Experiment 2

Geometrical Optics

1 Introduction

In this experiment, we will continue to explore geometrical optics by studying the optics of simple curved mirrors and lenses.

2 Background - see Pedrotti³, Sections 2-6 to 2-9

When studying the geometrical optics of mirrors or lenses one considers the following three quantities: object distance s_o , image distance s_i , and focal length f. These quantities are related by the equation

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f} \tag{1}$$

There is a convention to be followed in the definition of these quantities. For lenses, a converging lens (convex) has f > 0 while a diverging lens (concave) has f < 0. For mirrors, f > 0 for concave mirrors, and f < 0 for convex mirrors. Also by convention, we place the object to the left of the lens, with $s_o > 0$. If $s_i > 0$, it is on the right of the lens and is a real image. If $s_i < 0$ it is to the left of the lens (same side as object) and is a virtual image. One can consider the mirror as a folded over version of the lens: s_o is positive and on the left, but now a $s_i > 0$ is on the left (the opposite of the lens) and $s_i < 0$ is on the right, behind the mirror, and a virtual image.

The focal length of a spherical mirror is simply f = R/2, where R is the radius of the mirror, and the focal length of a thin lens is given by

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right),\tag{2}$$

where n is the index of refraction, and R_i are the radii of curvature of the two surfaces.

3 Experiment

You are supplied with a concave mirror, and two lenses. Your challenge is to find the focal lengths of the optics as accurately as possible.

A first start is to use an object at infinity (or close to it). The windows in the hallway are a good place to start.

You have available the laser as a source of rays to do ray tracing. Think about what happens to the rays as they pass through a lens, or bounce off a mirror. Also available is a scanning photodiode, which will allow you to use the computer to acquire beam position and sizes.

Using two (or more) optics, build a compound lens device, and measure its properties.