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MORE CHAPTER 6, #1

Graphical Solution of 
the Finite Square Well
This section provides a more detailed understanding of the solution of the Schrödinger 
equation for a one-dimensional square well of finite depth, a physically more realistic 
potential whose understanding will be helpful in many future discussions. Let us first 
shift the V(x) and x axes so as to arrange the potential symmetrically about x � 0 with 
the walls at ; a as shown in Figure 6-8b. The purpose is to enable us to simplify the 
mathematics a bit. As above, we will only be concerned with energies inside the well; 
that is, 0 � E � V0.

Equation 6-33 is the Schrödinger equation for 	a � x � �a where V(x) � V0 
and its general solution is

 �1x2 = B1 e�x + B2 e-�x 6-36

where B1 and B2 are constants. The condition that �(x) S 0 as x S 	� means that 
B2 � 0 for x � 	a. Similarly, B1 � 0 for x � �a and we conclude that

 �1x2 = B1 e�x  x 6 -a  6-37a

�1x2 = B2 e-�x  x 7  {  a 6-37b

Equation 6-26 is the Schrödinger equation for 	a � x � �a where V(x) � 0, and 
its general solution, we have already noted, is

 �1x2 = A1 sin kx + A2 cos kx 6-38

where A1 and A2 are constants. In contrast with the infinite square well, however, we 
cannot eliminate either the sine or cosine functions by requiring that they be zero at 
the boundaries of the well because the boundaries are not infinitely high. However, 
because of their particular symmetry (cosine is even, sine is odd), we can consider 
them separately with the symmetric arrangement that was chosen for V(x).

Equations 6-37 and 6-38 are all continuous functions with continuous first 
derivatives; therefore, the complete �(x) and ��(x) for the finite square well will also 
be continuous, as required by the acceptability conditions, if they are also continuous 
at x � 	a and x � �a. How do we ensure continuity at those two points? Let us con-
sider first the even solution in the well, �1x2 = A2  cos kx.

For x � �a:

 For continuity of �1x2     A2  cos ka = B2 e-�a 6-39a

For continuity of �� 1x2    -kA2  sin ka = -�B2 e-�a 6-39b
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For x � 	a:

For continuity of �1x2   A2  cos1-ka2 = A2  cos ka = B1 e-�a 6-40a

 For continuity of ��1x2 -kA2  sin1-ka2 = kA2  sin kA = �B1 e-�a 6-40b

We note immediately that B1 � B2, which the symmetry of the potential might also 
have suggested to us. Combining Equation 6-39 and 6-40, we have that
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k
 6-41

Substituting values of k and � from above, Equation 6-41 can also be written as

 tana22mE

U
 ab = A

V0 - E

E
 6-42

Considering the odd solutions in the well, �1x2 = A1  sin kx, an equivalent discus-
sion leads to the condition that

 -cot ka =
�

k
 6-43

Though tedious to solve analytically, the solutions to these transcendental equations 
can be readily found graphically. The solutions are those points where the graphs of 
tan ka and 	cot ka have values in common with �>k. Figure 6-15 illustrates the 

FIGURE 6-15 Graphical solutions of Equations 6-41 and 6-43. Two different curves of �>k 
are shown, each corresponding to a different value of V0. The value of V0 in each case is given 
by the value of ka where �>k = 0, indicated by the small arrows. For example, the top �>k 
curve has �>k = 0 for ka � 2.75�, or 12mV021

2 a>h = 2.75�. Allowed values of E are those 
given by the values of ka at the intersections of the �>k and tan ka and �>k and 	cot ka 
curves.
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graphical solution. The tan ka and 	cot ka are both graphed versus ka. They are, of 
course, just the curves of tan � versus � and the negative of the curves of cos � versus 
� that you first saw in trigonometry. The “angle” ka contains both the particle’s 
energy E and the half width of the well a; thus, the ka axis is the energy axis. The 
value of �>k is also graphed against ka. The point where the �>k curve intersects 
the ka (energy) axis is the point where E � V0; that is, it corresponds to the top of the 
well. Some features of the finite square well solutions are worth noting:

1. As the well gets deeper—that is, as the point where �>k = 0 moves to the right 
in Figure 6-15—a new quantized energy and solution appear each time the point 
where �>k = 0 reaches an integer multiple of �>2. The solution intersections 
move up the tan and 	cot curves with ka S n�>2, as for the infinite square 
well.

2. As the well gets more shallow—that is, as the point where �>k = 0 moves to 
the left in Figure 6-15—a solution is lost out of the top of the well each time that 
point passes an integer multiple of �>2. Note that there is always at least one 
quantized energy in the well no matter how shallow it gets, as long as V0 � 0.

Obtaining the values of the constants in the general expressions for V(x) is not 
particularly useful for our purposes here since we have already found the general 
form of the wave functions for the finite square well. (See Figure 6-12, noting that 
L � 2a there.) Using the graphical technique outlined, you can now construct 
energy-level diagrams for finite square wells.


