Derivation of Compton's Equation

Let λ_{1} and λ_{2} be the wavelengths of the incident and scattered x rays, respectively, as shown in Figure 3-18. The corresponding momenta are

$$
p_{1}=\frac{E_{1}}{c}=\frac{h f_{1}}{c}=\frac{h}{\lambda_{1}}
$$

and

$$
p_{2}=\frac{E_{2}}{c}=\frac{h f_{2}}{c}=\frac{h}{\lambda_{2}}
$$

using $f \lambda=c$. Since Compton used the K_{α} line of molybdenum $(\lambda=0.0711 \mathrm{~nm}$; see Figure $3-15 b)$, the energy of the incident x ray $(17.4 \mathrm{keV})$ is much greater than the binding energy of the valence electrons in the carbon-scattering block (about 11 eV); therefore, the carbon electrons can be considered to be free.

Conservation of momentum gives

$$
\mathbf{p}_{1}=\mathbf{p}_{2}+\mathbf{p}_{e}
$$

or

$$
\begin{align*}
& p_{e}^{2}=p_{1}^{2}+p_{2}^{2}-2 \mathbf{p}_{1} \cdot \mathbf{p}_{2} \\
& \quad=p_{1}^{2}+p_{2}^{2}-2 p_{1} p_{2} \cos \theta
\end{align*}
$$

where \boldsymbol{p}_{e} is the momentum of the electron after the collision and θ is the scattering angle of the photon, measured as shown in Figure 3-18. The energy of the electron before the collision is simply its rest energy $E_{0}=m c^{2}$ (see Chapter 2). After the collision, the energy of the electron is $\left(E_{0}^{2}+p_{e}^{2} c^{2}\right)^{1 / 2}$.

FIGURE 3-18 The scattering of x rays can be treated as a collision of a photon of initial momentum h / λ_{1} and a free electron. Using conservation of momentum and energy, the momentum of the scattered photon h / λ_{2} can be related to the initial momentum, the electron mass, and the scattering angle. The resulting Compton equation for the change in the wavelength of the x ray is Equation 3-25.

Conservation of energy gives

$$
p_{1} c+E_{0}=p_{2} c+\left(E_{0}^{2}+p_{e}^{2} c^{2}\right)^{1 / 2}
$$

Transposing the term $p_{2} c$ and squaring, we obtain

$$
E_{0}^{2}+c^{2}\left(p_{1}-p_{2}\right)^{2}+2 c E_{0}\left(p_{1}-p_{2}\right)=E_{0}^{2}+p_{e}^{2} c^{2}
$$

or

$$
p_{e}^{2}=p_{1}^{2}+p_{2}^{2}-2 p_{1} p_{2}+\frac{2 E_{0}\left(p_{1}-p_{2}\right)}{c}
$$

Eliminating p_{e}^{2} between Equations 3-26 and 3-27, we obtain

$$
\frac{E_{0}\left(p_{1}-p_{2}\right)}{c}=p_{1} p_{2}(1-\cos \theta)
$$

Multiplying each term by $h c / p_{1} p_{2} E_{0}$ and using $\lambda=h / p$, we obtain Compton's equation:

$$
\lambda_{2}-\lambda_{1}=\frac{h c}{E_{0}}(1-\cos \theta)=\frac{h c}{m c^{2}}(1-\cos \theta)
$$

or

$$
\lambda_{2}-\lambda_{1}=\frac{h}{m c}(1-\cos \theta)
$$

