Vector Spaces and Hilbert Spaces (Mainly, Griffiths A.1, A.2)

A vector space is a set of objects called vectors ($|\mathbf{A}\rangle,|\mathbf{B}\rangle,|\mathbf{C}\rangle, \ldots$) and a set of numbers called scalars (a, $\mathrm{b}, \mathrm{c}, \ldots$) along with a rule for vector addition and a rule for scalar multiplication. If the scalars are real, we have a real vector space; if the scalars are complex, we have a complex vector space. The set must be closed under vector addition and scalar multiplication.

Vector addition must have these properties:

- The sum of any 2 vectors is a vector: $|\mathbf{A}\rangle+|\mathbf{B}\rangle=|\mathbf{C}\rangle$
- Vector addition is commutative and associative:

$$
|\mathbf{A}\rangle+|\mathbf{B}\rangle=|\mathbf{B}\rangle+|\mathbf{A}\rangle \text { and }|\mathbf{A}\rangle+(|\mathbf{B}\rangle+|\mathbf{C}\rangle)=(|\mathbf{A}\rangle+|\mathbf{B}\rangle)+\mathbf{C}\rangle
$$

- There exists a zero vector $|\mathbf{0}\rangle$ such that : $|\mathbf{A}\rangle+|\mathbf{0}\rangle=|\mathbf{A}\rangle$ for any vector $|\mathbf{A}\rangle$
- For every vector $|\mathbf{A}\rangle$ there is an inverse vector $|-\mathbf{A}\rangle$ such that $|\mathbf{A}\rangle+|-\mathbf{A}\rangle=|\mathbf{0}\rangle$

Scalar multiplication must have these properties:

- The product of a scalar and a vector is another vector: $\mathrm{b}|\mathbf{A}\rangle=|\mathbf{C}\rangle$
- It is distributive with respect to vector addition and scalar addition:

$$
\mathrm{a}(|\mathbf{A}\rangle+|\mathbf{B}\rangle)=\mathrm{a}|\mathbf{B}\rangle+\mathrm{a}|\mathbf{A}\rangle \text { and }(\mathrm{a}+\mathrm{b})|\mathbf{A}\rangle=\mathrm{a}|\mathbf{A}\rangle+\mathrm{b}|\mathbf{A}\rangle
$$

- It is associative with respect to ordinary scalar multiplication: a (b|A $|=(a b)| \mathbf{A}\rangle$
- Multiplication by the scalars 0 and 1 yields the expected: $0|\mathbf{A}\rangle=|\mathbf{0}\rangle$ and $1|\mathbf{A}\rangle=|\mathbf{A}\rangle$

Any collection of objects which obeys these rules is a vector space. Notice that this definition of a vector space does not involve definitions of either vector direction or vector magnitude. We are used to thinking of vectors as arrow-like things with both direction and magnitude, but for a general vector space, this may not be so.

In addition to the rules above, if there is a rule defining an inner product, then we have a kind of vector space called an inner product space. The inner product of two vectors $|\mathbf{A}\rangle$ and $|\mathbf{B}\rangle$ is a complex number, written $\langle\mathbf{A} \mid \mathbf{B}\rangle$ with the following properties:
$\langle\mathbf{B} \mid \mathbf{A}\rangle=\langle\mathbf{A} \mid \mathbf{B}\rangle^{*},\langle\mathbf{A} \mid \mathbf{A}\rangle \geq 0,\langle\mathbf{A} \mid \mathbf{A}\rangle=0 \Leftrightarrow|\mathbf{A}\rangle=|\mathbf{0}\rangle,\langle\mathbf{A}|(\mathrm{b}|\mathbf{B}\rangle+\mathrm{c}|\mathbf{C}\rangle)=\mathrm{b}\langle\mathbf{A} \mid \mathbf{B}\rangle+\mathrm{c}\langle\mathbf{A} \mid \mathbf{C}\rangle$
Finally, the collection of all complex square-integrable functions $f(x)$, with inner product $\langle f \mid g\rangle=\int d x f(x)^{*} g(x)$, is an inner product space called a Hilbert Space. Square-integrable means $\int d x|f(x)|^{2}<\infty$. Usually the functions are defined over all space and the integrals are over all space $(-\infty<x<\infty)$. But sometimes, the functions are only defined over a finite range ($a<x<b$) and then the integrals are only over that range $\int_{a}^{b} d x(\ldots)$. An example of a finite-range Hilbert Space is the wavefunctions for the infinite square well (which only exist inside the well $0<x<a$).

