Department of Physics Physics 374 Spring 2009 Due Wednesday, April 29, 2009

1.) Evaluate the following integral for k > 0 and for k < 0 using contour integration in the complex plane.

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} dx e^{-ikx} \frac{C}{(x-x_0)^2 + b^2} \tag{1}$$

2.) Evaluate the following integral using contour integration in the complex plane.

$$\int_{-\infty}^{\infty} d\omega e^{-i\omega t} \frac{\omega b^2}{[\omega + i/\tau](\omega^2 + b^2)}$$
 (2)

3.) An input signal has the Fourier representation

$$v(t) = \int_{-\infty}^{\infty} dt e^{-i\omega t} V(\omega), \tag{3}$$

where

$$V(\omega) = \frac{C}{1 + \omega^2/\omega_c^2}. (4)$$

a.) The signal v(t) is passed into a RC circuit as shown below to obtain the output signal o(t). The signal o(t) can also be expressed as a Fourier transform,

$$o(t) = \int_{-\infty}^{\infty} dt e^{-i\omega t} O(\omega). \tag{5}$$

Calculate the output signal o(t) in the time domain by first getting the Fourier transform $O(\omega)$ and then doing the inverse Fourier transform using contour integration.

b.) The same signal is passed into a RL circuit as shown below. Calculate the output

signal o(t) in the time domain by first getting the Fourier transform $O(\omega)$ and then doing the inverse Fourier transform using contour integration.

c.) The same signal is passed into a RLC as below. Calculate the output signal o(t) in the time domain by first getting the Fourier transform $O(\omega)$ and then doing the inverse Fourier transform using contour integration.

