26

MORE CHAPTER 6

Schrodinger’s Trick

The time-dependent Schrodinger equation for the harmonic oscillator is
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whose stationary, bound-state solutions are
W (xt) = P(x)e B
where {s(x) satisfies the time-independent equation
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It is not obvious how to solve Equation 2 for the allowed values of E and the
corresponding wave functions {s(x). There are several general techniques for solving
differential equations; however, this problem can be solved (exactly!) using a beauti-
ful trick invented by Schrodinger.

Recalling that @ = V K/m, we define y = Vmo /fix and, correspondingly,
dy = Vmo/fidx. Note that o is the classical oscillator’s angular frequency:

X = x, cos wt, which satisfies m (d*x/dt*) = —Kx. Therefore, substituting x and dx
in terms of y and dy from above into Equation 2, we obtain
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and
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This can be written as
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To see that this is true, note that
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So the Schrodinger equation for the harmonic oscillator becomes
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Operating on Equation 5 from the left with (d + y>, we obtain
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But, for any function f
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This is true for any function f(y), in particular for f(y) = <d + y)ll;. Therefore,
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Rearranging this gives us
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But recalling Equation 3, which is
d’ .|, 2E
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we see that, if we define ¢’ = (d + y)tb and E' = E — fw, then Equation 6
Y

becomes Equation 7:
d’ 2} 2F’
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Thus, Equations 3 and 7 have the exact same form. This means that if we have found
a solution Yi(y) corresponding to energy E, then ((d/dy) + y)yp = (d{s/dy) + y is
also a solution, and its corresponding energy will be (E — #iw). We can just keep
going like this and each time the energy is lowered by Aiw. This means that the spac-
ing of the energy levels of the quantum harmonic oscillator is 7w.
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