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Modes of Oscillation

CLASSICAL CONCEPT REVIEW 16

The number of modes of oscillation available to electromagnetic waves in a cavity 
was central to the derivation of the Rayleigh-Jeans equation. To see how the number 
of modes per unit volume in the wavelength range between l and l 1 Dl is deter-
mined in general, let’s first consider the one-dimensional case of the allowed standing 
waves on a string of length L, for example, a guitar or violin string, stretched between 
two points A and B along the x axis as in Figure MO-1a. Standing waves can be estab-
lished only for those vibrational frequencies f for which the length L corresponds to 
an integral number nx of half-wavelengths (see Figure MO-1b):

	 L = nx 
l

2
 1 nx =

2L

l
	 MO-1a

The question then is how many of these modes exist in the wavelength range between 
l and l 1 Dl. If L is large compared with Dl, then

	 Dnx = -
2L Dl

l2 	 MO-1b

The minus sign tells us that, as nx decreases, Dl increases. In addition, the elements of 
the string can vibrate in any direction in the plane perpendicular to the string, so there 
are two degrees of freedom for each mode. Thus, we can write for Dn/, the number of 
modes per unit volume,

	 DnL =
4Dl

l2 	 MO-2

where L is the “volume” in one dimension.
The description becomes more complex in two and in three dimensions. Figure 

MO-2 shows a square with sides of length L lying in the xy plane. The edges are per-
fect reflectors, analogous to the nodal points A and B for the one-dimensional string in 
Figure MO-1. Rays representing four electromagnetic waves with � perpendicular to 
the plane of the diagram are shown reflecting at points a, b, g, and d. Like the waves 
on the vibrating string, the four waves will form a set of standing waves only if the 
frequency f is such that there is an integral number of half-wavelengths in both the x 
and y directions in each of the four waves. The boundary condition at the reflecting 
walls is � = 0, yielding allowed solutions to the wave equation for each wave

	 E 1z2 = C1z, L2 sin 
nxpx

L
 sin 

nypy

L
	 MO-3

where C(z, L) is a constant and nx and ny are integers. For example, the wave moving 
from b to g is along the hypotenuse of a 3-4-5 right triangle. Thus, the angle u  37°, 
the angle   53°, and lx and ly, the x and y components of l, are given by

	  lx = l>cos u 	
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	  ly = l>cos  = l>sin u	 MO-4

Substituting nx and ny from the appropriate versions of Equation MO-1, we see that

	 sin 
nxpx

L
= sin 

2px

lx

	

Therefore,

	
nxp

L
=

2p

lx

=
2p cos u

l
	 MO-5

Similarly,

	 sin 
nypy

L
= sin 

2py

ly

	

Therefore,

	
nyp

L
=

2p

ly

=
2p cos 

l
=

2p cos u

l
	 MO-6

Solving Equations MO-5 and MO-6 for nx and ny, respectively, squaring, and 
then adding the results gives

	 n2
x + n2

y =
4L2

l2 1cos2 u + sin2 u2 =
4L2

l2 	 MO-7

which gives the allowed wavelengths.
The above method of describing the possible standing waves in a square can be 

extended to a cube in three dimensions. Depicting a set of standing waves in a three-
dimensional cube analogous to the square in Figure MO-2 on this two-dimensional 
surface is not especially helpful (there are now eight waves in the set); however, 

MO-1  (a) A string of length L stretched between two supports A and B. Since the 
string cannot move at A and B, those two points are nodes when the string is 
vibrating. (b) The longest standing wave wavelength is l  2L. The next longest is 
l  L, the next is 3L>2, and so on. In general, the wavelengths of standing waves on 
the string are given by L = n1l>22, where n is an integer.
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MO-2  An example of a set of 
standing waves inside a 
two-dimensional square with 
sides of length L. The walls of 
the square are perfect reflectors.
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note that an additional angle x and integer nz are involved. Equation MO-8, a condi-
tion equivalent to Equations MO-5 and MO-6, also applies:

	
nzp

L
=

2p cos x

l
� MO-8

Again, solving for nz, squaring, and adding the squares yields for three dimensions

	 n2
x +  n2

y +  n2
z =

4L2

l2 1cos2 u + cos2  + cos2 x24L2

l2 =  
4L2

l2 	 MO-9

where nx, ny, and nz are all integers and l are the allowed wavelengths.
The possible combinations of nx, ny, and nz are at the corners of cubes in the posi-

tive octant of a sphere in n-space as illustrated in Figure MO-3. The number of possi-
ble combinations within a volume of radius r corresponds to the number of modes n 
for possible wavelengths l larger than a given value lmin, where r = 2L>lmin. Thus, 
we obtain

	 n = a 4

3
pr 3b *

1

8
= a 4

3
p

8L3

l3 b *
1

8
=

4pL3

3l3 	 MO-10

The number of modes with wavelengths between l and l 1 dl is given by

	 dn =
4pL3

l4  dl	 MO-11

where we have ignored the minus sign arising from the differentiation; that is, we are 
considering dn and dl both as positive (see the comment following Equation MO-1b). 
Dividing by the volume L3 and noting that each allowed wavelength has two possible 
polarizations, we obtain the number of modes per unit volume with wavelengths 
between l and l 1 dl:

	 n1l2dl =
8p

l4  dl	 MO-12

Since c  fl and dl = 1c>f 22df , again ignoring the minus sign, the number of 
modes per unit volume with frequencies between f and f 1 df is

	 g1f2 =
8pf 2

c3  df 	 MO-13
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MO-3  The n-space plot of 
nx, ny, and nz. Each 
combination of possible 
values is a point in the 
space located at a corner 
of a cube. The number of n 
values inside the shaded 
octant is that for which 
n2

x + n2
y + n2

z 6 r 2.
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