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Visual Comparisons
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Diffraction Grating (/Wye sy

Note: despite the name, this device uses
interference, not diffraction!

Many slits (or obstructions), equally spac

Need light from all of them to be in phase i/
to get a bright spot )

>
Ideal picture: plane wave incident on

grating, so same phase at all slits. <
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Pattern from a Diffraction Grating
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Constructive interference condition: asin = mA swe = m.@i

Note: gratings can be made with small a = Iargre 0’s

From a laser (or other monochromathc ource):
A

W\/

W s Ahe “order”
ot e Fbvadion divecto,



Pattern from a Diffraction Grating

From a white-light (continuous spectrum) source:
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What if light is incident on grating at an angle?

Plane wave is now coming in at an angle, so there is a phase shift

from slit-to slit
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Still need outgoing light to all be in phase to get a bright spot,
i.e. when a(sin@; + sinf) = mA




Consequences for your experiment

Can you count on the grating in your spectrometer to be
perfectly alignhed, normal to the light beam? ||/

How you can align it:
Retro-reflect
Adjust so that diffracted lines are at symmetric angles

How you can take data intelligently to minimize systematic
error from mis-alignment: Meascoe ditFratinr i bt &/r@%
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Transmission vs. Reflection Gratings

Transmission: slits, or scratches, or a fine mesh of wires

Reflection: Reflective surface with interruptions
or surface height changes

Note: angles of diffracted beams are typically not small, so you
can’t make the approximation sinf = 6

Tuned reflective surface:

To improve the “efficiency”
for a certain refraction order



Energy Levels and Transitions

It’s all about the potentiall
A quantum state describes a system, e.g. an electron in a potential

Harmonic Oscillator Bond between atoms
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Spectrum of Hydrogen Lamp

Spectrum spread out using a diffraction grating
(Better than using dispersion in a glass prism)

Empirical formula by Balmer:

Full spectrum of

hydrogen emission lines:

Includes UV and infrared

Must be from transitions
between energy levels
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Bohr Model for the Atom

Picture electrons orbiting the nucleus

Problems with that, from classical theory:
* Electron should be able to have any energy level
* Charged particle in orbit should radiate energy and collapse

Bohr’s model:

Assume that electrons can only occupy discrete orbits with angular
momentum equal to a multiple of i1

Solving the circular motion problem gives

ovbiF vad L
1, = agn* with ag = h?/uke? = 5275+ 10 ¢,
K (V@JM(Q)) wAss
E, = —E,/n?> withE, = ke?/2a, = [3.6 </

(Neglecting fine structure from electron spin-orbit coupling,
and hyperfine structure from nuclear spin couplings)
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Hydrogen Atom Transitions

Alternatively,

—R_hc
E, = —
R is the “Rydberg constant”, 1.09737 x 10’ m~! e
R hc is the “Rydberg energy”, ~13.6 eV / “p +7e

But for a hydrogen atom, we should use the reduced mass
= Ry is Rydberg constant for hydrogen, 1.09678 x 10” m™*

Starting from E,, < —1/n? ...

A photon emitted or absorbed in a transition must have energy
equal to the difference of two energy levels

la:—"

Photon wavelengths are given by the Rydberg formu aj; =3
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Quantum Mechanics Solution

Quantum mechanical system with one electron in Coulomb
(electrostatic) potential

3-D system
Exactly solvable, but the math is complicated
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Extending to Other Atoms

Single-electron atoms
Simple!
Change e® to Ze? and use appropriate reduced mass u

I(\
C_AO\V?Q O‘(:'MHC/emj
Multi-electron atoms

Complicated!
Multi-particle quantum state with interacting electrons
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Notes about Atomic Spectra Experiment

Manual equipment and data recording
Uses a glass diffraction grating
Figure out what the knobs do
Vernier scale for angles — do you know how to read it?
Grating needs to be aligned (might be OK already, or might not)

Suggest using Matlab scripts for data analysis calculations

Evaluate measurement uncertainties
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http://physics.nist.gov/PhysRefData/Handbook/Tables/mercurytable2.htm

Other Elements

Heulral Atom

fingly lonized

Finding (| Element || Atomic || Periodic Abomic mhrsi:tent Energy ||Persistent|| Energy || Ref.
List Hame ||Mumber || Tahle Data Lines ||Levels Lines ||Levels
Swilch Lo
ASCH Version ou a101.009
12 3208.169
Stromg | 10| 3307
600 B 3650.153
- Vaouum 70 3654.836
Intensity Wavelength (&) Spectrum | Reference 50 3663.270
20 B93.0847 Hg II SRO1 1000 B, e | 3883.831
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1000 P 1942.273 Hg II SRO1 20 2769.538
&0 5790.663
15 1873.794 Hg II SRO1 ' e
10 1G87.841 Hg IT SRO1 20 o S5E888.939
15 6146.435
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