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We present experimental results on the eigenfrequency statistics of a superconducting, chaotic microwave
billiard containing a rotatable obstacle. Deviations of the spectral fluctuations from predictions based on
Gaussian orthogonal ensembles of random matrices are found. They are explained by treating the billiard as an
open scattering system in which microwave power is coupled in and out via antennas. To study the interaction
of the quantum �or wave� system with its environment, a highly sensitive parametric correlator is used.
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Classical chaos manifests itself in universal spectral quan-
tum fluctuations that can be described by random matrix
theory �RMT� �1�. While the earliest investigations of spec-
tral correlations were confined to nuclear physics �2�, during
the last twenty years the universality has been tested in other
areas, like optical experiments �3�, quantum dots �4�, and
acoustic setups �5�. The �local� spectral statistics depend ge-
nerically only on the underlying symmetries of the system.
In particular, they are described by the Gaussian orthogonal
ensemble �GOE� of real symmetric random matrices for
spinless systems with time reversal symmetry, and by the
Gaussian unitary ensemble of complex Hermitian random
matrices in the absence of time reversal invariance �6�. The
sensitivity of the quantum �or wave� statistical properties to
fundamental symmetries is obviously of great interest. For
instance, it has been utilized to derive an upper bound for the
magnitude of the time- or parity-violating component in
nuclear interactions �7,8�.

We investigate here spectral properties of a superconduct-
ing microwave resonator where currents are induced by the
measurement process. Although we study a specific wave
system, the results are expected to be of general validity in
the physics of complex quantum systems �atoms, molecules,
nuclei, quantum dots, etc.�. The influence of the flux of mi-
crowave power flowing from the feeding to the receiving
antenna on the spectral properties of the system is so weak
that it can only be detected through a highly sensitive diag-
nosis tool; in our case a parametric statistical measure. In a
previous experiment, the wave system was realized by a nor-
mal conducting microwave resonator attached to a large
number of antennas �9�. There, the distribution of wave func-
tions showed significant deviations from the GOE predic-
tions, which were attributed to the transformation of the
standing waves inside the closed microwave billiard into
waves propagating from an emitting antenna into a large
number of exit channels �10�. The aim of the present paper is
to go further into the investigation of this mechanism. We
will show that deviations from GOE behavior are already
observed in a resonator with only three �or fewer� attached
antennas, when studying spectral properties as a function of
a parameter.

The experiment discussed here has been performed with a

superconducting microwave resonator, whose high-quality
factor is typically Q=105 or larger �11�; i.e., dissipative pro-
cesses in the resonator are reduced to a minimum, thereby
ensuring a high spectral resolution. Results obtained with a
flat cylindric resonator are presented. Aside from their intrin-
sic interest, such resonators mimic two-dimensional quantum
billiards of corresponding shapes �11–14�. The analogy is
based on the isomorphism between the scalar Helmholtz

equation of the electric field E� for wavelengths longer than

twice the height of the resonator, where E� �r��=��x ,y�e�z is
perpendicular to the billiard �xy� plane, and the Schrödinger
equation for the wave functions in the quantum billiard. The
eigenvalues ki

2 of a closed resonator satisfy the Helmholtz
equation with Dirichlet boundary conditions imposed on
��x ,y�. They are directly related to the eigenenergies of the
corresponding quantum billiard. In this analogy, the Poynting
vector plays the role of the quantum probability current
density �15�.

The microwave resonator has been manufactured from
lead-plated copper, as in �16�; its shape is shown in Fig. 1.
During the measurements it has been placed in a liquid he-
lium cryostat at a temperature of T=4.2 K, which guarantees
superconductivity of the lead surface. The outer boundary of
the resonator has the shape of a desymmetrized straight-cut
circle. The dynamics inside the corresponding classical bil-
liard is chaotic �17�. A dielectric wedge of Teflon® inside the
resonator has been rotated with a leverage from outside the
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FIG. 1. Sketch of the billiard, showing the outer boundary, as
well as the rotatable wedge-shaped piece of teflon. The angle of
rotation � of the wedge defines the parameter �its initial orientation
is arbitrary�.
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cryostat. The cavity has been coupled to one feeding and two
receiving antennas. They are tiny metal pins of 0.5 mm in
diameter and have been adjusted such that they mechanically
reach only some 100 �m into the interior of the cavity guar-
anteeing weak coupling and hence minimal disturbance of
the excited field in the resonator. Using a HP-8510C network
analyzer, the transmission spectra have been measured in the
frequency range up to 18 GHz for 37 equidistant settings of
the angle � �cf. Fig. 1� in steps of 2.5°.

Complete eigenvalue sequences of 440 resonances for
each value of the parameter � have been measured. Figure 2
shows the eigenvalues number 200 to 250 as a function of
the parameter, the so-called eigenvalue dynamics or paramet-
ric fluctuations, where for each of the 37 spectra the eigen-
values have been unfolded by scaling them to unit mean
spacing �11,12�. As the parameter � is varied, the positions
of the resonance frequencies �i.e., the real part of the reso-
nance� describe irregular oscillatory curves that generically
do not cross each other. The oscillations have a mechanical
interpretation, namely the derivative −�ki

2 /�� is proportional
to the torque exerted by the ith electromagnetic eigenmode
on the Teflon® wedge. For the statistical analysis of the
spectra the whole set of resonance frequencies has also been
unfolded with respect with respect to the parameter � by
following the proceedure described in �18�. This allows to
properly incorporate the characteristic scales associated with
the frequency and parameter secular variations �18�, thereby
defining dimensionless quantities.

In Fig. 3 the spacing distribution P�s� of the distance be-
tween consecutive eigenvalues computed at fixed values of �
is shown. The experimental P�s� is in good agreement with
the GOE result. A similar agreement with GOE is found for
the number variance �2 and the least mean square statistics
�3. This is in agreement with common expectations, espe-
cially in the present experiment with a high Q value of the
resonator and a small coupling to the antennas. However, a
minimum coupling is unavoidable �open system�, thereby
implying a presumably small perturbation of the closed sys-
tem. The purpose of the present investigation is the identifi-
cation of signatures of this disturbance produced by the mea-
surement process in the spectral properties.

It is by now well established that in systems depending on
parameters, correlations between eigenvalues at different pa-

rameter values lead to important extensions of RMT univer-
salities �19,20�. In the present experiment, these correspond
to correlations between spectra at different orientations of the
Teflon® wedge. Several parametric correlators �21� have
been computed; namely, the velocity distribution, the curva-
ture distribution, the velocity-velocity correlator, the diffu-
sion correlator, and the distribution of the spacings at
avoided crossings �a general presentation of the results will
be given elsewhere�. We focus here on the latter; i.e., the
probability distribution P�c� of the local minima c of the
distance between neighboring levels as the parameter � is
varied.

The parameter dependence of the chaotic resonator is
modeled by the following ensemble,

Ĥ��� = cos � Ĥ0 + sin � Ĥ1, �1�

where Ĥ0, Ĥ1 are N-dimensional GOE random matrices and
� is a real parameter. Before performing statistical analyses,
the spectra are unfolded �with respect to energy and param-
eter dependence, see above�. We will denote by �resc the
resulting rescaled parameter. Though the form for large N of
the probability distribution P�c� has not been derived for this
model, it is well approximated by the N=2 result �22�

PGOE�c� � �2/�� exp�− c2/�� , �2�

where the scale of c has been chosen such that �c�=1.
We have evaluated P�c� from the experimental data. The

result is presented in Fig. 4. It is compared to the prediction
Eq. �2�. Though the general trend shows an overall agree-
ment, systematic deviations are observed. In particular, a
lack of small spacings of avoided crossings is clearly visible
in the experimental distribution.

It is interesting to note that similar results were obtained
in �23�, where they were attributed to an insufficient experi-
mental resolution in the parameter variation. This was also
our first suspicion and we tested it numerically with a ran-
dom matrix model. The rotatable obstacle, i.e., the varying of
the shape of the resonator, is accounted for in the model by
considering the parameter-dependent ensemble of random
matrices given in Eq. �1�, where the dimension of the matri-

ces Ĥ0 and Ĥ1 is chosen as N=1000. Only the 300 central
eigenvalues of each diagonalization are used. If the rescaled

FIG. 2. Part �#200–#250� of the experimental eigenvalues on
an unfolded �i.e., dimensionless� scale as a function of the param-
eter �.

FIG. 3. The experimental nearest-neighbor spacing distribution
�histogram�; the GOE random matrix result �full line�. The eigen-
values #331 to #440 of each of the 37 spectra have been used.
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parameter �resc is treated as a continuous parameter, then a
curve for P�c� very similar to Eq. �2� results. If, in contrast,
�resc is discretized such that a set of parameter values very
similar to the experimental one is used, then the agreement
with the experimental histogram improves. In particular, a
dip at c�0 appears. However, systematic deviations of the
experimental P�c� and also of other parametric statistical
measures studied �velocity and curvature distribution,
velocity-velocity correlator� from the corresponding predic-
tions of the model �1� persist. We thus conclude that the
disagreement between the RMT predictions of the model �1�
and the experimental result cannot be entirely attributed to an
insufficient resolution with respect to the parameter. Other
effects, like the stability of the dip with increasing frequency,
were also checked. We have devided the 440 levels in win-
dows of increasing frequency and computed P�c� for each of
them. We were not able to detect any systematic trend in the
behavior of the dip as frequency increases. The present avail-
able data thus exclude the attribution of the dip to a finite
size effect.

Since the experiment is performed with a superconducting
resonator, in the absence of the antennas and neglecting dis-
sipation, the cavity is an isolated time-reversal invariant sys-
tem which, in principle, should be correctly described by the
parametric statistical model Eq. �1�. However, for the mea-
surement of a spectrum, a typical procedure is to couple the
system to the exterior through antennas, and to emit an input
signal via one of them and receive the output signal via
another one. Hence, the effective Hamiltonian describing the
spectral properties of the resonator is non-Hermitian �open
system�, and the statistical properties of the spectrum are not
expected to coincide with those predicted from the Hermitian
model Eq. �1�. If the coupling to the antennas is weak, a
small but nonzero change in the position of the real part of
the resonances with respect to the closed system is thus ex-
pected. As Fig. 3 shows, with the present experimental con-
ditions this shift in the resonance frequencies has no visible
effect on the spectral fluctuations �24� for a fixed value of the
parameter. In contrast, as we will see below, it induces size-
able deviations in the parametric statistical properties.

In the present experiment the antennas act as single scat-
tering channels as their diameter is small compared to the
wavelengths of the microwaves in the total frequency range.
Wave scattering in such a three-port system is described by a
3�3 scattering matrix of the form �25–28�

Ŝ = Î + 2iŴT�Ĥ��� − iŴŴT − EÎ�−1Ŵ , �3�

whose derivation is based on the theory of quantum scatter-

ing �formulated, e.g., in �29��. Here, Î is the identity matrix

and Ĥ��� the Hamiltonian of the resonator. It is modeled by

the N�N parametric GOE defined in Eq. �1�. The matrix Ŵ

is an N�3 matrix, Ŵ� �X̂1 , X̂2 , X̂3�, that describes the cou-
pling of the resonator to the antennas �the jth component of

the N-dimensional column vector X̂	 couples the jth internal
wave function to the 	th antenna�. From Eq. �3�, the reso-
nances are obtained as the eigenvalues of the effective non-
Hermitian Hamiltonian �30�

Ĥef f�
,�� = Ĥ��� − i
��/	N��X̂1X̂1
T + X̂2X̂2

T + X̂3X̂3
T� . �4�

Since the system is time-reversal symmetric and the coupling
is weak, the emission of waves from one antenna and its

detection in another is modeled with real column vectors X̂	

as in �25�. Consistent with the random model adopted for the
Hamiltonian of the resonator, they are considered as indepen-
dent random variables with a Gaussian distribution whose
width is set to unity. In Eq. �4� the parameter 
 thus mea-
sures the strength of the coupling of the resonator to the
antennas in units of the mean spacing � /	N of the eigenval-

ues of Ĥ���. In contrast to the present experiment, the strong
coupling regime has been investigated in �26,31�.

We have studied numerically the statistical properties of

the eigenvalues of Ĥef f. For small values of 
 the resonances

are close to the real axis and tend to the eigenvalues of Ĥ���.
As 
 increases, and up to 
�0.5, the imaginary part of the
resonances increases. For larger values, the resonances split
into two groups: three of the resonances, their number cor-
responding to the rank of the perturbation, move deeply into
the complex plane while the remaining N−3 approach again
the real axis with increasing 
. Due to the weak coupling, the
present experiment should correspond to relatively small val-
ues of 
. We find numerically that for values of 
 smaller
than �0.05 the ratio of the imaginary to the real part of the

eigenvalues of Ĥef f is smaller than 0.005, and its ratio to the
mean spacing between adjacent real parts is less than 0.1.
The numerical P�s�, the �3-statistics, and the �2-statistics
agree with GOE, in accordance with the experimental results.
The distribution P�c� of avoided crossings, however, devi-
ates from the model �1� for 
 larger than about 0.01. Before
reaching again a GOE-like behavior �2� at 

2.5 as tested
numerically, a sharp �-like peak at c
0 followed by a dip is
observed. The peak size increases until 

0.5, and then
decreases. This behavior differs both from the GOE behavior
�Eq. �2��, and from the experimentally observed distribu-
tions. A more careful analysis of the behavior of the real and

the imaginary part of the eigenvalues of Ĥef f �Eq. �4�� as a

FIG. 4. The experimental distribution of avoided crossings �full
line histogram� compared to the GOE prediction Eq. �2� �full line
curve�. The dashed line histogram is obtained from the model �4�
with 
=0.02 and using a discrete set of rescaled parameters �resc

�see main text�. The eigenvalues #331 to #440 of each of the 37
spectra have been used.
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function of the parameter � shows that the contributions to
the peak of P�c� at c=0 are due to crossings of the real parts
of two complex eigenvalues. Incidentally, this behavior is
characteristic of non-Hermitian Hamiltonians studied re-
cently �32�.

Why is the sharp peak at c�0 predicted by the model �3�
not observed in the experiment? Our interpretation is that
this is due to the discrete variation of the experimental pa-
rameter. Because of the discrete sampling, the probability to
observe small spacings is strongly reduced. And indeed, the
smallest spacing observed in the unfolded experimental data
is about s
0.014. To compare theory and experiment, a dis-
cretization of the parameter in the model �4� has to be per-
formed. In Fig. 4, such a comparison is made using in Eq. �4�
a discrete set of parameter values �resc whose step size is
similar to the experimental one, and 
=0.02. A good overall
agreement between both curves is obtained, not only around
the dip close to the origin. A similar agreement is obtained
for the other parametric correlators studied �curvature distri-
bution, velocity-velocity correlator, etc.�, thus providing a
globally consistent picture of the experimental data.

The experimental as well as the theoretical results thus
indicate that, while absent in the nearest neighbor spacing
distribution, we are observing in more sensitive parametric
spectral functions signatures induced by the measurement
process. Interestingly, similar mechanisms were recently

studied in the physics of cold atoms �33�. Two ingredients
are important in order to understand the experimental results.
First, we had to model the system by incorporating its cou-
pling to the external world �flux is fed into the resonator and
coupled out via one or two antennas�. Second, we had to take
into account the discreteness of the parameter variations.

The proposed parametric “spectral detector” is clearly a
powerful tool to study the interaction of a quantum �or wave�
system with its environment. The underlying working prin-
ciple is very general since it depends on a fundamental
physical principle; namely, the standing waves inside the
closed resonator are transformed into waves propagating
from an entrance antenna to an exit antenna. In particular, it
may be useful in the analysis of more controlled experiments
concerning the interplay between the measurement process,
the currents it induces through the cavity, and the dissipative
processes.
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