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Abstract

This is an example lab report for part 1 of Lab 1. The report emphasizes how the data was
analyzed, and how the uncertainties were determined and propagated. Systematic uncertainties
and possible methods to improve the measurement are also discussed. Note that this report only
covers part 1 of the lab, although you are responsible for reporting on parts 2 and 3 as well.

1. Introduction

I performed two measurements of the index of refraction of a glass block, once measuring the
laser beam displacement with a ruler, and once measuring with the photodiode and stepper motor.
For both measurements the glass block was oriented vertically, so the beam passed through its
shortest dimension.

2. Uncertainties on the directly measured quantities

2.1. Angle of incidence

I'measured the incident angle with the vernier scale on the rotation table, using retro-reflection
to determine the direction normal to the glass surface. I repeated the retro-reflection procedure
four times and found that the reading varied by 0.1°, so I adopt this as the uncertainty on the
normal direction, as well as the uncertainty on all the other angles measured in this portion of the
lab. The angle of incidence for each measurement is the difference between the rotated reading
and the normal direction, so the uncertainty on the normal direction and the uncertainty on the
rotated value add in quadrature:

0 = ¥(0.12 +0.12) = 0.14° (1)

2.2. Glass thickness

I measured the thickness of the glass block several times and in several different locations
with the calipers, and each measurement was 9.15 mm. Since I found no variation from one
measurement to the next, I adopt the smallest digit on the calipers, 0.05 mm, as the uncertainty.
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Figure 1: Beam position data measured with the photodiode and the stepper motor. From left, the angles of incidence for
the six beam profiles are 0.0°, 30.0°, 40.0°, 50.0°, 60.0°, and 70.0°.

2.3. Beam position measured with the ruler

I measured the beam position with a ruler attached to the screen with binder clips for three
angles of incidence. It was somewhat difficult to determine the exact center point of the laser by
eye, since the beam spot is small and very bright everywhere. I simply estimate the uncertainty
on each measurement to be half the markings on the ruler, or 0.5 mm. Beam displacements (d)
are the difference between the measured beam location and the zero position, so the resulting
uncertainty is

og(ruler) = V0.52 + 0.52 = 0.7 mm 2)

2.4. Beam position with the photodiode and stepper motor

In the second set of measurements I used the photodiode and stepper motor to measure the
beam position. The digitized data is shown in Fig. 1.

I determined the center position of the beam by inspecting the location of the rising and
falling edges of the beam profiles with Matlab’s zoom tool. I took the mean position between
these edges as the beam center. I estimate that this simple procedure results in an uncertainty
of 0.01 mm on the beam center for a typical dataset, corresponding to four steps of the stepper
motor).

However, the beam profile for the zero degree dataset has an unusual double-peak structure,
as seen in Fig. 1. The origin of the double bump is unknown, but it may be the result of multiple
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0; d 0, n on(6)  op(l)  ou(d)
(deg) (mm) (deg)

30.00+0.14 24+07 15+5 1.89+0.86 0.01 0.01 0.86
50.00+0.14 3.1+0.7 34+5 1.38+0.22 0.004 0.004 0.22
70.00+0.14 6.0+0.7 39+10 147+0.35 0.007 0.011 0.35

Table 1: Results from the ruler measurements. The thickness of the glass (L) is 9.15 + 0.05 mm. The uncertainty on
n is calculated by varying each of the three inputs (6;, L, and d) one at a time and adding the results in quadrature.
The uncertainty on n due to each input alone is shown in the last three columns. The weighted average of the three
measurements is n = 1.43 + 0.18.

reflections in the glass block or the photodiode iris. Due to the double bump structure, I estimate
that the uncertainty on the beam position for the zero degree dataset is 0.02 mm. After subtracting
the zero position, the resulting uncertainty on d is for each measurement is

o4(photodiode) = v0.012 + 0.022 = 0.022 mm. 3)

3. Results

The results from the ruler measurements and the photodiode measurements are shown in
Tables 1 and 2. The angle of refraction for each dataset was calculated according to

6, = tan”! (tan 6, — i ) 4)
Lcos6;

The uncertainty on 6, was calculated with excel by explicitly varying the three input values
(6;, L, and d) by their uncertainty and observing the resulting variation in 6,. The three varia-
tions were added in quadrature to determine the total uncertainty. Then Snell’s law was used to
determine the index of refraction for each dataset:

n(glass) = sin(6;)/ sin(6;), (®)]

where again the total uncertainty is determined by varying 6;, L, and d one at a time. Tables 1
and 2 shows both the total uncertainty on n and the uncertainty due to each of the three input
values individually.

The weighted average of the results for the ruler measurements is n = 1.43 + (.18, and the
weighted average for the photodiode measurements is n = 1.507 + 0.005

An alternative method to combine the photodiode measurements is shown in Fig. 2, where I
have plotted sin(6,) versus sin(6;). According to Snell’s Law, the slope of these data points are
the inverse of the index of refraction:

sin(6,) =

Calass) S@) ©6)

A linear y? fit with the slope as the only free parameter (y-intercept set to zero) is shown
superimposed upon the data in Fig. 2. The fit was performed with the online tool at http:
//www.physics.csbsju.edu/stats/WAPP.html. The uncertainties on sin6,) shown in the
figure and included in the y? fit propagate directly from the uncertainties on 6, as listed in Table 2.
The fitted slope is 0.6637 +0.0011, which corresponds to n = (1/slope) = 1.507 + 0.003. The x>
is 1.08 for four degrees of freedom, for a probability of 90%, which is acceptable.
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0; d 6, n 0u(0)  on(l)  ou(d)
(deg) (mm) (deg)

30.00 £0.14 1.800+0.022 1930+0.15 1.513+0.013 0.005 0.005 0.011
40.00 £0.14 2.565+0.022 25.32+0.18 1.503+0.011 0.005 0.005 0.008
50.00 £0.14 3.523+0.022 30.66+0.21 1.502+0.011 0.005 0.006 0.007
60.00 £ 0.14 4.710+£0.022 35.09+0.28 1.507+0.012 0.006 0.008 0.007
70.00 £ 0.14 6.127 £0.022 3830+ 045 1.516+0.017 0.008 0.013 0.009

Table 2: Results from the photodiode + stepper motor data. The thickness of the glass (L) is 9.15 + 0.05 mm. The
uncertainty on # is calculated by varying each of the three inputs (6;, L, and d) one at at time and adding the results in
quadrature. The uncertainty on n due to each input alone is shown in the last three columns. The weighted average of the
five measurements is n = 1.507 + 0.005

Figure 2: x-axis: sin6;. y-axis: sin#6,. A linear y? fit is shown. The x? is 1.08 for four degrees of freedom. Caveat: The
online fitting tool does not draw the fitted line for the one-parameter (slope-only) fit. Instead, I show here the result of a
two-parameter fit, where the y-intercept is also allowed to float. The one-parameter linear fit looks similar to this.

4. Discussion of systematic uncertainties and methods for improvement

For the ruler measurement the uncertainty on the beam position dominates the uncertainty
on the index of refraction, as expected. The photodiode and stepper motor provide a much
more precise measurement of the beam position, decreasing the uncertainty on the total index of
refraction from 0.18 to just 0.005.

For the photodiode measurements, the uncertainty on d is the most important one for the 30,
40, and 50 degree datasets, however the uncertainties on L and 6; are almost equally important,
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as seen in the last three columns of Table 2. The measurement of d suffered from a mysterious
double-pump beam profile for the zero position dataset, and I adopted a systematic uncertainty
on d of 0.02 mm to account for this. The uncertainty on d could be decreased if the double bump
could be understood and eliminated. The beam center could also be determined more precisely
with a more sophisticated data analysis technique, such as a Gaussian fit to each of the beam
profiles near their maxima.

The fractional uncertainty on the glass thickness L could be substantially reduced by using
a thicker piece of glass, or by using the thicker dimension of the glass block rather than the thin
one. It is worth noting that the uncertainty on L was simply estimated to be the last digit on the
calipers reading, because no variation was observed from one measurement to the next.

The measurement of the angle of incidence could be improved with a larger rotation table
marked with a finer scale, or by observing the position of the reflected beam on a very fine
angular scale set far away from the glass block. Also, more data points could be taken between
40 and 60 degrees incidence, where the uncertainties on the input values propagate to have the
smallest impact on n.

Two other possible systematic uncertainties are

1. the assumption that the index of refraction of air is 1.0, and
2. the assumption that the glass block is perfectly rectangular.

Wikipedia indicates that the index of refraction of air is close to 1.0003, which is a very small
fractional change compared to our assumption of n = 1.0. Therefore this systematic uncertainty
appears to be negligible.

If the glass block is not perfectly rectangular, then Equation 4 is not exact. I found with the
calipers that the thickness of the glass block does not vary much from place-to-place, consistent
with a perfect rectangle. Also, the measured data points for the index of refraction agree well
with the Snell’s law expectation, as shown in the linear x? fit of Fig. 2. This is consistent with
our assumption that Equation 4 applies exactly.

5. Summary

I measured the index of refraction of the glass block to be 1.43+0.18 with a ruler and 1.507 +
0.005 with the photodiode and stepper motor. The two measurements are in good agreement with
each other.
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