Tunnel Diodes

A variation on the tunneling problem is to consider two such barriers separated by some distance L, i.e., a square well with walls of finite height V_0 and finite thickness a as illustrated by the potential barriers in Figure 6-32. A particle originally in the well moves back and forth, striking the walls periodically. Each time it strikes a barrier, it has a small but finite probability of tunneling through it and escaping. Such quantum mechanical tunneling is at the heart of a number of physical phenomena or devices such as the tunnel diode and the superconducting Josephson junction.

As we might expect, electrons approaching the twin barriers from outside have a probability, albeit small, of tunneling through both of them, as shown by the wave packet approaching the pair of barriers in Figure 6-32. The region between the barriers is a finite well, with walls of thickness a rather than infinity as in Section 6-3, and solution of the Schrödinger equation leads to quantization of the energy, just as in our earlier discussion. This leads to the very interesting result that, if the velocity v of the electrons approaching from outside the well is such that their kinetic energy E_k...
matches the energy of one of the quantized levels in the well E_n, then the width of the well is equal to a half-integer number of electron de Broglie wavelengths λ.

$$L = \frac{n}{2} \frac{\lambda}{\lambda} = \frac{nh}{2p} = \frac{nh}{2\sqrt{2mE_k}} = \frac{nh}{2\sqrt{2mE_n}} = 6-80$$

This means that the multiply reflected waves inside the well interfere constructively and as a result the transmission of electrons through both barriers can be as large as 100 percent, even though the transmission through one barrier may be less than 1 percent! (This is analogous to a similar resonant effect in the Fabry-Perot interferometer.) This resonant transmission at certain energies led to the development of the resonant tunneling diode by Esaki, Chang, and Tsu.18 Such devices, with both equal and unequal height barriers have a number of useful properties. For example, the resonant tunneling diodes illustrated in the accompanying photograph have operated as an oscillator at 720 GHz, a record for solid state devices.