other pre-defined noise can be found as subclasses of
Noise. We can add noise to the simulator with the method add_noise.

Below, we show two examples.

The first example is a processor with one qubit under rotation around the z-axis and relaxation time 75 = 5. We
measure the population of the |+) state and observe the Ramsey signal:

import numpy as np

import matplotlib.pyplot as plt

from qutip import sigmaz, destroy, basis
from qutip.gip.device import Processor
from qutip.qgip.operations import snot

a = destroy(2)

Hadamard = snot ()

plus_state = (basis(2,1) + basis(2,0)) .unit ()
tlist = np.arange(0.00, 20.2, 0.2)

(continues on next page)

198 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

T2 = 5
processor = Processor (l, t2=T2)
processor.add_control (sigmaz ())
processor.pulses[0] .coeff = np.ones(len(tlist))
processor.pulses[0].tlist = tlist
result = processor.run_state(
plus_state, e_ops=[a.dag()*a, Hadamard=ra.dag()*axHadamard])

fig, ax = plt.subplots()

detail about length of tlist needs to be fixed

ax.plot (tlist[:-1], result.expect([1l][:-1], '.', label="simulation")
ax.plot (tlist[:-1], np.exp(-1./T2+tlist[:-1])*0.5 + 0.5, label="theory")
ax.set_xlabel ("t")

ax.set_ylabel ("Ramsey signal')

ax.legend()

ax.set_title("Relaxation T2=5")

ax.grid()
fig.tight_layout ()
fig.show ()
Relaxation T2=5
1.0 A e simulation
theory
o«
0.8 - -
[]
-~
_ [] o Py
C 0.6 - . ° o %
=y q ° o
; N °] ° 0. ... o.. ...v;:.;.. .W
3 o ° ¢ DA ®oase®
£ * . ot
S 0.4 1 °. .
° * e o
[N]
[_J
0.2 4 .
[
0.0
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

The second example demonstrates a biased Gaussian noise on the pulse amplitude. For visualization purposes, we
plot the noisy pulse intensity instead of the state fidelity. The three pulses can, for example, be a zyz-decomposition
of an arbitrary single-qubit gate:

import numpy as np

import matplotlib.pyplot as plt

from qutip import sigmaz, sigmay

from qutip.qgip.device import Processor

(continues on next page)

3.16. Quantum Information Processing 199

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

from qutip.gip.noise import RandomNoise

add control Hamiltonians
processor = Processor (N=1)
processor.add_control (sigmaz (), targets=0)

define pulse coefficients and tlist for all pulses
processor.pulses[0] .coeff = np.array([0.3, 0.5, 0. 1)
processor.set_all _tlist(np.array([0., np.pi/2., 2+np.pi/2, 3*np.pi/21))

define noise, loc and scale are keyword arguments for np.random.normal
gaussnoise = RandomNoise (

dt=0.01, rand_gen=np.random.normal, loc=0.00, scale=0.02)
processor.add_noise (gaussnoise)

Plot the ideal pulse
figl, axisl = processor.plot_pulses(title="Original control amplitude", figsize= (5,
=3))

Plot the noisy pulse

gobjevo, _ = processor.get_gobjevo (noisy=True)

noisy_coeff = gobjevo.to_list () [1][1l] + gobjevo.to_list () [2][1]

fig2, axis2 = processor.plot_pulses(title="Noisy control amplitude", figsize=(5,3))

axis2[0] .step(gobjevo.tlist, noisy_coeff)

Original control amplitude

200 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Noisy control amplitude

Customize the simulator
The number of predefined physical models and compilers are limited. However, it is designed for easy customiza-

tion and one can easily build customized model and compiling routines. For guide and examples, please refer to
the tutorial notebooks at https://qutip.org/tutorials.html

The workflow of the simulator

The following plot demonstrates the workflow of the simulator.

Processor.run_state(initial_state) Processor Noise
+ Single qubit
Pulse Drift Hioni decoherence
c Hamultonans .
| Drift | | Pulse | | Pulse | o Somisie sl * Pulse strength noise
Hamiltonians * Cross-talk
. . . == * Leakage etror
| Ideal pulse | Noise representation
| Coherent noise |
Lindblad noise processor = .
| | Processor(N,tl,t2) Gate Compiler
l Compiler model
processor.load circuit(| * Spin chain
| Coherent dynamics | quantum_circuit) - Cavity QED
. - * Circuit QED
| Dissipative dynamics | + treurt Q
P | processor.run_state(
initial_state) Pulse scheduler

Lindblad equation solver .

The core of the simulator is Processor, which characterizes the quantum hardware of interest, containing the
information such as the non-controllable drift Hamiltonian and the control Hamiltonian. Apart from the ideal
system representing the qubits, one can also define hardware-dependent or pulse-dependent noise in Noise. It
describes how noisy terms such as imperfect control and decoherence can be added once the ideal control pulse
is defined. When loading a quantum circuit, a GateCompiler compiles the circuit into a sequence of control
pulse signals and schedule the pulse for parallel execution. For each control Hamiltonian, a Pulse instance is
created that including the ideal evolution and associated noise. They will then be sent to the QuTiP solvers for the
computation.

3.16. Quantum Information Processing 201

https://qutip.org/tutorials.html

QuTiP: Quantum Toolbox in Python, Release 4.7.0

3.17 Measurement of Quantum Objects

Note: New in QuTiP 4.6

3.17.1 Introduction

Measurement is a fundamental part of the standard formulation of quantum mechanics and is the process by which
classical readings are obtained from a quantum object. Although the interpretation of the procedure is at times
contentious, the procedure itself is mathematically straightforward and is described in many good introductory
texts.

Here we will show you how to perform simple measurement operations on QuTiP objects. The same functions
measure and measurement_statistics can be used to handle both observable-style measurements and
projective style measurements.

3.17.2 Performing a basic measurement (Observable)

First we need to select some states to measure. For now, let us create an up state and a down state:

up = basis (2, 0)

down = basis (2, 1)

which represent spin-1/2 particles with their spin pointing either up or down along the z-axis.

We choose what to measure (in this case) by selecting a measurement operator. For example, we could select
sigmaz which measures the z-component of the spin of a spin-1/2 particle, or sigmax which measures the
X-component:

spin_z = sigmaz ()

spin_x = sigmax ()

How do we know what these operators measure? The answer lies in the measurement procedure itself:

¢ A quantum measurement transforms the state being measured by projecting it into one of the eigenvectors
of the measurement operator.

* Which eigenvector to project onto is chosen probabilistically according to the square of the amplitude of the
state in the direction of the eigenvector.

* The value returned by the measurement is the eigenvalue corresponding to the chosen eigenvector.

Note: How to interpret this “random choosing” is the famous “quantum measurement problem”.

The eigenvectors of spin_z are the states with their spin pointing either up or down, so it measures the component
of the spin along the z-axis.

The eigenvectors of spin_x are the states with their spin pointing either left or right, so it measures the component
of the spin along the x-axis.

When we measure our up and down states using the operator spin_z, we always obtain:

from qutip.measurement import measure, measurement_statistics
measure (up, spin_z) == (1.0, up)

measure (down, spin_z) == (-1.0, down)

202 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

because up is the eigenvector of spin_z with eigenvalue /.0 and down is the eigenvector with eigenvalue -1.0. The
minus signs are just an arbitrary global phase — up and -up represent the same quantum state.

Neither eigenvector has any component in the direction of the other (they are orthogonal), so measure(spin_z, up)
returns the state up 100% percent of the time and measure(spin_z, down) returns the state down 100% of the time.

Note how measure returns a pair of values. The first is the measured value, i.e. an eigenvalue of the operator
(e.g. 1.0), and the second is the state of the quantum system after the measurement, i.e. an eigenvector of the
operator (e.g. up).

Now let us consider what happens if we measure the x-component of the spin of up:

measure (up, spin_x)

The up state is not an eigenvector of spin_x. spin_x has two eigenvectors which we will call left and right. The up
state has equal components in the direction of these two vectors, so measurement will select each of them 50% of
the time.

These left and right states are:

left = (up - down) .unit ()

right = (up + down) .unit ()

When left is chosen, the result of the measurement will be (-1.0, -left).

When right is chosen, the result of measurement with be (1.0, right).

Note: When measure is invoked with the second argument being an observable, it acts as an alias to
measure_observable.

3.17.3 Performing a basic measurement (Projective)

We can also choose what to measure by specifying a list of projection operators. For example, we could select
the projection operators |0) (0| and |1) (1| which measure the state in the |0) , |1) basis. Note that these projection
operators are simply the projectors determined by the eigenstates of the sigmaz operator.

Zz0, Z1 = ket2dm(basis (2, 0)), ket2dm(basis (2, 1))

The probabilities and respective output state are calculated for each projection operator.

measure (up, [20, 2z1]) == (0, up)

measure (down, [Z0, Z1]) == (1, down)

In this case, the projection operators are conveniently eigenstates corresponding to subspaces of dimension 1.
However, this might not be the case, in which case it is not possible to have unique eigenvalues for each eigenstate.
Suppose we want to measure only the first qubit in a two-qubit system. Consider the two qubit state |0+)

state_0 = basis (2, 0)
state_plus = (basis(2, 0) + basis(2, 1)) .unit()

state_Oplus = tensor (state_0, state_plus)

Now, suppose we want to measure only the first qubit in the computational basis. We can do that by measuring
with the projection operators |0) (0| ® I and |1) (1| ® I.

Pz1 = [tensor(Z0, identity(2)), tensor(zl, identity(2))]

PZ2 = [tensor (identity(2), Z0), tensor (identity(2), 2Z1)]

3.17. Measurement of Quantum Objects 203

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Now, as in the previous example, we can measure by supplying a list of projection operators and the state.

measure (state_Oplus, PZ1l) == (0, state_Oplus)

The output of the measurement is the index of the measurement outcome as well as the output state on the full
Hilbert space of the input state. It is crucial to note that we do not discard the measured qubit after measurement
(as opposed to when measuring on quantum hardware).

Note: When measure is invoked with the second argument being a list of projectors, it acts as an alias to
measure_povim.

The measure function can perform measurements on density matrices too. You can read about these and other
details at measure_povm and measure_observable.

Now you know how to measure quantum states in QuTiP!

3.17.4 Obtaining measurement statistics(Observable)

You’ve just learned how to perform measurements in QuTiP, but you’ve also learned that measurements are prob-
abilistic. What if instead of just making a single measurement, we want to determine the probability distribution
of a large number of measurements?

One way would be to repeat the measurement many times — and this is what happens in many quantum experi-
ments. In QuTiP one could simulate this using:

results = {1.0: 0, -1.0: O} # 1 and -1 are the possible outcomes
for _ in range(1000):

value, new_state = measure (up, spin_x)

results[round(value)] += 1
print (results)

QOutput:

{1.0: 497, -1.0: 503}

which measures the x-component of the spin of the up state /000 times and stores the results in a dictionary.
Afterwards we expect to have seen the result /.0 (i.e. left) roughly 500 times and the result -1.0 (i.e. right) roughly
500 times, but, of course, the number of each will vary slightly each time we run it.

But what if we want to know the distribution of results precisely? In a physical system, we would have to perform
the measurement many many times, but in QuTiP we can peak at the state itself and determine the probability
distribution of the outcomes exactly in a single line:

>>> eigenvalues, eigenstates, probabilities = measurement_statistics (up, spin_x)

>>> eigenvalues
array ([-1., 1.1])

>>> eigenstates
array ([Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.70710678]

[-0.7071067811,

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket

Qobj data =
[[0.70710678]

[0.70710678]1]1, dtype=object)

>>> probabilities
[0.5000000000000001, 0.4999999999999999]

204 Chapter 3. Users Guide

QuTiP: Quantum Toolbox in Python, Release 4.7.0

The measurement_statistics function then returns three values when called with a single observable:

* cigenvalues is an array of eigenvalues of the measurement operator, i.e. a list of the possible measurement
results. In our example the value is array([-1., -1.]).

* eigenstates is an array of the eigenstates of the measurement operator, i.e. a list of the possible final states
after the measurement is complete. Each element of the array is a Qob j.

* probabilities is a list of the probabilities of each measurement result. In our example the value is /0.5, 0.5]
since the up state has equal probability of being measured to be in the left (-1.0) or right (1.0) eigenstates.

All three lists are in the same order — i.e. the first eigenvalue is eigenvalues[0], its corresponding eigenstate is
eigenstates[0], and its probability is probabilities{0], and so on.

Note: When measurement_statistics isinvoked with the second argument being an observable, it acts
as an alias to measurement_statistics_observable.

3.17.5 Obtaining measurement statistics(Projective)

Similarly, when we want to obtain measurement statistics for projection operators, we can use the measure-
ment_statistics function with the second argument being a list of projectors. Consider again, the state |0+).
Suppose, now we want to obtain the measurement outcomes for the second qubit. We must use the projectors
specified earlier by PZ2 which allow us to measure only on the second qubit. Since the second qubit has the state
|+), we get the following result.

collapsed_states, probabilities = measurement_statistics(state_Oplus, PZ2)

print (collapsed_states)

Output:

[Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[1.]
[0.]
[0.]
[0.]1], Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[0.]
.1
]
111

’print(probabilities)

Output:

’[0.4999999999999999, 0.4999999999999999]

The function measurement_statistics then returns two values:

* collapsed_states is an array of the possible final states after the measurement is complete. Each element of
the array is a Qob 7.

* probabilities is a list of the probabilities of each measurement outcome.

Note that the collapsed_states are exactly |00) and |01) with equal probability, as expected. The two lists are in
the same order.

3.17. Measurement of Quantum Objects 205

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Note: When measurement_statistics is invoked with the second argument being a list of projectors, it
acts as an alias to measurement_statistics_povm.

The measurement_statistics function can provide statistics for measurements of density matrices
too. You can read about these and other details at measurement_ statistics_observable and
measurement_statistics_povm.

Furthermore, the measure_povm and measurement_statistics_povm functions can handle POVM
measurements which are more general than projective measurements.

206 Chapter 3. Users Guide

Chapter 4

Gallery

This is the gallery for QuTiP examples, you can click on the image to see the source code.

4.1 Quantum Information Processing

4.1.1 Basic use of Processor

This example contains the basic functions of qutip.qgip.device.Processor. We define a simulator with
control Hamiltonian, pulse amplitude and time slice for each pulse. The two figures illustrate the pulse shape for
two different setup: step function or continuous pulse.

207

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Out:

(<Figure size 1200x600 with 1 Axes>, [<AxesSubplot:>])

import copy

import numpy as np

import matplotlib.pyplot as plt

pi = np.pi

from qutip.gip.device import Processor
from qutip.operators import sigmaz
from qutip.states import basis

processor = Processor (N=1)
processor.add_control (sigmaz (), targets=0)

tlist = np.linspace(0., 2+np.pi, 20)

processor = Processor (N=1, spline_kind="step_func")
processor.add_control (sigmaz (), 0)

processor.pulses[0].tlist = tlist

processor.pulses[0] .coeff = np.array([np.sin(t) for t in tlist])
processor.plot_pulses|()

tlist = np.linspace(0., 2xnp.pi, 20)

processor = Processor (N=1, spline_kind="cubic")
processor.add_control (sigmaz())

processor.pulses[0] .tlist = tlist

processor.pulses[0].coeff = np.array([np.sin(t) for t in tlist])
processor.plot_pulses|()

Total running time of the script: (0 minutes 0.653 seconds)

208 Chapter 4. Gallery

QuTiP: Quantum Toolbox in Python, Release 4.7.0

4.1.2 T2 Relaxation

Simulating the T2 relaxation of a single qubit with qutip.qgip.device.Processor. The single qubit is
driven by a rotation around z axis. We measure the population of the plus state as a function of time to see the

Ramsey signal.

Relaxation T2=5

1.0 A * simulation
theory
0.8
2 0.6
=
[F]
=
Gl
w
£ 0.4-
e
- &
]
0.2,
[]
0.0 1 .
T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

import numpy as np
import matplotlib.pyplot as plt

from qutip.gip.device import Processor

from qutip.operators import sigmaz,

destroy

from qutip.qgip.operations import snot

from qutip.states import basis

a = destroy(2)
Hadamard = snot ()
plus_state = (basis(2,1)

tlist = np.arange(0.00, 20.2, 0.2)
T2 = 5
processor = Processor (l, t2=T2)

processor.add_control (sigmaz())

+ basis(2,0)) .unit ()

processor.pulses[0] .coeff = np.ones(len(tlist))

processor.pulses[0].tlist = tlist
result = processor.run_state(
plus_state, e_ops=[a.dag() *a,

fig, ax = plt.subplots()

Hadamard*a.dag () raxHadamard])

detail about length of tlist needs to be fixed

ax.plot (tlist[:-117,
ax.plot(tlist[:-117,

result.expect[1][:-1], '.',
np.exp(—-1./T2+tlist[:-1])*0.5 + 0.5,

label="simulation")
label="theory")

(continues on next page)

4.1. Quantum Information Processing

209

QuTiP: Quantum Toolbox in Python, Release 4.7.0

(continued from previous page)

ax.set_xlabel ("t")
ax.set_ylabel ("Ramsey signal™)
ax.legend()
ax.set_title("Relaxation T2=5")
ax.grid()

fig.tight_layout ()

fig.show ()

Total running time of the script: (0 minutes 0.146 seconds)

4.1.3 Control Amplitude Noise

This example demonstrates how to add Gaussian noise to the control pulse.

Original control amplitude

Noisy control amplitude

Out:

[<matplotlib.lines.Line2D object at 0x7f7eb3e5e880>]

210

Chapter 4. Gallery

QuTiP: Quantum Toolbox in Python, Release 4.7.0

import numpy as np

import matplotlib.pyplot as plt

from qutip.qgip.device import Processor
from qutip.gip.noise import RandomNoise
from qutip.operators import sigmaz, sigmay

add control Hamiltonians
processor = Processor (N=1)
processor.add_control (sigmaz (), targets=0)

define pulse coefficients and tlist for all pulses
processor.pulses[0] .coeff = np.array([0.3, 0.5, 0. 1)
processor.set_all_tlist (np.array([0., np.pi/2., 2+np.pi/2, 3*np.pi/2]))

define noise, loc and scale are keyword arguments for np.random.normal
gaussnoise = RandomNoise (

dt=0.01, rand_gen=np.random.normal, loc=0.00, scale=0.02)
processor.add_noise (gaussnoise)

Plot the ideal pulse
processor.plot_pulses(title="Original control amplitude", figsize=(5,3))

Plot the noisy pulse

gobjevo, _ = processor.get_gobjevo (noisy=True)

noisy_coeff = gobjevo.to_list () [1][1l] + gobjevo.to_list () [2][1]

fig2, ax2 = processor.plot_pulses(title="Noisy control amplitude", figsize=(5,3))

ax2[0] .step(gobjevo.tlist, noisy_coeff)

Total running time of the script: (0 minutes 0.058 seconds)

4.1. Quantum Information Processing 211

QuTiP: Quantum Toolbox in Python, Release 4.7.0

212 Chapter 4. Gallery

Chapter 5

API documentation

This chapter contains automatically generated API documentation, including a complete list of QuTiP’s public
classes and functions.

5.1 Classes

5.1.1 Qobj

class Qobj (inpt=None, dims=None, shape=None, type=None, isherm=None, copy=True, fast=False,

superrep=None, isunitary=None)
A class for representing quantum objects, such as quantum operators and states.

The Qobj class is the QuTiP representation of quantum operators and state vectors. This class also im-
plements math operations +,-,* between Qobj instances (and / by a C-number), as well as a collection of
common operator/state operations. The Qobj constructor optionally takes a dimension 11ist and/or shape
list as arguments.

Parameters
inpt [array_like] Data for vector/matrix representation of the quantum object.
dims [list] Dimensions of object used for tensor products.
shape [list] Shape of underlying data structure (matrix shape).

copy [bool] Flag specifying whether Qobj should get a copy of the input data, or use the
original.

fast [bool] Flag for fast qobj creation when running ode solvers. This parameter is used
internally only.

Attributes
data [array_like] Sparse matrix characterizing the quantum object.
dims [list] List of dimensions keeping track of the tensor structure.
shape [list] Shape of the underlying data array.

type [str] Type of quantum object: ‘bra’, ‘ket’, ‘oper’, ‘operator-ket’, ‘operator-bra’, or
‘super’.

superrep [str] Representation used if fype is ‘super’. One of ‘super’ (Liouville form) or
‘choi’ (Choi matrix with tr = dimension).

isherm [bool] Indicates if quantum object represents Hermitian operator.

isunitary [bool] Indictaes if quantum object represents unitary operator.

213

QuTiP: Quantum Toolbox in Python, Release 4.7.0

iscp [bool] Indicates if the quantum object represents a map, and if that map is completely
positive (CP).

ishp [bool] Indicates if the quantum object represents a map, and if that map is hermicity
preserving (HP).

istp [bool] Indicates if the quantum object represents a map, and if that map is trace pre-
serving (TP).

iscptp [bool] Indicates if the quantum object represents a map that is completely positive
and trace preserving (CPTP).

isket [bool] Indicates if the quantum object represents a ket.

isbra [bool] Indicates if the quantum object represents a bra.

isoper [bool] Indicates if the quantum object represents an operator.
issuper [bool] Indicates if the quantum object represents a superoperator.

isoperket [bool] Indicates if the quantum object represents an operator in column vector
form.

isoperbra [bool] Indicates if the quantum object represents an operator in row vector form.

214 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Methods

copy() Create copy of Qobj

conj() Conjugate of quantum object.

cosm() Cosine of quantum object.

dag() Adjoint (dagger) of quantum object.

dnorm() Diamond norm of quantum operator.

dual_chan() Dual channel of quantum object representing a CP
map.

eigenenergies(sparse=False, sort="low’, | Returns eigenenergies (eigenvalues) of a quantum

eigvals=0, tol=0, maxiter=100000) object.

eigenstates(sparse=False, sort="low’, | Returns eigenenergies and eigenstates of quantum

eigvals=0, tol=0, maxiter=100000) object.

expm() Matrix exponential of quantum object.

full(order="C’) Returns dense array of quantum object data attribute.

groundstate(sparse=False, tol=0, max- | Returns eigenvalue and eigenket for the groundstate

iter=100000) of a quantum object.

inv() Return a Qobj corresponding to the matrix inverse of
the operator.

matrix_element(bra, ket) Returns the matrix element of operator between bra

and ket vectors.

norm(norm="tr’, sparse=False, tol=0, max- | Returns norm of a ket or an operator.
iter=100000)

permute(order) Returns composite qobj with indices reordered.

proj() Computes the projector for a ket or bra vector.

ptrace(sel) Returns quantum object for selected dimensions after
performing partial trace.

sinm() Sine of quantum object.

sqrtm() Matrix square root of quantum object.

tidyup(atol=1e-12) Removes small elements from quantum object.

tr() Trace of quantum object.

trans() Transpose of quantum object.

transform(inpt, inverse=False) Performs a basis transformation defined by inpt ma-
trix.

trunc_neg(method="clip’) Removes negative eigenvalues and returns a new

Qobj that is a valid density operator.
unit(norm="tr’, sparse=False, tol=0, max- | Returns normalized quantum object.
iter=100000)

check_herm()
Check if the quantum object is hermitian.

Returns
isherm [bool] Returns the new value of isherm property.

check_isunitary ()
Checks whether qobj is a unitary matrix

conj ()
Conjugate operator of quantum object.

copy ()
Create identical copy

cosm ()
Cosine of a quantum operator.

Operator must be square.

5.1.

Classes 215

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Returns
oper [qutip.Qob j] Matrix cosine of operator.
Raises

TypeError Quantum object is not square.

Notes

Uses the Q.expm() method.

dag ()
Adjoint operator of quantum object.

diag ()
Diagonal elements of quantum object.

Returns

diags [array] Returns array of real values if operators is Hermitian, otherwise
complex values are returned.

dnorm (B=None)
Calculates the diamond norm, or the diamond distance to another operator.

Parameters

B [qutip.Qobjor None] If B is not None, the diamond distance d(A, B) = dnorm(A
- B) between this operator and B is returned instead of the diamond norm.

Returns

d [float] Either the diamond norm of this operator, or the diamond distance from this
operator to B.

dual_chan ()
Dual channel of quantum object representing a completely positive map.

eigenenergies (sparse=False, sort="low’, eigvals=0, tol=0, maxiter=100000)
Eigenenergies of a quantum object.

Eigenenergies (eigenvalues) are defined for operators or superoperators only.
Parameters
sparse [bool] Use sparse Eigensolver
sort [str] Sort eigenvalues ‘low’ to high, or ‘high’ to low.
eigvals [int] Number of requested eigenvalues. Default is all eigenvalues.

tol [float] Tolerance used by sparse Eigensolver (O=machine precision). The sparse
solver may not converge if the tolerance is set too low.

maxiter [int] Maximum number of iterations performed by sparse solver (if used).
Returns

eigvals [array] Array of eigenvalues for operator.

216 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Notes
The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

eigenstates (sparse=False, sort="low’, eigvals=0, tol=0, maxiter=100000, phase_fix=None)
Eigenstates and eigenenergies.

Eigenstates and eigenenergies are defined for operators and superoperators only.
Parameters
sparse [bool] Use sparse Eigensolver
sort [str] Sort eigenvalues (and vectors) ‘low’ to high, or ‘high’ to low.
eigvals [int] Number of requested eigenvalues. Default is all eigenvalues.

tol [float] Tolerance used by sparse Eigensolver (O = machine precision). The sparse
solver may not converge if the tolerance is set too low.

maxiter [int] Maximum number of iterations performed by sparse solver (if used).

phase_fix [int, None] If not None, set the phase of each kets so that ket[phase_fix,0] is
real positive.

Returns
eigvals [array] Array of eigenvalues for operator.

eigvecs [array] Array of quantum operators representing the oprator eigenkets. Order of
eigenkets is determined by order of eigenvalues.

Notes
The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

eliminate states (states_inds, normalize=False)
Creates a new quantum object with states in state_inds eliminated.

Parameters
states_inds [list of integer] The states that should be removed.

normalize [True / False] Weather or not the new Qobj instance should be normalized
(default is False). For Qobjs that represents density matrices or state vectors normal-
ized should probably be set to True, but for Qobjs that represents operators in for
example an Hamiltonian, normalize should be False.

Returns

q [qutip.Qobj] A new instance of qutip. Qob j that contains only the states corre-
sponding to indices that are not in state_inds.

5.1.

Classes 217

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Notes

Experimental.

static evaluate (qobj_list, t, args)
Evaluate a time-dependent quantum object in list format. For example,

qobj_list = [HO, [H1, func_t]]
is evaluated to

Qobj(t) = HO + H1 * func_t(t, args)
and

qobj_list = [HO, [H1, ‘sin(w * t)’]]
is evaluated to

Qobj(t) = HO + H1 * sin(args[‘w’] * t)

Parameters

qobj_list [list] A nested list of Qobj instances and corresponding time-dependent coef-
ficients.

t [float] The time for which to evaluate the time-dependent Qobj instance.

args [dictionary] A dictionary with parameter values required to evaluate the time-
dependent Qobj intance.

Returns
output [gutip.Qobj] A Qobj instance that represents the value of qobj_list at time t.
expm (method='dense’)
Matrix exponential of quantum operator.
Input operator must be square.
Parameters

method [str {‘dense’, ‘sparse’ }] Use set method to use to calculate the matrix exponen-
tiation. The available choices includes ‘dense’ and ‘sparse’. Since the exponential of
a matrix is nearly always dense, method="dense’ is set as default.s

Returns

oper [qutip.Qob j] Exponentiated quantum operator.
Raises

TypeError Quantum operator is not square.

extract_states (states_inds, normalize=False)
Qobj with states in state_inds only.

Parameters
states_inds [list of integer] The states that should be kept.

normalize [True / False] Weather or not the new Qobj instance should be normalized
(default is False). For Qobjs that represents density matrices or state vectors normal-
ized should probably be set to True, but for Qobjs that represents operators in for
example an Hamiltonian, normalize should be False.

Returns

q [qutip.Qobj] A new instance of qutip.Qob jthat contains only the states corre-
sponding to the indices in state_inds.

218 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Notes

Experimental.

full (order='C', squeeze=False)
Dense array from quantum object.

Parameters
order [str {‘C’, ‘F’}] Return array in C (default) or Fortran ordering.
squeeze [bool {False, True}] Squeeze output array.

Returns
data [array] Array of complex data from quantum objects data attribute.

groundstate (sparse=False, tol=0, maxiter=100000, safe=True)
Ground state Eigenvalue and Eigenvector.

Defined for quantum operators or superoperators only.
Parameters
sparse [bool] Use sparse Eigensolver

tol [float] Tolerance used by sparse Eigensolver (O = machine precision). The sparse
solver may not converge if the tolerance is set too low.

maxiter [int] Maximum number of iterations performed by sparse solver (if used).
safe [bool (default=True)] Check for degenerate ground state

Returns
eigval [float] Eigenvalue for the ground state of quantum operator.

eigvec [qutip.Qobj] Eigenket for the ground state of quantum operator.

Notes
The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

inv (sparse=False)
Matrix inverse of a quantum operator

Operator must be square.
Returns
oper [qutip.Qob j] Matrix inverse of operator.
Raises
TypeError Quantum object is not square.

matrix_element (bra, ket)
Calculates a matrix element.

Gives the matrix element for the quantum object sandwiched between a bra and ket vector.
Parameters
bra [qutip.Qob j] Quantum object of type ‘bra’ or ‘ket’
ket [qutip.Oob j] Quantum object of type ‘ket’.
Returns

elem [complex] Complex valued matrix element.

5.1. Classes 219

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Notes

It is slightly more computationally efficient to use a ket vector for the ‘bra’ input.

norm (norm=None, sparse=False, tol=0, maxiter=100000)
Norm of a quantum object.

Default norm is L2-norm for kets and trace-norm for operators. Other ket and operator norms may be
specified using the norm and argument.

Parameters

norm [str] Which norm to use for ket/bra vectors: L2 ‘12’, max norm ‘max’, or for
operators: trace ‘tr’, Frobius ‘fro’, one ‘one’, or max ‘max’.

sparse [bool] Use sparse eigenvalue solver for trace norm. Other norms are not affected
by this parameter.

tol [float] Tolerance for sparse solver (if used) for trace norm. The sparse solver may
not converge if the tolerance is set too low.

maxiter [int] Maximum number of iterations performed by sparse solver (if used) for
trace norm.

Returns

norm [float] The requested norm of the operator or state quantum object.

Notes
The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

overlap (other)
Overlap between two state vectors or two operators.

Gives the overlap (inner product) between the current bra or ket Qobj and and another bra or ket Qobj.
It gives the Hilbert-Schmidt overlap when one of the Qobj is an operator/density matrix.

Parameters

other [gutip.Qobj] Quantum object for a state vector of type ‘ket’, ‘bra’ or density
matrix.

Returns
overlap [complex] Complex valued overlap.
Raises

TypeError Can only calculate overlap between a bra, ket and density matrix quantum
objects.

Notes
Since QuTiP mainly deals with ket vectors, the most efficient inner product call is the ket-ket version
that computes the product <selflother> with both vectors expressed as kets.

permute (order)
Permutes a composite quantum object.

Parameters
order [list/array] List specifying new tensor order.
Returns

P [qutip. Oob j] Permuted quantum object.

220 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

proj()
Form the projector from a given ket or bra vector.

Parameters

Q [gutip.Oobj] Input bra or ket vector
Returns

P [qutip. Qob j] Projection operator.

ptrace (sel, sparse=None)
Partial trace of the quantum object.

Parameters

sel [int/list] An int or 1ist of components to keep after partial trace. The order is
unimportant; no transposition will be done and the spaces will remain in the same
order in the output.

Returns

oper [qutip.Qobj] Quantum object representing partial trace with selected compo-
nents remaining.

Notes

This function is identical to the qut ip. gobj. pt race function that has been deprecated.

purity ()
Calculate purity of a quantum object.

Returns

state_purity [float] Returns the purity of a quantum object. For a pure state, the purity
is 1. For a mixed state of dimension d, 1/d<=purity<I.

sinm()
Sine of a quantum operator.

Operator must be square.
Returns
oper [qutip.Qob j] Matrix sine of operator.
Raises

TypeError Quantum object is not square.

Notes

Uses the Q.expm() method.

sqgrtm (sparse=False, tol=0, maxiter=100000)
Sqrt of a quantum operator.

Operator must be square.
Parameters
sparse [bool] Use sparse eigenvalue/vector solver.
tol [float] Tolerance used by sparse solver (0 = machine precision).
maxiter [int] Maximum number of iterations used by sparse solver.
Returns

oper [qutip.Qobj] Matrix square root of operator.

5.1. Classes 221

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Raises

TypeError Quantum object is not square.

Notes
The sparse eigensolver is much slower than the dense version. Use sparse only if memory requirements
demand it.

tidyup (atol=None)
Removes small elements from the quantum object.

Parameters

atol [float] Absolute tolerance used by tidyup. Default is set via qutip global settings
parameters.

Returns
oper [qutip.Qobj] Quantum object with small elements removed.

tr()
Trace of a quantum object.

Returns
trace [float] Returns the trace of the quantum object.

trans ()
Transposed operator.

Returns
oper [qutip.Qobj] Transpose of input operator.

transform (inpt, inverse=False, sparse=True)
Basis transform defined by input array.

Input array can be amat rix defining the transformation, or a 1 i st of kets that defines the new basis.
Parameters
inpt [array_like] Amatrix or 1ist of kets defining the transformation.
inverse [bool] Whether to return inverse transformation.
sparse [bool] Use sparse matrices when possible. Can be slower.
Returns

oper [qutip.Qobj] Operator in new basis.

Notes

This function is still in development.

trunc_neg (method='clip’)
Truncates negative eigenvalues and renormalizes.

Returns a new Qobj by removing the negative eigenvalues of this instance, then renormalizing to obtain
a valid density operator.

Parameters

method [str] Algorithm to use to remove negative eigenvalues. “clip” simply discards
negative eigenvalues, then renormalizes. “sgs” uses the SGS algorithm (doi:10/bb76)
to find the positive operator that is nearest in the Shatten 2-norm.

Returns

222 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

oper [qutip.Qobj] A valid density operator.

unit (inplace=False, norm=None, sparse=False, tol=0, maxiter=100000)
Operator or state normalized to unity.

Uses norm from Qobj.norm().
Parameters
inplace [bool] Do an in-place normalization
norm [str] Requested norm for states / operators.
sparse [bool] Use sparse eigensolver for trace norm. Does not affect other norms.
tol [float] Tolerance used by sparse eigensolver.
maxiter [int] Number of maximum iterations performed by sparse eigensolver.
Returns

oper [qutip.Qob j] Normalized quantum object if not in-place, else None.

5.1.2 QobjEvo

class QobjEvo (Q_object=[], args={}, copy=True, tlist=None, stateO=None, e_ops=[])
A class for representing time-dependent quantum objects, such as quantum operators and states.

Basic math operations are defined:
* +,—: QobjEvo, Qob j, scalars.
* *x: Qob 7, C number
e / : C number

This object is constructed by passing a list of Qob j instances, each of which may have an associated scalar
time dependence. The list is summed to produce the final result. In other words, if an instance of this class
is Q(t), then it is constructed from a set of constant Qob j {Qy } and time-dependent scalars f(t) by

Q) =Y fr(H)Qk
k

If a scalar fi(t) is not passed with a given Qob 7, then that term is assumed to be constant. The next section
contains more detail on the allowed forms of the constants, and gives several examples for how to build
instances of this class.

Time-dependence formats

There are three major formats for specifying a time-dependent scalar:
* Python function
* string
e array

For function format, the function signature must be £ (t: float, args: dict) -> complex,
for example

def fl_t(t, args):
return np.exp(-1j » t * args["wl"])

def f2_t(t, args):
return np.cos(t x* args["w2"])

H = QobjEvo([HO, [H1, f1_t], [H2, f2_t]], args={"wl":1., "w2":2.})

5.1. Classes 223

QuTiP: Quantum Toolbox in Python, Release 4.7.0

For string-based coeffients, the string must be a compilable python code resulting in a complex. The fol-
lowing symbols are defined:

pi exp log loglo
erf zerf norm proj
real imag conj abs arg
sin sinh asin asinh
cos cosh acos acosh
tan tanh atan atanh
numpy as np
scipy.special as spe

A couple more simple examples:

H = QobjEvo ([HO, [H1l, 'exp(-1lj*wlxt)'], [H2, 'cos(w2xt)']l],
args={"wl":1.,"w2":2.})

For numpy array format, the array must be an 1d of dtype np.float64 or np.complex128. A list of
times (np . £ loat 64) at which the coeffients must be given as t 11 st. The coeffients array must have the
same length as the tlist. The times of the tlist do not need to be equidistant, but must be sorted. By default, a
cubic spline interpolation will be used for the coefficient at time t. If the coefficients are to be treated as step
functions, use the arguments args = {"_step_func_coeff": True}. Examples of array-format
usage are:

tlist = np.logspace(-5,0,100)
H = QobjEvo([HO, [Hl, np.exp(-1j*xtlist)], [H2, np.cos(2.xtlist)]],
tlist=tlist)

Mixing time formats is allowed. It is not possible to create a single Qob jEvo that contains different t 1ist
values, however.

Passing arguments

args is a dict of (name: object). The name must be a valid Python identifier string, and in general the
object can be any type that is supported by the code to be compiled in the string.

There are some “magic” names that can be specified, whose objects will be overwritten when used within
sesolve, mesolve and mcsolve. This allows access to the solvers’ internal states, and they are updated
at every call. The initial values of these dictionary elements is unimportant. The magic names available are:

e "state": the current state as a Qob j
e "state_vec": the current state as a column-stacked 1D np.ndarray
e "state_mat": the current state as a 2D np.ndarray

* "expect_op_<n>": the current expectation value of the element e_ops [n], which is an argument
to the solvers. Replace <n> with an integer literal, e.g. "expect_op_0". This will be either real-
or complex-valued, depending on whether the state and operator are both Hermitian or not.

* "collapse": (mcsolve only) a list of the collapses that have occurred during the evolution. Each
element of the list is a 2-tuple (time: float, which: int), where time is the time this
collapse happened, and which is an integer indexing the c_ops argument to mcsolve.

Parameters

Q_object [list, Oob jor Qob jEvo] The time-dependent description of the quantum object.
This is of the same format as the first parameter to the general ODE solvers; in general,
itisalistof [Qobj, time_dependence] pairs that are summed to make the whole
object. The time_dependence can be any of the formats discussed in the previous
section. If a particular term has no time-dependence, then you should just give the Qob j
instead of the 2-element list.

args [dict, optional] Mapping of {str: object}, discussed in greater detail above.
The strings can be any valid Python identifier, and the objects are of the consumable

224

Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

types. See the previous section for details on the “magic” names used to access solver
internals.

tlist [array_like, optional] List of the times any numpy-array coefficients describe. This is
used only in at least one of the time dependences in Q_object is given in Numpy-
array format. The times must be sorted, but need not be equidistant. Values inbetween
will be interpolated.

Attributes
cte [Oob j] Constant part of the QobjEvo.

ops [list of EvoElement] Internal representation of the time-dependence structure of the
elements.

args [dict] The current value of the args dictionary passed into the constructor.

dynamics_args [list] Names of the dynamic arguments that the solvers will generate. These
are the magic names that were found in the args parameter.

tlist [array_like] List of times at which the numpy-array coefficients are applied.

compiled [str] A string representing the properties of the low-level Cython class backing
this object (may be empty).

compiled_gobjevo [CQob7jCte or CQobjEvoTd] Cython version of the QobjEvo.
coeff_get [callable] Object called to obtain a list of all the coefficients at a particular time.
coeff_files [list] Runtime created files to delete with the instance.

dummy_cte [bool] Is self.cte an empty Qobj

const [bool] Indicates if quantum object is constant

CLINNTS CLRNY3 CLINY3 CERNY3 9

type [{“cte”, “string”, “func”, “array”, “spline”, “mixed_callable”, “mixed_compilable”}]
Information about the type of coefficients used in the entire object.

num_obj [int] Number of Oob j in the QobjEvo.

use_cython [bool] Flag to compile string to Cython or Python

safePickle [bool] Flag to not share pointers between thread.
apply (function, *args, **kw_args)

Apply the linear function function to every Qob 7 included in this time-dependent object, and
return a new Qob jEvo with the result.

Any additional arguments or keyword arguments will be appended to every function call.

apply_decorator (function, *args, str_mod=None, inplace_np=False, **kw_args)
Apply the given function to every time-dependent coefficient in the quantum object, and return a new
object with the result.

Any additional arguments and keyword arguments will be appended to the function calls.
Parameters

function [callable] (time_dependence, =*args, *xkwargs) ->
time_dependence. Called on each time-dependent coefficient to produce a
new coefficient. The additional arguments and keyword arguments are the ones given
to this function.

str_mod [list] A 2-element list of strings, that will additionally wrap any string time-
dependences. An existing time-dependence string x will become str_mod[0] +
x + str_mod[1l].

inplace_np [bool, default False] Whether this function should modify Numpy arrays
inplace, or be used like a regular decorator. Some decorators create incorrect arrays

5.1.

Classes 225

QuTiP: Quantum Toolbox in Python, Release 4.7.0

as some transformations £' (t) = £ (g(t)) create a mismatch between the array
and the associated time list.

arguments (new_args)
Update the scoped variables that were passed as args to new values.

compile (code=False, matched=False, dense=False, omp=0)
Create an associated Cython object for faster usage. This function is called automatically by the
solvers.

Parameters

code [bool, default False] Return the code string generated by compilation of any
strings.

matched [bool, default False] If True, the underlying sparse matrices used to represent
each element of the type will have their structures unified. This may include adding
explicit zeros to sparse matrices, but can be faster in some cases due to not having to
deal with repeated structural mismatches.

dense [bool, default False] Whether to swap to using dense matrices to back the data.

omp [int, optional] The number of OpenMP threads to use when doing matrix multipli-
cations, if QuTiP was compiled with OpenMP.

Returns

compiled_str [str] (Only if code was set to True). The code-generated string of com-
piled calling code.

compress ()
Merge together elements that share the same time-dependence, to reduce the number of matrix multi-
plications and additions that need to be done to evaluate this object.

Modifies the object inplace.

conj ()
Return the matrix elementwise conjugation.

copy ()
Return a copy of this object.

dag ()
Return the matrix conjugate-transpose (dagger).

expect (t, state, herm=False)
Calculate the expectation value of this operator on the given (time-independent) state at a particular
time.

This is more efficient than expect (QobjEvo (t), state).
Parameters
t [float] The time to evaluate this operator at.
state [Qobj or np.ndarray] The state to take the expectation value around.

herm [bool, default False] Whether this operator and the state are both Hermitian. If
True, only the real part of the result will be returned.

See also:
expect General-purpose expectation values.

mul_ mat (7, mat)
Multiply this object evaluated at time ¢ by a matrix (from the right).
Parameters

t [float] The time to evaluate this object at.

226 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

mat [Qobj or np.ndarray] The matrix that is multiplied by this object.

Returns

mat: Qobj or np.ndarray The matrix result in the same type as the input.

mul_ vec (f, vec)

Multiply this object evaluated at time ¢ by a vector.

Parameters

t [float] The time to evaluate this object at.

vec [Qobj or np.ndarray] The state-vector to multiply this object by.

Returns

vec: Qobj or np.ndarray The vector result in the same type as the input.

permute (order)

Permute the tensor structure of the underlying matrices into a new format.

See also:

Qobj.permute the same operation on constant quantum objects.

tidyup (atol=None)

Removes small elements from this quantum object inplace.

to_list ()

Return this operator in the list-like form used to initialised it, like can be passed to mesolve.

trans ()

Return the matrix transpose.

5.1.3 eseries

class eseries (q=None, s=array([], dtype=float64))
Class representation of an exponential-series expansion of time-dependent quantum objects.

Deprecated since version 4.6.0: eseries will be removed in QuTiP 5. Please use Oob jEvo for general

time-dependence.

Attributes

ampl [ndarray] Array of amplitudes for exponential series.

rates [ndarray] Array of rates for exponential series.

dims [list] Dimensions of exponential series components

shape [list] Shape corresponding to exponential series components

Methods

value(tlist)

Evaluate an exponential series at the times listed in tlist

spec(wlist)

Evaluate the spectrum of an exponential series at frequencies in wlist.

tidyup()

Returns a tidier version of the exponential series

spec (wlist)

Evaluate the spectrum of an exponential series at frequencies in wlist.

Parameters

wlist [array_like] Array/list of frequenies.

5.1. Classes

227

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Returns
val_list [ndarray] Values of exponential series at frequencies in wlist.

tidyup (*args)
Returns a tidier version of exponential series.

value (tlist)
Evaluates an exponential series at the times listed in t 1ist.

Parameters
tlist [ndarray] Times at which to evaluate exponential series.
Returns

val_list [ndarray] Values of exponential at times in t 1ist.

5.1.4 Bloch sphere

class Bloch (fig=None, axes=None, view=None, figsize=None, background=False)
Class for plotting data on the Bloch sphere. Valid data can be either points, vectors, or Qobj objects.

Attributes
axes [matplotlib.axes.Axes] User supplied Matplotlib axes for Bloch sphere animation.

fig [matplotlib.figure.Figure] User supplied Matplotlib Figure instance for plotting Bloch
sphere.

font_color [str, default ‘black’] Color of font used for Bloch sphere labels.
font_size [int, default 20] Size of font used for Bloch sphere labels.
frame_alpha [float, default 0.1] Sets transparency of Bloch sphere frame.
frame_color [str, default ‘gray’] Color of sphere wireframe.
frame_width [int, default 1] Width of wireframe.

point_color ([list, default [“b”, “r”, “g”, “#CC66007]] List of colors for Bloch sphere point
markers to cycle through, i.e. by default, points 0 and 4 will both be blue (‘b*).

point_marker [list, default [“0”, “s”, “d”, “~”]] List of point marker shapes to cycle
through.

point_size [list, default [25, 32, 35, 45]] List of point marker sizes. Note, not all point
markers look the same size when plotted!

sphere_alpha [float, default 0.2] Transparency of Bloch sphere itself.
sphere_color [str, default ‘4FFDDDD’] Color of Bloch sphere.

figsize [list, default [7, 7]] Figure size of Bloch sphere plot. Best to have both numbers the
same; otherwise you will have a Bloch sphere that looks like a football.

vector_color [list, [“g”, “#CC6600”, “b”, “r’’]] List of vector colors to cycle through.
vector_width [int, default 5] Width of displayed vectors.

vector_style [str, default ‘-[>’] Vector arrowhead style (from matplotlib’s arrow style).
vector_mutation [int, default 20] Width of vectors arrowhead.

view [list, default [-60, 30]] Azimuthal and Elevation viewing angles.

xlabel [list, default [“x”, “’]] List of strings corresponding to +x and -x axes labels,
respectively.

xlpos [list, default [1.1, -1.1]] Positions of +x and -x labels respectively.

228 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

ylabel [list, default [“y”, “”’]] List of strings corresponding to +y and -y axes labels,
respectively.

ylpos [list, default [1.2, -1.2]] Positions of +y and -y labels respectively.

zlabel [list, default [‘$\leftlO\right>$", ‘$\lefti1\right>$"]] List of strings corresponding to
+z and -z axes labels, respectively.

zlpos [list, default [1.2, -1.2]] Positions of +z and -z labels respectively.

add_annotation (state_or_vector, text, **kwargs)
Add a text or LaTeX annotation to Bloch sphere, parametrized by a qubit state or a vector.

Parameters

state_or_vector [Qobj/array/list/tuple] Position for the annotaion. Qobj of a qubit or a
vector of 3 elements.

text [str] Annotation text. You can use LaTeX, but remember to use raw string e.g.
r’$langle x rangle$” or escape backslashes e.g. “$\langle x \rangle$”.

kwargs : Options as for mplot3d.axes3d.text, including: fontsize, color, horizonta-
lalignment, verticalalignment.

add_arc (start, end, fmt='b', steps=None, **kwargs)
Adds an arc between two points on a sphere. The arc is set to be blue solid curve by default.

The start and end points must be on the same sphere (i.e. have the same radius) but need not be on the
unit sphere.

Parameters

start [Qobj or array-like] Array with cartesian coordinates of the first point, or a state
vector or density matrix that can be mapped to a point on or within the Bloch sphere.

end [Qobj or array-like] Array with cartesian coordinates of the second point, or a state
vector or density matrix that can be mapped to a point on or within the Bloch sphere.

fmt [str, default: “b”’] A matplotlib format string for rendering the arc.

steps [int, default: None] The number of segments to use when rendering the arc. The
default uses 100 steps times the distance between the start and end points, with a
minimum of 2 steps.

**kwargs [dict] Additional parameters to pass to the matplotlib .plot function when
rendering this arc.

add_line (start, end, fmt="k', **kwargs)
Adds a line segment connecting two points on the bloch sphere.

The line segment is set to be a black solid line by default.
Parameters

start [Qobj or array-like] Array with cartesian coordinates of the first point, or a state
vector or density matrix that can be mapped to a point on or within the Bloch sphere.

end [Qobj or array-like] Array with cartesian coordinates of the second point, or a state
vector or density matrix that can be mapped to a point on or within the Bloch sphere.

fmt [str, default: “k”’] A matplotlib format string for rendering the line.

**kwargs [dict] Additional parameters to pass to the matplotlib .plot function when
rendering this line.

add_points (points, meth="s', alpha=1.0)
Add a list of data points to bloch sphere.

Parameters

points [array_like] Collection of data points.

5.1.

Classes 229

QuTiP: Quantum Toolbox in Python, Release 4.7.0

s

meth [{‘s’, ‘m’, ‘I"}] Type of points to plot, use ‘m’ for multicolored, ‘I’ for points
connected with a line.

alpha [float, default=1.] Transparency value for the vectors. Values between 0 and 1.

.. note:: When using meth=1 in QuTiP 4.6, the line transparency defaulted to 0.75
and there was no way to alter it. When the alpha parameter was added in QuTiP 4.7,
the default became alpha=1. 0 for values of meth.

add_states (state, kind="vector', alpha=1.0)
Add a state vector Qobj to Bloch sphere.

Parameters
state [Qobj] Input state vector.
kind [{‘vector’, ‘point’}] Type of object to plot.
alpha [float, default=1.] Transparency value for the vectors. Values between 0 and 1.

add_vectors (vectors, alpha=1.0)
Add a list of vectors to Bloch sphere.

Parameters
vectors [array_like] Array with vectors of unit length or smaller.
alpha [float, default=1.] Transparency value for the vectors. Values between 0 and 1.

clear ()
Resets Bloch sphere data sets to empty.

make_sphere ()
Plots Bloch sphere and data sets.

render ()
Render the Bloch sphere and its data sets in on given figure and axes.

save (name=None, format="'png', dirc=None, dpin=None)
Saves Bloch sphere to file of type format in directory dirc.

Parameters

name [str] Name of saved image. Must include path and format as well. i.e.
‘/Users/Paul/Desktop/bloch.png’ This overrides the ‘format’ and ‘dirc’ arguments.

format [str] Format of output image.
dirc [str] Directory for output images. Defaults to current working directory.
dpin [int] Resolution in dots per inch.
Returns
File containing plot of Bloch sphere.

set_label_ convention (convention)
Set x, y and z labels according to one of conventions.

Parameters
convention [string] One of the following:
* “original”
* “xyz”
* “sx sy sz”
e “01”
* “polarization jones”

* “polarization jones letters” see also: https://en.wikipedia.org/wiki/Jones_calculus

230 Chapter 5. API documentation

https://en.wikipedia.org/wiki/Jones_calculus

QuTiP: Quantum Toolbox in Python, Release 4.7.0

* “polarization stokes” see also: https://en.wikipedia.org/wiki/Stokes_parameters

show ()
Display Bloch sphere and corresponding data sets.

Notes

When using inline plotting in Jupyter notebooks, any figure created in a notebook cell is displayed
after the cell executes. Thus if you create a figure yourself and use it create a Bloch sphere with
b = Bloch(..., fig=fig) and then call b.show () in the same cell, then the figure will be
displayed twice. If you do create your own figure, the simplest solution to this is to not call . show ()
in the cell you create the figure in.

vector_mutation
Sets the width of the vectors arrowhead

vector_style
Style of Bloch vectors, default = *-I>’ (or ‘simple’)

vector_width
Width of Bloch vectors, default = 5

5.1.5 Distributions

class QFunc (xvec, yvec, g: float = 1.4142135623730951, memory: float = 1024)
Class-based method of calculating the Husimi-Q function of many different quantum states at fixed phase-
space points 0.5+«g* (xvec + ixyvec). This class has slightly higher first-usage costs than gfunc,
but subsequent operations will be several times faster. However, it can require quite a lot of memory. Call
the created object as a function to retrieve the Husimi-Q function.

Parameters
xvec, yvec [array_like] x- and y-coordinates at which to calculate the Husimi-Q function.

g [float, default sqrt(2)] Scaling factor fora = 0.5 » g * (x + 1iy).The valueof g
is related to the value of hbar in the commutation relation [z, y] = ih via h = 2/g?2, so
the default corresponds to 7 = 1.

memory [real, default 1024] Size in MB that may be used internally as workspace. This
class will raise MemoryError if subsequently passed a state of sufficiently large
dimension that this bound would be exceeded. In those cases, use grfunc with
precompute_memory=None instead to force using the slower, more memory-
efficient algorithm.

See also:

gfunc a single function version, which will involve computing several quantities multiple times in order
to use less memory.

Examples

Initialise the class for a square set of coordinates, with some states we want to investigate.

>>> xvec = np.linspace (-2, 2, 101)
>>> states = [qutip.rand_dm(10) for _ in [None]~*10]
>>> gfunc = qutip.QFunc(xvec, xvec)

Now we can calculate the Husimi-Q function over each of the states more efficiently with:

>>> husimig = np.array([gfunc(state) for state in states])

5.1. Classes 231

https://en.wikipedia.org/wiki/Stokes_parameters

QuTiP: Quantum Toolbox in Python, Release 4.7.0

5.1.6 Cubic Spline

class Cubic_Spline (a, b, y, alpha=0, beta=0)
Calculates coefficients for a cubic spline interpolation of a given data set.

This function assumes that the data is sampled uniformly over a given interval.
Parameters
a [float] Lower bound of the interval.
b [float] Upper bound of the interval.
y [ndarray] Function values at interval points.
alpha [float] Second-order derivative at a. Default is 0.

beta [float] Second-order derivative at b. Default is 0.

Notes
This object can be called like a normal function with a single or array of input points at which to evaluate
the interplating function.

Habermann & Kindermann, “Multidimensional Spline Interpolation: Theory and Applications”, Comput
Econ 30, 153 (2007).

Attributes
a [float] Lower bound of the interval.
b [float] Upper bound of the interval.

coeffs [ndarray] Array of coeffcients defining cubic spline.

5.1.7 Non-Markovian Solvers

class HEOMSolver (H_sys, bath, max_depth, options=None, progress_bar=None)
HEOM solver that supports multiple baths.

The baths must be all either bosonic or fermionic baths.
Parameters

H_sys [QObj, QobjEvo or a list] The system Hamiltonian or Liouvillian specified as either
aQobj,aQobjEvo, or a list of elements that may be converted to a Ob jEvo.

bath [Bath or list of Bath] A Bath containing the exponents of the expansion of the bath
correlation funcion and their associated coefficients and coupling operators, or a list of
baths.

If multiple baths are given, they must all be either fermionic or bosonic baths.

max_depth [int] The maximum depth of the heirarchy (i.e. the maximum number of bath
exponent “excitations” to retain).

options [qutip.solver.Options] Generic solver options. If set to None the default
options will be used.

progress_bar [None, True or BaseProgressBar] Optional instance of BaseProgress-
Bar, or a subclass thereof, for showing the progress of the solver. If True, an instance of
TextProgressBar is used instead.

Attributes

ados [HierarchyADOs] The description of the hierarchy constructed from the given bath
and maximum depth.

232 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

run (rho0, tlist, e_ops=None, ado_init=False, ado_return=False)
Solve for the time evolution of the system.

Parameters

rho0 [Qobj or Hierarchy ADOsState or numpy.array] Initial state (Qob j density matrix)
of the system if ado_init isFalse.

If ado_init is True, then rhoO should be an instance of
HierarchyADOsState or a numpy array giving the initial state of all ADOs.
Usually the state of the ADOs would be determine from a previous call to .
run(..., ado_return=True). For example, result = solver.run/ .

., ado_return=True) could be followed by solver.run (result.
ado_states[-1], tlist, ado_init=True).

If a numpy array is passed its shape must be (number_of_ados, n, n) where
(n, n) is the system shape (i.e. shape of the system density matrix) and the ADOs
must be in the same order as in . ados . labels.

tlist [list] An ordered list of times at which to return the value of the state.

e_ops [Qobj / callable / list / dict / None, optional] A list or dictionary of operators as
Qobj and/or callable functions (they can be mixed) or a single operator or callable
function. For an operator op, the result will be computed using (state * op) .
tr () and the state at each time t. For callable functions, £, the result is computed
using £ (t, ado_state). The values are stored in expect on (see the return
section below).

ado_init: bool, default False Indicates if initial condition is just the system state, or a
numpy array including all ADOs.

ado_return: bool, default True Whether to also return as output the full state of all
ADOs.

Returns

qutip.solver.Result The results of the simulation run, with the following at-
tributes:

e times: the times t (i.e. the t1ist).

* states: the system state at each time t (only available if e_ops was None or if
the solver option store_states was set to True).

* ado_states: the full ADO state at each time (only available if ado_return
was set to True). Each element is an instance of HierarchyADOsState. . The
state of a particular ADO may be extracted from result.ado_states[i] by
calling extract.

* expect: the value of each e_ops at time t (only available if e_ops were given).
If e_ops was passed as a dictionary, then expect will be a dictionary with the
same keys as e_ops and values giving the list of outcomes for the corresponding
key.

steady_state (use_mkl=True, mki_max_iter_refine=100, mkl_weighted_matching=False)
Compute the steady state of the system.

Parameters

use_mkl [bool, default=False] Whether to use mkl or not. If mkl is not installed or if
this is false, use the scipy splu solver instead.

mkl_max_iter_refine [int] Specifies the the maximum number of iterative refinement
steps that the MKL PARDISO solver performs.

For a complete description, see iparm(8) in http://cali2.unilim.fr/intel-xe/mkl/
mklman/GUID-264E311E-ACED-4D56-AC31-E9D3B11D1CBFE.htm.

5.1. Classes 233

http://cali2.unilim.fr/intel-xe/mkl/mklman/GUID-264E311E-ACED-4D56-AC31-E9D3B11D1CBF.htm
http://cali2.unilim.fr/intel-xe/mkl/mklman/GUID-264E311E-ACED-4D56-AC31-E9D3B11D1CBF.htm

QuTiP: Quantum Toolbox in Python, Release 4.7.0

mkl_weighted_matching [bool] MKL PARDISO can use a maximum weighted match-
ing algorithm to permute large elements close the diagonal. This strategy adds an
additional level of reliability to the factorization methods.

For a complete description, see iparm(13) in http://cali2.unilim.fr/intel-xe/mkl/
mklman/GUID-264E311E- ACED-4D56-AC31-E9D3B11D1CBFEhtm.

Returns
steady_state [Qobj] The steady state density matrix of the system.

steady_ados [HierarchyADOsState] The steady state of the full ADO hierarchy.
A particular ADO may be extracted from the full state by calling ext ract.

class HSolverDL (H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, cut_freq,

bnd_cut_approx=False, options=None, progress_bar=None, combine=True)
A helper class for creating an HEOMSo1ver that is backwards compatible with the HSolverDL provided

in qutip.nonmarkov.heom in QuTiP 4.6 and below.

See HEOMSolver and DrudeLorentzBath for more descriptions of the underlying solver and bath
construction.

An exact copy of the QuTiP 4.6 HSolverDL is provided in qutip.nonmarkov.dlheom_solver for
cases where the functionality of the older solver is required. The older solver will be completely removed
in QuTiP 5.

Note: Unlike the version of HSolverDL in QuTiP 4.6, this solver supports supplying a time-dependent
or Liouvillian H_sys.

Note: For compatibility with HSolverDL in QuTiP 4.6 and below, the parameter N_exp specifying
the number of exponents to keep in the expansion of the bath correlation function is one more than the
equivalent Nk used in the DrudeLorentzBath. le., Nk = N_exp - 1. The Nk parameter in the
DrudeLorent zBath does not count the zeroeth exponent in order to better match common usage in the
literature.

Note: The stats and renorm arguments accepted in QuTiP 4.6 and below are no longer supported.

Parameters

H_sys [Qobj or QobjEvo or list] The system Hamiltonian or Liouvillian. See
HEOMSolver for a complete description.

coup_op [Qobj] Operator describing the coupling between system and bath. See parameter
Q in BosonicBath for a complete description.

coup_strength [float] Coupling strength. Referred to as 1am in DrudeLorentzBath.
temperature [float] Bath temperature. Referred to as T in DrudeLorentzBath.

N_cut [int] The maximum depth of the hierarchy. See max_depth in HEOMSolver for
a full description.

N_exp [int] Number of exponential terms used to approximate the bath correlation func-
tions. The equivalent Nk in DrudeLorentzBath is one less than N_exp (see note
above).

cut_freq [float] Bath spectral density cutoff frequency. Referred to as gamma in
DrudeLorentzBath.

234

Chapter 5. API documentation

http://cali2.unilim.fr/intel-xe/mkl/mklman/GUID-264E311E-ACED-4D56-AC31-E9D3B11D1CBF.htm
http://cali2.unilim.fr/intel-xe/mkl/mklman/GUID-264E311E-ACED-4D56-AC31-E9D3B11D1CBF.htm

QuTiP: Quantum Toolbox in Python, Release 4.7.0

bnd_cut_approx [bool] Use boundary cut off approximation. If true, the Matsubara ter-
minator is added to the system Liouvillian (and H_sys is promoted to a Liouvillian if it
was a Hamiltonian).

progress_bar [None, True or BaseProgressBar] Optional instance of BaseProgress-
Bar, or a subclass thereof, for showing the progress of the solver. If True, an instance of
TextProgressBar is used instead.

options [qutip.solver.Options] Generic solver options. If set to None the default
options will be used.

progress_bar [None, True or BaseProgressBar] Optional instance of BaseProgress-
Bar, or a subclass thereof, for showing the progress of the solver. If True, an instance of
TextProgressBar is used instead.

combine [bool, default True] Whether to combine exponents with the same frequency (and

coupling operator). See BosonicBath.combine for details.

class BathExponent (type, dim, Q, ck, vk, ck2=None, sigma_bar_k_offset=None, tag=None)
Represents a single exponent (naively, an excitation mode) within the decomposition of the correlation
functions of a bath.

Parameters

type [{“R”, “I”, “RI”, “+”, “-“} or BathExponent.ExponentType] The type of bath expo-
nent.

“R” and “I” are bosonic bath exponents that appear in the real and imaginary parts of
the correlation expansion.

“RI” is combined bosonic bath exponent that appears in both the real and imaginary
parts of the correlation expansion. The combined exponent has a single vk. The ck is
the coefficient in the real expansion and ck?2 is the coefficient in the imaginary expan-
sion.

“+” and “-” are fermionic bath exponents. These fermionic bath exponents must specify
sigma_bar_k_offset which specifies the amount to add to k (the exponent index
within the bath of this exponent) to determine the k of the corresponding exponent with
the opposite sign (i.e. “-” or “+7).

dim [int or None] The dimension (i.e. maximum number of excitations for this exponent).
Usually 2 for fermionic exponents or None (i.e. unlimited) for bosonic exponents.

Q [Qobj] The coupling operator for this excitation mode.
vk [complex] The frequency of the exponent of the excitation term.
ck [complex] The coefficient of the excitation term.

ck2 [optional, complex] For exponents of type “RI” this is the coefficient of the term in the
imaginary expansion (and ck is the coefficient in the real expansion).

sigma_bar_k_offset [optional, int] For exponents of type “+” this gives the offset (within
the list of exponents within the bath) of the corresponding ““-”” bath exponent. For expo-
nents of type “-” it gives the offset of the corresponding “+” exponent.

tag [optional, str, tuple or any other object] A label for the exponent (often the name of the
bath). It defaults to None.

Attributes
All of the parameters are available as attributes.

types
alias of qutip.nonmarkov.bofin_baths.ExponentType

class Bath (exponents)
Represents a list of bath expansion exponents.

5.1. Classes 235

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Parameters

exponents [list of BathExponent] The exponents of the correlation function describing the
bath.

Attributes
All of the parameters are available as attributes.

class BosonicBath (Q, ck_real, vk_real, ck_imag, vk_imag, combine=True, tag=None)
A helper class for constructing a bosonic bath from the expansion coefficients and frequencies for the real
and imaginary parts of the bath correlation function.

If the correlation functions C (t) is split into real and imaginary parts:

C(t) = C_real(t) + 1 » C_imag(t)

then:

C_real(t) = sum(ck_real » exp(- vk_real x t))
C_imag(t) = sum(ck_imag * exp (- vk_imag » t))

Defines the coefficients ck and the frequencies vk.

Note that the ck and vk may be complex, even through C_real (t) and C_imag (t) (i.e. the sum) is
real.

Parameters
Q [Qobj] The coupling operator for the bath.

ck_real [list of complex] The coefficients of the expansion terms for the real part of the
correlation function. The corresponding frequencies are passed as vk_real.

vk_real [list of complex] The frequencies (exponents) of the expansion terms for the real
part of the correlation function. The corresponding ceofficients are passed as ck_real.

ck_imag [list of complex] The coefficients of the expansion terms in the imaginary part of
the correlation function. The corresponding frequencies are passed as vk_imag.

vk_imag [list of complex] The frequencies (exponents) of the expansion terms for the imag-
inary part of the correlation function. The corresponding ceofficients are passed as
ck_imag.

combine [bool, default True] Whether to combine exponents with the same frequency (and
coupling operator). See combine for details.

tag [optional, str, tuple or any other object] A label for the bath exponents (for example,
the name of the bath). It defaults to None but can be set to help identify which bath an
exponent is from.

classmethod combine (exponents, rtol=1e-05, atol=1e-07)
Group bosonic exponents with the same frequency and return a single exponent for each frequency
present.

Exponents with the same frequency are only combined if they share the same coupling operator . Q.

Note that combined exponents take their tag from the first exponent in the group being combined (i.e.
the one that occurs first in the given exponents list).

Parameters
exponents [list of BathExponent] The list of exponents to combine.

rtol [float, default 1e-5] The relative tolerance to use to when comparing frequencies
and coupling operators.

atol [float, default 1e-7] The absolute tolerance to use to when comparing frequencies
and coupling operators.

236 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Returns
list of BathExponent The new reduced list of exponents.

class DrudelLorentzBath (Q, lam, gamma, T, Nk, combine=True, tag=None)
A helper class for constructing a Drude-Lorentz bosonic bath from the bath parameters (see parameters
below).

Parameters
Q [Qobj] Operator describing the coupling between system and bath.
lam [float] Coupling strength.
gamma [float] Bath spectral density cutoff frequency.
T [float] Bath temperature.
Nk [int] Number of exponential terms used to approximate the bath correlation functions.

combine [bool, default True] Whether to combine exponents with the same frequency (and
coupling operator). See BosonicBath.combine for details.

tag [optional, str, tuple or any other object] A label for the bath exponents (for example,
the name of the bath). It defaults to None but can be set to help identify which bath an
exponent is from.

terminator ()
Return the Matsubara terminator for the bath and the calculated approximation discrepancy.

Returns

delta: float The approximation discrepancy. That is, the difference between the true
correlation function of the Drude-Lorentz bath and the sum of the Nk exponential
terms is approximately 2 x* delta = dirac(t), where dirac (t) denotes the
Dirac delta function.

terminator [Qobj] The Matsubara terminator — i.e. a liouvillian term represent-
ing the contribution to the system-bath dynamics of all exponential expansion
terms beyond Nk. It should be used by adding it to the system liouvillian (i.e.
liouvillian (H_sys)).

class DrudelorentzPadeBath (Q, lam, gamma, T, Nk, combine=True, tag=None)
A helper class for constructing a Padé expansion for a Drude-Lorentz bosonic bath from the bath parameters
(see parameters below).

A Padé approximant is a sum-over-poles expansion (see https://en.wikipedia.org/wiki/Pad%C3%A9_
approximant).

The application of the Padé method to spectrum decompoisitions is described in “Padé spectrum decom-
positions of quantum distribution functions and optimal hierarchical equations of motion construction for
quantum open systems” [1].

The implementation here follows the approach in the paper.
[1]J. Chem. Phys. 134, 244106 (2011); https://doi.org/10.1063/1.3602466
This is an alternative to the DrudeLorent zBath which constructs a simpler exponential expansion.
Parameters
Q [Qobj] Operator describing the coupling between system and bath.
lam ([float] Coupling strength.
gamma [float] Bath spectral density cutoff frequency.
T [float] Bath temperature.

Nk [int] Number of Padé exponentials terms used to approximate the bath correlation func-
tions.

5.1. Classes 237

https://en.wikipedia.org/wiki/Pad%C3%A9_approximant
https://en.wikipedia.org/wiki/Pad%C3%A9_approximant
https://doi.org/10.1063/1.3602466

QuTiP: Quantum Toolbox in Python, Release 4.7.0

combine [bool, default True] Whether to combine exponents with the same frequency (and
coupling operator). See BosonicBath.combine for details.

tag [optional, str, tuple or any other object] A label for the bath exponents (for example,
the name of the bath). It defaults to None but can be set to help identify which bath an
exponent is from.

terminator ()
Return the Padé terminator for the bath and the calculated approximation discrepancy.

Returns

delta: float The approximation discrepancy. That is, the difference between the true
correlation function of the Drude-Lorentz bath and the sum of the Nk exponential
terms is approximately 2 » delta * dirac (t), where dirac (t) denotes the
Dirac delta function.

terminator [Qobj] The Padé terminator —i.e. a liouvillian term representing the contri-
bution to the system-bath dynamics of all exponential expansion terms beyond Nk. It
should be used by adding it to the system liouvillian (i.e. Liouvillian (H_sys)).

class UnderDampedBath (Q, lam, gamma, w0, T, Nk, combine=True, tag=None)
A helper class for constructing an under-damped bosonic bath from the bath parameters (see parameters
below).

Parameters
Q [Qobj] Operator describing the coupling between system and bath.
lam [float] Coupling strength.
gamma [float] Bath spectral density cutoff frequency.
w0 [float] Bath spectral density resonance frequency.
T [float] Bath temperature.
Nk [int] Number of exponential terms used to approximate the bath correlation functions.

combine [bool, default True] Whether to combine exponents with the same frequency (and
coupling operator). See BosonicBath.combine for details.

tag [optional, str, tuple or any other object] A label for the bath exponents (for example,
the name of the bath). It defaults to None but can be set to help identify which bath an
exponent is from.

class FermionicBath (Q, ck_plus, vk_plus, ck_minus, vk_minus, tag=None)
A helper class for constructing a fermionic bath from the expansion coefficients and frequencies for the +
and — modes of the bath correlation function.

There must be the same number of + and — modes and their coefficients must be specified in the same order
so that ck_plus[i], vk_plus[i] are the plus coefficient and frequency corresponding to the minus
mode ck_minus[i], vk_minus[i].

In the fermionic case the order in which excitations are created or destroyed is important, resulting in two
different correlation functions labelled C_plus (t) and C_plus (t):

C_plus(t) = sum(ck_plus * exp (- vk_plus = t))
C_minus (t) = sum(ck_minus % exp (- vk_minus * t))

where the expansions above define the coeffiients ck and the frequencies vk.
Parameters
Q [Qobj] The coupling operator for the bath.

ck_plus [list of complex] The coefficients of the expansion terms for the + part of the
correlation function. The corresponding frequencies are passed as vk_plus.

238 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

vk_plus [list of complex] The frequencies (exponents) of the expansion terms for the + part
of the correlation function. The corresponding ceofficients are passed as ck_plus.

ck_minus [list of complex] The coefficients of the expansion terms for the — part of the
correlation function. The corresponding frequencies are passed as vk_minus.

vk_minus [list of complex] The frequencies (exponents) of the expansion terms for the —
part of the correlation function. The corresponding ceofficients are passed as ck_minus.

tag [optional, str, tuple or any other object] A label for the bath exponents (for example,
the name of the bath). It defaults to None but can be set to help identify which bath an
exponent is from.

class LorentzianBath (Q, gamma, w, mu, T, Nk, tag=None)
A helper class for constructing a Lorentzian fermionic bath from the bath parameters (see parameters below).

Note: This Matsubara expansion used in this bath converges very slowly and Nk > 20 may be required
to get good convergence. The Padé expansion used by LorentzianPadeBath converges much more
quickly.

Parameters
Q [Qobj] Operator describing the coupling between system and bath.
gamma [float] The coupling strength between the system and the bath.
w [float] The width of the environment.
mu [float] The chemical potential of the bath.
T [float] Bath temperature.
Nk [int] Number of exponential terms used to approximate the bath correlation functions.

tag [optional, str, tuple or any other object] A label for the bath exponents (for example,
the name of the bath). It defaults to None but can be set to help identify which bath an
exponent is from.

class LorentzianPadeBath (Q, gamma, w, mu, T, Nk, tag=None)
A helper class for constructing a Padé expansion for Lorentzian fermionic bath from the bath parameters
(see parameters below).

A Padé approximant is a sum-over-poles expansion (see https://en.wikipedia.org/wiki/Pad%C3%A9_
approximant).

The application of the Padé method to spectrum decompoisitions is described in “Padé spectrum decom-
positions of quantum distribution functions and optimal hierarchical equations of motion construction for
quantum open systems” [1].

The implementation here follows the approach in the paper.
[1]J. Chem. Phys. 134, 244106 (2011); https://doi.org/10.1063/1.3602466

This is an alternative to the LorentzianBath which constructs a simpler exponential expansion that
converges much more slowly in this particular case.

Parameters
Q [Qobj] Operator describing the coupling between system and bath.
gamma [float] The coupling strength between the system and the bath.
w [float] The width of the environment.
mu [float] The chemical potential of the bath.

T [float] Bath temperature.

5.1. Classes 239

https://en.wikipedia.org/wiki/Pad%C3%A9_approximant
https://en.wikipedia.org/wiki/Pad%C3%A9_approximant
https://doi.org/10.1063/1.3602466

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Nk [int] Number of exponential terms used to approximate the bath correlation functions.

tag [optional, str, tuple or any other object] A label for the bath exponents (for example,
the name of the bath). It defaults to None but can be set to help identify which bath an
exponent is from.

class HierarchyADOs (exponents, max_depth)
A description of ADOs (auxilliary density operators) with the hierarchical equations of motion.

The list of ADOs is constructed from a list of bath exponents (corresponding to one or more baths). Each
ADO is referred to by a label that lists the number of “excitations” of each bath exponent. The level of a
label within the hierarchy is the sum of the “excitations” within the label.

For example the label (0, 0, ..., 0) represents the density matrix of the system being solved and is
the only Oth level label.
The labels with a single 1,i.e. (1, 0, ..., 0), (0, 1, 0, ... 0),etc. arethe 1stlevel labels.
The second level labels all have either two 1s or a single 2, and so on for the third and higher levels of the
hierarchy.

Parameters

exponents [list of BathExponent] The exponents of the correlation function describing the
bath or baths.

max_depth [int] The maximum depth of the hierarchy (i.e. the maximum sum of “excita-
tions” in the hierarchy ADO labels or maximum ADO level).

Attributes

exponents [list of BathExponent] The exponents of the correlation function describing the
bath or baths.

max_depth [int] The maximum depth of the hierarchy (i.e. the maximum sum of “excita-
tions” in the hierarchy ADO labels).

dims [list of int] The dimensions of each exponent within the bath(s).
vk [list of complex] The frequency of each exponent within the bath(s).
ck [list of complex] The coefficient of each exponent within the bath(s).

ck2: list of complex For exponents of type “RI”, the coefficient of the exponent within the
imaginary expansion. For other exponent types, the entry is None.

sigma_bar_k_offset: list of int For exponents of type “+” or “-” the offset within the list
of modes of the corresponding “-” or “+” exponent. For other exponent types, the entry
is None.

labels: list of tuples A list of the ADO labels within the hierarchy.

exps (label)
Converts an ADO label into a tuple of exponents, with one exponent for each “excitation” within the
label.

The number of exponents returned is always equal to the level of the label within the hierarchy (i.e.
the sum of the indices within the label).

Parameters
label [tuple] The ADO label to convert to a list of exponents.
Returns

tuple of BathExponent A tuple of BathExponents.

240 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Examples

ados.exps((1, 0, 0)) wouldreturn [ados.exponents[0]]

1)) would return [ados.exponents[0], ados.exponents[1l],

ados.exps ((1, ’
1], ados.exponents[2]].

0
ados.exps ((2, 0, 0)) wouldreturn [ados.exponents[0], ados.exponents[0]].
2
ados.exponents [

filter (level=None, tags=None, dims=None, types=None)
Return a list of ADO labels for ADOs whose “excitations” match the given patterns.

Each of the filter parameters (tags, dims, types) may be either unspecified (None) or a list. Unspecified
parameters are excluded from the filtering.

All specified filter parameters must be lists of the same length. Each position in the lists describes a
particular excitation and any exponent that matches the filters may supply that excitation. The level of
all labels returned is thus equal to the length of the filter parameter lists.

Within a filter parameter list, items that are None represent wildcards and match any value of that
exponent attribute

Parameters
level [int] The hierarchy depth to return ADOs from.

tags [list of object or None] Filter parameter that matches the . tag attribute of expo-
nents.

dims [list of int] Filter parameter that matches the . dim attribute of exponents.

types [list of BathExponent types or list of str] Filter parameter that matches the . type
attribute of exponents. Types may be supplied by name (e.g. “R”, “I”, “+”) instead of
by the actual type (e.g. BathExponent .types.R).

Returns

list of tuple The ADO label for each ADO whose exponent excitations (i.e. label) match
the given filters or level.

idx (label)
Return the index of the ADO label within the list of labels, i.e. within self.labels.

Parameters
label [tuple] The label to look up.
Returns
int The index of the label within the list of ADO labels.

next (label, k)
Return the ADO label with one more excitation in the k’th exponent dimension or None if adding the
excitation would exceed the dimension or maximum depth of the hierarchy.

Parameters
label [tuple] The ADO label to add an excitation to.
k [int] The exponent to add the excitation to.
Returns
tuple or None The next label.

prev (label, k)
Return the ADO label with one fewer excitation in the k’th exponent dimension or None if the label
has no exciations in the k’th exponent.

Parameters

label [tuple] The ADO label to remove the excitation from.

5.1.

Classes 241

QuTiP: Quantum Toolbox in Python, Release 4.7.0

k [int] The exponent to remove the excitation from.
Returns
tuple or None The previous label.

class HierarchyADOsState (rho, ados, ado_state)
Provides convenient access to the full hierarchy ADO state at a particular point in time, t.

Parameters
rho [Qobj] The current state of the system (i.e. the Oth component of the hierarchy).
ados [HierarchyADOs] The description of the hierarchy.
ado_state [numpy.array] The full state of the hierarchy.

Attributes
rho [Qobj] The system state.
In addition, all of the attributes of the hierarchy description,
i.e. * "HierarchyADOs" *, are provided directly on this class for
convenience. E.g. one can access " “.labels’ °, or " ".exponents’ " or
call " “.idx(label)" * directly.
See :class:* HierarchyADOs" for a full list of the available attributes
and methods.

extract (idx_or_label)
Extract a Qobj representing specified ADO from a full representation of the ADO states.

Parameters

idx [int or label] The index of the ADO to extract. If an ADO label, e.g. (0, 1, O,
.) is supplied instead, then the ADO is extracted by label instead.

Returns
Qobj A Qob7j representing the state of the specified ADO.

class HSolverDL (H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, cut_freq,
planck=1.0, boltzmann=1.0, renorm=True, bnd_cut_approx=True, options=None,

progress_bar=None, stats=None)
HEOM solver based on the Drude-Lorentz model for spectral density. Drude-Lorentz bath the correlation

functions can be exactly analytically expressed as an infinite sum of exponentials which depend on the
temperature, these are called the Matsubara terms or Matsubara frequencies

For practical computation purposes an approximation must be used based on a small number of Matsubara
terms (typically < 4).

Attributes
cut_freq [float] Bath spectral density cutoff frequency.

renorm [bool] Apply renormalisation to coupling terms Can be useful if using SI units for
planck and boltzmann

bnd_cut_approx [bool] Use boundary cut off approximation Can be

configure (H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, cut_freq, planck=None,
boltzmann=None, renorm=None, bnd_cut_approx=None, options=None,

progress_bar=None, stats=None)
Calls configure from HEOMSolver and sets any attributes that are specific to this subclass

reset ()
Reset any attributes to default values

242 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

run (rho0, tlist)
Function to solve for an open quantum system using the HEOM model.

Parameters
rho0 [Qobj] Initial state (density matrix) of the system.
tlist [list] Time over which system evolves.
Returns
results [qutip.solver.Result] Object storing all results from the simulation.

class HEOMSolver

This is superclass for all solvers that use the HEOM method for calculating the dynamics evolution.
There are many references for this. A good introduction, and perhaps closest to the notation used here
is: DOI:10.1103/PhysRevLett.104.250401 A more canonical reference, with full derivation is: DOI:
10.1103/PhysRevA.41.6676 The method can compute open system dynamics without using any Marko-
vian or rotating wave approximation (RWA) for systems where the bath correlations can be approximated to
a sum of complex eponentials. The method builds a matrix of linked differential equations, which are then
solved used the same ODE solvers as other qutip solvers (e.g. mesolve)

This class should be treated as abstract. Currently the only subclass implemented is that for the Drude-
Lorentz spectral density. This covers the majority of the work that has been done using this model, and
there are some performance advantages to assuming this model where it is appropriate.

There are opportunities to develop a more general spectral density code.
Attributes
H_sys [Qobj] System Hamiltonian
coup_op [Qobj] Operator describing the coupling between system and bath.
coup_strength [float] Coupling strength.
temperature [float] Bath temperature, in units corresponding to planck
N_cut [int] Cutoff parameter for the bath

N_exp [int] Number of exponential terms used to approximate the bath correlation func-
tions

planck [float] reduced Planck constant
boltzmann [float] Boltzmann’s constant

options [qutip.solver.Options] Generic solver options. If set to None the default
options will be used

progress_bar: BaseProgressBar Optional instance of BaseProgressBar, or a subclass
thereof, for showing the progress of the simulation.

stats [qutip.solver.Stats] optional container for holding performance statitics If
None is set, then statistics are not collected There may be an overhead in collecting
statistics

exp_coeff [list of complex] Coefficients for the exponential series terms
exp_freq [list of complex] Frequencies for the exponential series terms

configure (H_sys, coup_op, coup_strength, temperature, N_cut, N_exp, planck=None,
boltzmann=None, renorm=None, bnd_cut_approx=None, options=None,

progress_bar=None, stats=None)
Configure the solver using the passed parameters The parameters are described in the class attributes,

unless there is some specific behaviour
Parameters

options [qutip.solver.Options] Generic solver options. If set to None the de-
fault options will be used

5.1. Classes 243

QuTiP: Quantum Toolbox in Python, Release 4.7.0

progress_bar: BaseProgressBar Optional instance of BaseProgressBar, or a subclass
thereof, for showing the progress of the simulation. If set to None, then the default
progress bar will be used Set to False for no progress bar

stats: :class:" qutip.solver.Stats® Optional instance of solver.Stats, or a subclass
thereof, for storing performance statistics for the solver If set to True, then the de-
fault Stats for this class will be used Set to False for no stats

create_new_stats ()
Creates a new stats object suitable for use with this solver Note: this solver expects the stats object to
have sections

* config
* integrate

reset ()
Reset any attributes to default values

class MemoryCascade (H_S, LI, L2, S_matrix=None, c_ops_markov=None, integra-
tor="propagator’, parallel=False, options=None)
Class for running memory cascade simulations of open quantum systems with time-delayed coherent feed-

back.
Attributes
H_S [qutip. Qobj] System Hamiltonian (can also be a Liouvillian)

L1 [qutip.Qobj/list of qutip.Qob j] System operators coupling into the feedback
loop. Can be a single operator or a list of operators.

L2 [qutip.Qobj/listof qutip.Qob j] System operators coupling out of the feedback
loop. Can be a single operator or a list of operators. L2 must have the same length as
L1.

S_matrix: *array* S matrix describing which operators in L1 are coupled to which oper-
ators in L2 by the feedback channel. Defaults to an n by n identity matrix where n is the
number of elements in L1/L2.

c_ops_markov [qutip.Qobj/list of qutip.Qobj] Decay operators describing con-
ventional Markovian decay channels. Can be a single operator or a list of operators.

integrator [str { ‘propagator’, ‘mesolve’}] Integrator method to use. Defaults to ‘propaga-
tor’ which tends to be faster for long times (i.e., large Hilbert space).

parallel [bool] Run integrator in parallel if True. Only implemented for ‘propagator’ as the
integrator method.

options [qutip.solver.Options] Generic solver options.

outfieldcorr (rho0, blist, tlist, tau, c]1=None, c2=None)
Compute output field expectation value <O_n(tn)...O_2(t2)O_1(t1)> for times t1,t2,... and O_i =1,
b_out, b_out*dagger, b_loop, b_loop~dagger

Parameters
rho0 [qutip.Qob j] initial density matrix or state vector (ket).

blist [array_like] List of integers specifying the field operators: 0: I (nothing) 1: b_out
2: b_out"dagger 3: b_loop 4: b_loop”~dagger

tlist [array_like] list of corresponding times t1,...,tn at which to evaluate the field opera-
tors

tau [float] time-delay

cl [qutip.Qobj]system collapse operator that couples to the in-loop field in question
(only needs to be specified if self.L.1 has more than one element)

244 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

c2 [qutip.OQob j] system collapse operator that couples to the output field in question
(only needs to be specified if self.L.2 has more than one element)

Returns
: complex expectation value of field correlation function

outfieldpropagator (blist, tlist, tau, c1=None, c2=None, notrace=False)
Compute propagator for computing output field expectation values <O_n(tn)...O_2(t2)O_1(t1)> for
times t1,t2,... and O_i =1, b_out, b_out*dagger, b_loop, b_loop~dagger

Parameters

blist [array_like] List of integers specifying the field operators: O: I (nothing) 1: b_out
2: b_out"dagger 3: b_loop 4: b_loop~dagger

tlist [array_like] list of corresponding times t1,..,tn at which to evaluate the field opera-
tors

tau [float] time-delay

cl [qutip.Qob 7] system collapse operator that couples to the in-loop field in question
(only needs to be specified if self.LL.1 has more than one element)

c2 [qutip.Qob j] system collapse operator that couples to the output field in question
(only needs to be specified if self.L.2 has more than one element)

notrace [bool {False}] If this optional is set to True, a propagator is returned for a
cascade of k systems, where (k — 1)tau < t < ktau. If set to False (default), a
generalized partial trace is performed and a propagator for a single system is returned.

Returns
: qutip.Qob3j time-propagator for computing field correlation function

propagator (t, tau, notrace=False)
Compute propagator for time t and time-delay tau

Parameters
t [float] current time
tau [float] time-delay

notrace [bool {False}] If this optional is set to True, a propagator is returned for a
cascade of k systems, where (k — 1)tau < t < ktau. If set to False (default), a
generalized partial trace is performed and a propagator for a single system is returned.

Returns
: :class: " qutip.Qobj" time-propagator for reduced system dynamics

rhot (rho0, t, tau)
Compute the reduced system density matrix p(t)

Parameters
rho0 [qutip.Qob j] initial density matrix or state vector (ket)
t [float] current time
tau [float] time-delay
Returns
: qutip.Qob3j density matrix at time ¢

class TTMSolverOptions (dynmaps=None, times=[], learningtimes=[], thres=0.0, options=None)
Class of options for the Transfer Tensor Method solver.

Attributes

5.1. Classes 245

QuTiP: Quantum Toolbox in Python, Release 4.7.0

dynmaps [list of qutip.Qobj] List of precomputed dynamical maps (superoperators),
or a callback function that returns the superoperator at a given time.

times [array_like] List of times ¢,, at which to calculate p(t,,)

learningtimes [array_like] List of times ¢ to use as learning times if argument dynmaps is
a callback function.

thres [float] Threshold for halting. Halts if ||T;, — T,,—1|| is below treshold.

options [qutip.solver.Options] Generic solver options.

5.1.8 Solver Options and Results

class ExpectOps (e_ops=/[], super_=False)

Contain and compute expectation values

class Options (atol=1e-08, rtol=1e-06, method='adams', order=12, nsteps=1000, first_step=0,

max_step=0, min_step=0, average_expect=True, average_states=False,
tidy=True, num_cpus=0, norm_tol=0.001, norm_t_tol=1e-06, norm_steps=3,
rhs_reuse=False, rhs_filename=None, ntraj=500, gui=False, rhs_with_state=False,
store_final_state=False, store_states=False, steady_state_average=False,

seeds=None, normalize_output=True, use_openmp=None, openmp_threads=None)
Class of options for evolution solvers such as qut ip.mesolve and qutip.mcsolve. Options can be

specified either as arguments to the constructor:

opts = Options (order=10, ...)

or by changing the class attributes after creation:

opts = Options/()
opts.order = 10

Returns options class to be used as options in evolution solvers.
Attributes
atol [float {1e-8}] Absolute tolerance.
rtol [float {1e-6}] Relative tolerance.
method [str { ‘adams’,’bdf’ }] Integration method.
order [int {12}] Order of integrator (<=12 ‘adams’, <=5 ‘bdf”)
nsteps [int {2500}] Max. number of internal steps/call.
first_step [float {0}] Size of initial step (0 = automatic).
min_step [float {0}] Minimum step size (0 = automatic).
max_step [float {0}] Maximum step size (0 = automatic)
tidy [bool {True,False}] Tidyup Hamiltonian and initial state by removing small terms.
num_cpus [int] Number of cpus used by mcsolver (default = # of cpus).
norm_tol [float] Tolerance used when finding wavefunction norm in mcsolve.

norm_steps [int] Max. number of steps used to find wavefunction norm to within norm_tol
in mcsolve.

average_states [bool {False}] Average states values over trajectories in stochastic solvers.

average_expect [bool {True}] Average expectation values over trajectories for stochastic
solvers.

mc_corr_eps [float {1e-10}] Arbitrarily small value for eliminating any divide-by-zero er-
rors in correlation calculations when using mcsolve.

246

Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

ntraj [int {500}] Number of trajectories in stochastic solvers.
openmp_threads [int] Number of OPENMP threads to use. Default is number of cpu cores.
rhs_reuse [bool {False,True}] Reuse Hamiltonian data.

rhs_with_state [bool {False,True}] Whether or not to include the state in the Hamiltonian
function callback signature.

rhs_filename [str] Name for compiled Cython file.
seeds [ndarray] Array containing random number seeds for mcsolver.

store_final_state [bool {False, True}] Whether or not to store the final state of the evolution
in the result class.

store_states [bool {False, True}] Whether or not to store the state vectors or density matri-
ces in the result class, even if expectation values operators are given. If no expectation
are provided, then states are stored by default and this option has no effect.

use_openmp [bool {True, False}] Use OPENMP for sparse matrix vector multiplication.
Default None means auto check.

class Result
Class for storing simulation results from any of the dynamics solvers.

Attributes
solver [str] Which solver was used [e.g., ‘mesolve’, ‘mcsolve’, ‘brmesolve’, ...]
times [list/array] Times at which simulation data was collected.
expect [list/array] Expectation values (if requested) for simulation.
states [array] State of the simulation (density matrix or ket) evaluated at t imes.
num_expect [int] Number of expectation value operators in simulation.
num_collapse [int] Number of collapse operators in simualation.

ntraj [int/list] Number of trajectories (for stochastic solvers). A list indicates that averaging
of expectation values was done over a subset of total number of trajectories.

col_times [list] Times at which state collpase occurred. Only for Monte Carlo solver.

col_which [list] Which collapse operator was responsible for each collapse in
col_times. Only for Monte Carlo solver.

class SolverConfiguration

class Stats (section_names=None)
Statistical information on the solver performance Statistics can be grouped into sections. If no section names
are given in the the contructor, then all statistics will be added to one section ‘main’

Parameters

section_names [list] list of keys that will be used as keys for the sections These keys will
also be used as names for the sections The text in the output can be overidden by setting
the header property of the section If no names are given then one section called ‘main’
is created

Attributes

sections [OrderedDict of _StatsSection] These are the sections that are created automati-
cally on instantiation or added using add_section

header [string] Some text that will be used as the heading in the report By default there is
None

total_time [float] Time in seconds for the solver to complete processing Can be None,
meaning that total timing percentages will be reported

5.1. Classes 247

QuTiP: Quantum Toolbox in Python, Release 4.7.0

add_count (key, value, section=None)
Add value to count. If key does not already exist in section then it is created with this value. If key
already exists it is increased by the give value value is expected to be an integer

Parameters

key [string] key for the section.counts dictionary reusing a key will result in numerical
addition of value

value [int] Initial value of the count, or added to an existing count

section [string or _StatsSection] Section which to add the count to. If None given,
the default (first) section will be used

add_message (key, value, section=None, sep="")
Add value to message. If key does not already exist in section then it is created with this value. If key
already exists the value is added to the message The value will be converted to a string

Parameters

key [string] key for the section.messages dictionary reusing a key will result in concate-
nation of value

value [int] Initial value of the message, or added to an existing message
sep [string] Message will be prefixed with this string when concatenating

section: string or “class® [_StatsSection] Section which to add the message to. If None
given, the default (first) section will be used

add_section (name)
Add another section with the given name

Parameters

name [string] will be used as key for sections dict will also be the header for the section
Returns

section [_StatsSection] The new section

add_timing (key, value, section=None)
Add value to timing. If key does not already exist in section then it is created with this value. If key
already exists it is increased by the give value value is expected to be a float, and given in seconds.

Parameters

key [string] key for the section.timings dictionary reusing a key will result in numerical
addition of value

value [int] Initial value of the timing, or added to an existing timing

section: string or "class’ [_StatsSection] Section which to add the timing to. If None
given, the default (first) section will be used

clear ()
Clear counts, timings and messages from all sections

report (output=<_io.TexttOWrapper name='<stdout>" mode="w' encoding="utf-8">)
Report the counts, timings and messages from the sections. Sections are reported in the order that the
names were supplied in the constructor. The counts, timings and messages are reported in the order
that they are added to the sections The output can be written to anything that supports a write method,
e.g. a file or the console (default) The output is intended to in markdown format

Parameters

output [stream] file or console stream - anything that support write - where the output
will be written

248 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

set_total_time (value, section=None)
Sets the total time for the complete solve or for a specific section value is expected to be a float, and
given in seconds

Parameters
value [float] Time in seconds to complete the solver section

section [string or class] Section which to set the total_time for If None given, the to-
tal_time for complete solve is set

class StochasticSolverOptions (me, H=None, c_ops=[], sc_ops=[], stateO=None,

e_ops=[], m_ops=None, store_all_expect=False,
store_measurement="False, dW_factors=None,
solver=None, method="homodyne', normalize=None,
times=None, nsubsteps=1, ntraj=1, tol=None, gen-
erate_noise=None, noise=None, progress_bar=None,
map_func=None, map_kwargs=None, args={}, op-
tions=None, noiseDepth=20)

Class of options for stochastic solvers such as qutip.stochastic.ssesolve, qutip.

stochastic.smesolve, etc.

The stochastic solvers qutip.stochastic.general_stochastic, qutip.
stochastic.ssesolve, qutip.stochastic.smesolve, qutip.stochastic.
photocurrent_sesolve and qutip.stochastic.photocurrent_mesolve all take the
same keyword arguments as the constructor of these class, and internally they use these arguments to
construct an instance of this class, so it is rarely needed to explicitly create an instance of this class.

Within the attribute list, a t ime_dependent_object is either
* Qobj: a constant term

e 2-element list of [Qob7j, time_dependence]: a time-dependent term where the Qobj will be
multiplied by the time-dependent scalar.

For more details on all allowed time-dependent objects, see the documentation for Qob jEvo.
Attributes

H [time_dependent_object or list of time_dependent_object] System Hamiltonian in stan-
dard time-dependent list format. This is the same as the argument that (e.g.) mesolve
takes. If this is a list of elements, they are summed.

stateQ [qutip.Oob j] Initial state vector (ket) or density matrix.
times [array_like of float] List of times for ¢. Must be uniformly spaced.

c_ops [list of time_dependent_object] List of deterministic collapse operators. Each el-
ement of the list is a separate operator; unlike the Hamiltonian, there is no implicit
summation over the terms.

sc_ops [list of time_dependent_object] List of stochastic collapse operators. Each stochas-
tic collapse operator will give a deterministic and stochastic contribution to the equation
of motion according to how the d1 and d2 functions are defined. Each element of the
list is a separate operator, like c_ops.

e_ops [list of qutip.Qob 7] Single operator or list of operators for which to evaluate
expectation values.

m_ops [list of qutip.Qob j] List of operators representing the measurement operators.
The expected format is a nested list with one measurement operator for each stochastic
increament, for each stochastic collapse operator.

args [dict] Dictionary of parameters for time dependent systems.
tol [float] Tolerance of the solver for implicit methods.

ntraj [int] Number of trajectors.

5.1. Classes 249

QuTiP: Quantum Toolbox in Python, Release 4.7.0

nsubsteps [int] Number of sub steps between each time-spep given in times.

dW_factors [array] Array of length len(sc_ops), containing scaling factors for each mea-
surement operator in m_ops.

solver [string] Name of the solver method to use for solving the stochastic equations. Valid
values are:

e order 1/2 algorithms: ‘euler-maruyama’, ‘pc-euler’, ‘pc-euler-imp’
* order 1 algorithms: ‘milstein’, ‘platen’, ‘milstein-imp’, ‘rouchon’
e order 3/2 algorithms: ‘taylorl.5’, ‘taylorl.5-imp’, ‘explicitl.5’

e order 2 algorithms: ‘taylor2.0’

See the documentation of stochastic_solvers for a description of the solvers.
Implicit methods can adjust tolerance via the kw ‘tol’. Default is {‘tol’: le-6}

method [string (‘homodyne’, ‘heterodyne’)] The name of the type of measurement process
that give rise to the stochastic equation to solve.

store_all_expect [bool (default False)] Whether or not to store the e_ops expect values for
all paths.

store_measurement [bool (default False)] Whether or not to store the measurement results
inthe qutip.solver.Result instance returned by the solver.

noise [int, or 1D array of int, or 4D array of float]
* int : seed of the noise
* 1D array : length = ntraj, seeds for each trajectories.

e 4D array : (ntraj, len(times), nsubsteps,
len(sc_ops)+[1]2]). Vector for the noise, the len of the last dimensions is
doubled for solvers of order 1.5. This corresponds to results.noise.

noiseDepth [int] Number of terms kept of the truncated series used to create the noise used
by taylor2.0 solver.

normalize [bool] (default True for (photo)ssesolve, False for (photo)smesolve) Whether or
not to normalize the wave function during the evolution. Normalizing density matrices
introduce numerical errors.

options [qutip.solver.Options] Generic solver options. Only op-
tions.average_states and options.store_states are used.

map_func: function A map function or managing the calls to single-trajactory solvers.
map_kwargs: dictionary Optional keyword arguments to the map_func function function.

progress_bar [qutip.ui.BaseProgressBar] Optional progress bar class instance.

5.1.9 Permutational Invariance

class Dicke (N, hamiltonian=None, emission=0.0, dephasing=0.0, pumping=0.0, collec-
tive_emission=0.0, collective_dephasing=0.0, collective_pumping=0.0)
The Dicke class which builds the Lindbladian and Liouvillian matrix.

Parameters
N: int The number of two-level systems.
hamiltonian [qutip.Qob j] A Hamiltonian in the Dicke basis.

The matrix dimensions are (nds, nds), with nds being the number of Dicke states. The
Hamiltonian can be built with the operators given by the jspin functions.

emission: float Incoherent emission coefficient (also nonradiative emission). default: 0.0

250 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

dephasing: float Local dephasing coefficient. default: 0.0

pumping: float Incoherent pumping coefficient. default: 0.0

collective_emission: float Collective (superradiant) emmission coefficient. default: 0.0
collective_pumping: float Collective pumping coefficient. default: 0.0

collective_dephasing: float Collective dephasing coefficient. default: 0.0

Examples
>>> from pigs import Dicke, Jjspin
>>> N = 2
>>> 3%, Jy, Jz = Jspin(N)
>>> jp = Jspin(N, "+")
>>> jm = Jspin(N, "-")
>>> ensemble = Dicke (N, emission=1.)
>>> L = ensemble.liouvillian ()
Attributes
N: int The number of two-level systems.
hamiltonian [qutip.Qob j] A Hamiltonian in the Dicke basis.
The matrix dimensions are (nds, nds), with nds being the number of Dicke states. The
Hamiltonian can be built with the operators given by the jspin function in the “dicke”
basis.
emission: float Incoherent emission coefficient (also nonradiative emission). default: 0.0
dephasing: float Local dephasing coefficient. default: 0.0
pumping: float Incoherent pumping coefficient. default: 0.0
collective_emission: float Collective (superradiant) emmission coefficient. default: 0.0
collective_dephasing: float Collective dephasing coefficient. default: 0.0
collective_pumping: float Collective pumping coefficient. default: 0.0
nds: int The number of Dicke states.
dshape: tuple The shape of the Hilbert space in the Dicke or uncoupled basis. default:
(nds, nds).
c_ops ()

Build collapse operators in the full Hilbert space 2N.

Returns

c_ops_list: list The list with the collapse operators in the 2N Hilbert space.

coefficient_matrix ()
Build coefficient matrix for ODE for a diagonal problem.

Returns

M: ndarray The matrix M of the coefficients for the ODE dp/dt = Mp. p is the vector
of the diagonal matrix elements of the density matrix rho in the Dicke basis.

lindbladian ()
Build the Lindbladian superoperator of the dissipative dynamics.

Returns

lindbladian [qutip.Qob j] The Lindbladian matrix as a qutip.Qobj.

5.1. Classes

251

QuTiP: Quantum Toolbox in Python, Release 4.7.0

liouvillian()
Build the total Liouvillian using the Dicke basis.

Returns
liouv [gutip.Oob j] The Liouvillian matrix for the system.

pisolve (initial_state, tlist, options=None)
Solve for diagonal Hamiltonians and initial states faster.

Parameters

initial_state [qgutip.Oob j] An initial state specified as a density matrix of qutip.Qbj
type.

tlist: ndarray A 1D numpy array of list of timesteps to integrate
options [qutip.solver.Options] The options for the solver.

Returns

result: list A dictionary of the type qutip.solver.Result which holds the results of the
evolution.

class Pim (N, emission=0.0, dephasing=0, pumping=0, collective_emission=0, collective_pumping=0,
collective_dephasing=0)
The Permutation Invariant Matrix class.

Initialize the class with the parameters for generating a Permutation Invariant matrix which evolves a given
diagonal initial state p as:

dp/dt = Mp

Parameters
N:int The number of two-level systems.
emission: float Incoherent emission coefficient (also nonradiative emission). default: 0.0
dephasing: float Local dephasing coefficient. default: 0.0
pumping: float Incoherent pumping coefficient. default: 0.0
collective_emission: float Collective (superradiant) emmission coefficient. default: 0.0
collective_pumping: float Collective pumping coefficient. default: 0.0
collective_dephasing: float Collective dephasing coefficient. default: 0.0

Attributes
N:int The number of two-level systems.
emission: float Incoherent emission coefficient (also nonradiative emission). default: 0.0
dephasing: float Local dephasing coefficient. default: 0.0
pumping: float Incoherent pumping coefficient. default: 0.0
collective_emission: float Collective (superradiant) emmission coefficient. default: 0.0
collective_dephasing: float Collective dephasing coefficient. default: 0.0
collective_pumping: float Collective pumping coefficient. default: 0.0
M: dict A nested dictionary of the structure {row: {col: val}} which holds non zero ele-

ments of the matrix M
calculate_j_m (dicke_row, dicke_col)
Get the value of j and m for the particular Dicke space element.

Parameters

252 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

dicke_row, dicke_col: int The row and column from the Dicke space matrix
Returns
Jj, m: float The j and m values.

calculate_ k (dicke_row, dicke_col)
Get k value from the current row and column element in the Dicke space.

Parameters
dicke_row, dicke_col: int The row and column from the Dicke space matrix.
Returns
k: int The row index for the matrix M for given Dicke space element.

coefficient_matrix ()
Generate the matrix M governing the dynamics for diagonal cases.

If the initial density matrix and the Hamiltonian is diagonal, the evolution of the system is given by
the simple ODE: dp/dt = Mp.

isdicke (dicke_row, dicke_col)
Check if an element in a matrix is a valid element in the Dicke space. Dicke row: j value index. Dicke
column: m value index. The function returns True if the element exists in the Dicke space and False
otherwise.

Parameters

dicke_row, dicke_col [int] Index of the element in Dicke space which needs to be
checked

solve (rho0, tlist, options=None)
Solve the ODE for the evolution of diagonal states and Hamiltonians.

taul (j, m)
Calculate coefficient matrix element relative to (j, m, m).

tau2 (j, m)
Calculate coefficient matrix element relative to (j, m+1, m+1).

tau3 (j, m)
Calculate coefficient matrix element relative to (j+1, m+1, m+1).

taud (j, m)
Calculate coefficient matrix element relative to (j-1, m+1, m+1).

tau5 (j, m)
Calculate coefficient matrix element relative to (j+1, m, m).

tauéb (j, m)
Calculate coefficient matrix element relative to (j-1, m, m).

tau’ (j, m)
Calculate coefficient matrix element relative to (j+1, m-1, m-1).

tau8 (j, m)
Calculate coefficient matrix element relative to (j, m-1, m-1).

tau9 (j, m)
Calculate coefficient matrix element relative to (j-1, m-1, m-1).

tau_valid (dicke_row, dicke_col)
Find the Tau functions which are valid for this value of (dicke_row, dicke_col) given the number of
TLS. This calculates the valid tau values and reurns a dictionary specifying the tau function name and
the value.

Parameters

5.1.

Classes 253

QuTiP: Quantum Toolbox in Python, Release 4.7.0

dicke_row, dicke_col [int] Index of the element in Dicke space which needs to be
checked.

Returns

taus: dict A dictionary of key, val as {tau: value} consisting of the valid taus for this
row and column of the Dicke space element.

5.1.10 One-Dimensional Lattice

class Latticeld (num_cell=10, boundary='periodic’, cell_num_site=1, cell_site_dof=[1], Hamilto-
nian_of_cell=None, inter_hop=None)
A class for representing a 1d crystal.

The Latticeld class can be defined with any specific unit cells and a specified number of unit cells in the
crystal. It can return dispersion relationship, position operators, Hamiltonian in the position represention
etc.

Parameters
num_cell [int] The number of cells in the crystal.
boundary [str] Specification of the type of boundary the crystal is defined with.
cell_num_site [int] The number of sites in the unit cell.

cell_site_dof [list of int/ int] The tensor structure of the degrees of freedom at each site of
a unit cell.

Hamiltonian_of_cell [qutip.Qobj] The Hamiltonian of the unit cell.

inter_hop [qutip.Qobj / list of Qobj] The coupling between the unit cell at i and at (i+unit
vector)

Attributes
num_cell [int] The number of unit cells in the crystal.
cell_num_site [int] The nuber of sites in a unit cell.
length_for_site [int] The length of the dimension per site of a unit cell.

cell_tensor_config [list of int] The tensor structure of the cell in the form
[cell_num_site,cell_site_dof[:][0]]

lattice_tensor_config [list of int] The tensor structure of the crystal in the form
[num_cell,cell_num_site,cell_site_dof[:][0]]

length_of_unit_cell [int] The length of the dimension for a unit cell.

period_bnd_cond_x [int] 1 indicates “periodic” and 0 indicates “hardwall” boundary con-
dition

inter_vec_list [list of list] The list of list of coefficients of inter unitcell vectors’ compo-

nents along Cartesian uit vectors.

lattice_vectors_list [list of list] The list of list of coefficients of lattice basis vectors’ com-
ponents along Cartesian unit vectors.

H_intra [qutip.Qobj] The Qobj storing the Hamiltonian of the unnit cell.

H_inter_list [list of Qobj/ qutip.Qobj] The list of coupling terms between unit cells of the
lattice.

is_real [bool] Indicates if the Hamiltonian is real or not.

Hamiltonian ()
Returns the lattice Hamiltonian for the instance of Latticeld.

Returns

254 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

Qobj(Hamil) [qutip.Qobj] oper type Quantum object representing the lattice Hamilto-
nian.

basis (cell, site, dof _ind)
Returns a single particle wavefunction ket with the particle localized at a specified dof at a specified
site of a specified cell.

Parameters
e cell (int)— The cell at which the particle is to be localized.
e site (int) - The site of the cell at which the particle is to be localized.

* dof_ind (int/ list of int) — The index of the degrees of freedom with
which the sigle particle is to be localized.

Returns
vec_i [qutip.Qobj] ket type Quantum object representing the localized particle.

bloch _wave_functions ()
Returns eigenvectors ($psi_n(k)$) of the Hamiltonian in a numpy.ndarray for translationally symmetric
lattices with periodic boundary condition.

[¥n (k) = k) ® [un (k) (5.1)
| (k) = an(k)|a) + by (k)|b) (5.2)
(5.3)

Please see section 1.2 of Asbéth, J. K., Oroszlany, L., & Palyi, A. (2016). A short course on topological
insulators. Lecture notes in physics, 919 for a review.

Returns

eigenstates [ordered np.array] eigenstates[j][0] is the jth eigenvalue. eigenstates[j][1] is
the corresponding eigenvector.

bulk_ Hamiltonians ()
Returns the bulk momentum space Hamiltonian ($H(k)$) for the lattice at the good quantum numbers
of k in a numpy ndarray of Qobj’s.

Please see section 1.2 of Asbéth, J. K., Oroszlany, L., & Pélyi, A. (2016). A short course on topological
insulators. Lecture notes in physics, 919 for a review.

Returns
knxa [np.array] knxA[j][0] is the jth good Quantum number k.

qH_Kks [np.ndarray of Qobj’s] qH_ks[j] is the Oobj of type oper that holds a bulk Hamil-
tonian for a good quantum number k.

cell periodic_parts()
Returns eigenvectors of the bulk Hamiltonian, i.e. the cell periodic part($u_n(k)$) of the Bloch wave-
functios in a numpy.ndarray for translationally symmetric lattices with periodic boundary condition.

[n (k) = k) @ [un(k)) (5.4)
[un (k) = an(k)|a) + bn(k)|D) (5.5)
(5.6)

Please see section 1.2 of Asbéth, J. K., Oroszlany, L., & Pélyi, A. (2016). A short course on topological
insulators. Lecture notes in physics, 919 for a review.

Returns
knxa [np.array] knxA[j][0] is the jth good Quantum number k.

vec_kns [np.ndarray of Qobj’s] vec_kns[j] is the Oobj of type ket that holds an eigen-
vector of the bulk Hamiltonian of the lattice.

5.1.

Classes 255

QuTiP: Quantum Toolbox in Python, Release 4.7.0

display lattice()
Produces a graphic portraying the lattice symbolically with a unit cell marked in it.

Returns

inter_T [Qobj] The coefficient of $psi_{i,N}*{dagger}psi_{0,i+1}$, i.e. the coupling
between the two boundary sites of the two unit cells i and i+1.

display_unit_cell (label_on=False)
Produces a graphic displaying the unit cell features with labels on if defined by user. Also returns a
dict of Qobj’s corresponding to the labeled elements on the display.

Returns
Heell [dict] Heell[i][j] is the Hamiltonian segment for $H_{i,j}$ labeled on the graphic.

distribute_operator (op)
A function that returns an operator matrix that applies op to all the cells in the 1d lattice

Parameters op (qutip.Qobj)— Qobj representing the operator to be applied at all cells.
Returns
op_H [qutip.Qobj] Quantum object representing the operator with op applied at all cells.

get_dispersion (knpoints=0)
Returns dispersion relationship for the lattice with the specified number of unit cells with a k array and
a band energy array.

Returns
knxa [np.array] knxA[j][0] is the jth good Quantum number k.

val_kns [np.array] val_kns[j][:] is the array of band energies of the jth band good at all
the good Quantum numbers of k.

k()
Returns the crystal momentum operator. All degrees of freedom has the cell number at their corre-
spondig entry in the position operator.

Returns

Qobj(ks) [qutip.Qobj] The crystal momentum operator in units of 1/a. L is the number
of unit cells, a is the length of a unit cell which is always taken to be 1.

operator_at_cells (op, cells)
A function that returns an operator matrix that applies op to specific cells specified in the cells list

Parameters
op [qutip.Qobj] Qobj representing the operator to be applied at certain cells.
cells: list of int The cells at which the operator op is to be applied.

Returns

Qobj(op_H) [Qobj] Quantum object representing the operator with op applied at the
specified cells.

operator_between_cells (op, row_cell, col_cell)
A function that returns an operator matrix that applies op to specific cells specified in the cells list

Parameters

op [qutip.Qobj] Qobj representing the operator to be put between cells row_cell and
col_cell.

row_cell: int The row index for cell for the operator op to be applied.
col_cell: int The column index for cell for the operator op to be applied.

Returns

256 Chapter 5. API documentation

QuTiP: Quantum Toolbox in Python, Release 4.7.0

oper_bet_cell [Qobj] Quantum object representing the operator with op applied be-
tween the specified cells.

plot_dispersion ()
Plots the dispersion relationship for the lattice with the specified number of unit cells. The dispersion
of the infinte crystal is also plotted if num_cell is smaller than MAXc.

winding_ number ()
Returns the winding number for a lattice that has chiral symmetry and also plots the trajectory of
(dx,dy)(dx,dy are the coefficients of sigmax and sigmay in the Hamiltonian respectively) on a plane.

Returns
winding_number [int or str] knxA[j][0] is the jth good Quantum number k.

x()
Returns the position operator. All degrees of freedom has the cell number at their correspondig entry
in the position operator.

Returns

Qobj(xs) [qutip.Qobj] The position operator.

5.1.11 Distribution functions

class Distribution (data=None, xvecs=[], xlabels=[])
A class for representation spatial distribution functions.

The Distribution class can be used to prepresent spatial distribution functions of arbitray dimension (al-
though only 1D and 2D distributions are used so far).

It is indented as a base class for specific distribution function, and provide implementation of basic functions
that are shared among all Distribution functions, such as visualization, calculating marginal distributions,
etc.

Parameters

data [array_like] Data for the distribution. The dimensions must match the lengths of the
coordinate arrays in xvecs.

xvecs [list] List of arrays that spans the space for each coordinate.
xlabels [list] List of labels for each coordinate.

marginal (dim=0)
Calculate the marginal distribution function along the dimension dim. Return a new Distribution
instance describing this reduced- dimensionality distribution.

Parameters

dim [int] The dimension (coordinate index) along which to obtain the marginal distri-
bution.

Returns

d [Distributions] A new instances of Distribution that describes the marginal distribu-
tion.

project (dim=0)
Calculate the projection (max value) distribution function along the dimension dim. Return a new
Distribution instance describing this reduced-dimensionality distribution.

Parameters

dim [int] The dimension (coordinate index) along which to obtain the projected distri-
bution.

Returns

5.1. Classes 257

QuTiP: Quantum Toolbox in Python, Release 4.7.0

d [Distributions] A new instances of Distribution that describes the projection.

visualize (fig=None, ax=None, figsize=(8, 6), colorbar=True, cmap=None, style='colormap’,
show_xlabel=True, show_ylabel=True)
Visualize the data of the distribution in 1D or 2D, depending on the dimensionality of the underlaying

distribution.

Par