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Complex Numbers

Motivation
Complex numbers are a way to combine the idea of number (addition, multiplication,
distribution, etc.) with the idea of vectors in the plane, producing a powerful tool.

The power is provided mathematically by the fundamental theorem of algebra. Recall
that this theorem says that any algebraic polynomial equation of the nth degree —
something of the form

€ 

anz
n + an−1z

n−1 + ...+ a1z + a0 = 0

always has exactly n complex roots; that is, it can be factored into the form

€ 

z − z1( ) z − z2( )... z − zn( ) = 0

where the zi are (possibly complex) constants, the solutions of the equation.  We will see
this give us tremendous power for figuring out solutions of ordinary linear (i.e., the
unknown comes in as the first power in every term) differential equations with constant
coefficients.

The power is provided physically whenever we have a physical system in which there are
two things (numbers or functions) that are related in the way complex numbers are.  One
such case is for oscillations of objects governed by Newton’s laws.  Since these are
second order differential equations, sometimes linear, sometimes with constant
coefficients as is our prototype oscillator example, the SHO) the two solutions look like
sines and cosines. These are related in the way that the parts of a complex function are.

Definitions and Polar Coordinates
The basic definition of complex numbers is that we
extend our real number line by adding a number
not on that line, the square root of –1 and all
multiples of that by a real number.  This leads to
two independent (orthogonal) real lines, equivalent
to a plane.  We write 

€ 

i = −1 and any complex
number as 

€ 

z = x + iy  where x and y are real
numbers.  These are represented on a plane as
shown in the figure on the right.  The complex
number z is represented by the vector.
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x= ρ cos θ

y= ρ sin θ
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Polar coordinates are very convenient when working with complex numbers.  We define
the length of the vector z and the angle it makes with the x axis as:

€ 

ρ = x 2 + y 2

θ = tan−1 y
x
 

 
 
 

 
 

This gives the inverse relations

€ 

x = ρcosθ
y = ρ sinθ

This gives the important representation of a complex number

€ 

z = ρ cosθ + isinθ( )

The de Moivre Theorem
The representation shown above appears very frequently so it pays us to look at what it
means.  We have worked out power series representations of cos and sin so we can put
them together and see what we have.

€ 

cosθ =1− 1
2!
θ 2 +

1
4!
θ 4 − ...

sinθ = θ −
1
3!
θ 3 + ...

Putting these together as cosθ + i sinθ gives

€ 

cosθ + isinθ =1+ iθ − 1
2!
θ 2 −

1
3!
iθ 3 +

1
4!
θ 4 ...

This looks quite systematic,  There is a term in every power with a nice systematic set of
coefficients — except for the i's.  If, however, we notice that i2 = -1 we can note that
replacing the minus signs by the square of i gives a nice result.

€ 

cosθ + isinθ =1+ iθ +
1
2!
iθ( )2 +

1
3!
iθ( )3 +

1
4!
iθ( )4 + ...

cosθ + isinθ = eiθ

The is take care of all the signs and just give us the familiar power series for the
exponential.  This now gives us the nice representation for a complex number:

€ 

z = x + iy = ρeiθ
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The polar representation of the complex number is particularly nice because it’s easy to
divide or multiply that way.

€ 

z1 = x1 + iy1 = ρ1e
iθ1

z2 = x2 + iy2 = ρ2e
iθ 2

z1z2 = ρ1e
iθ1ρ2e

iθ 2 = ρ1ρ2( )ei θ1 +θ 2( )

You just multiple the lengths and add the angles.

Exercise: To be sure this is consistent, try showing that if you multiply the x-y forms of
the complex numbers then the results give the length and angle for the product that the
polar forms give.

The polar result in exponential form gives a lot of nice and remarkable results.

€ 

eiπ +1= 0
If z = ρ cosθ + isinθ( ) then
zn = ρn cosnθ + isinnθ( ) 

The first of these is called Euler’s theorem.  It combines e, i, π, 1, and 0.  Many consider
this the most elegant of all mathematical equations. The second is called de Moivre’s
theorem.  If you raise the polar form of z to some power and equate it to the de Moivre
form, you can easily get expressions for cos nθ and sin nθ in terms of cos θ and sin θ.

For example:

€ 

cosθ + isinθ( )2 = cos2θ + isin2θ
cos2θ + 2isinθ cosθ − sin2θ = cos2θ + isin2θ

Equating the real part on the left to the real part on the right and the imaginary part on the
left to the imaginary part on the right gives the well-known (but otherwise cumbersome
to prove) results:

€ 

sin2θ = 2sinθ cosθ
cos2θ = cos2θ − sin2θ

If you try to prove these using trig identities you will see how much work de Moivre
saves us!

Exercise:  Use de Moivre’s theorem to figure out what cos 3θ and sin 3θ are in terms of
sin θ and cos θ.


