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Methods for propagation of systematic uncertainties

You have probably become pretty comfortable by now with analyzing uncertainties in fitted parameters due to 
uncorrelated random errors in measured quantities.  However, for many experiments systematic uncertainties are more 
important than random errors.  Although there is no general theory of systematic uncertainties, one can usually make 
realistic estimates of their effects using relatively simple methods.  One of the most important objectives of this course is to 
develop skill in analyzing systematic uncertainties and we expect you to estimate the systematic uncertainties in every 
derived quantity.

Let's start with a simple example.  In the first experiment of this course, you will acquire data of the form 8Ii, Vi< 
where I is the current through and V  is the voltage across a variable resistor connected in series to a battery.  You will then 
fit the data using the model 

Vi = - r Ii

where  is the open-circuit voltage of the battery and r is its internal resistance.  The random uncertainties sI  and sV  in 
current and voltage measurements using a digital meter are about half of the least significant figure, primarily due to 
round-off.  You can use standard fitting methods to deduce the parameters  8 , r< and their uncertainties 8s , sr< due to the 
random errors in the current and voltage measurements.  However, what happens if the calibration of meter is imperfect 
and all voltage readings are actually 1.5 % larger than the true voltage?  What happens if there is an offset, such that all 
currents are about 0.1 A too small?  These types of systematic errors would affect the values of the fitted parameters and 
those effects are often much larger than the random uncertainties estimated by least-squares analysis.

Assume that the response of the instrument is really linear, but that its calibration is imperfect.  When you measure 
a voltage using a voltmeter, the output reading is supposed to be proportional to the input voltage and the manufacturer 
attempts to calibrate the instrument to read volts directly.  However, the calibration cannot be expected to be perfect.  Even 
if the performance of the instrument is truly linear, there can be a scale error and perhaps an offset.  Therefore, we parame-
trize the instrumental response by  

Vout = lV  Vin + bV

where Vin is the input voltage we seek to measure, Vout is the output voltage read from the meter, lV  is a scale parameter, 
and bV  is an offset.  Ideally, lV Ø 1 and bV Ø 0 for a perfect instrument.  Suppose that the specification sheet provided by 
the manufacturer claims that the accuracy for voltage measurements is 2 % ≤ 0.01, by which they mean: lV = 1.00 ≤ 0.02 
and bV = 0.00 ≤ 0.01 Volt.  If lV = 1.015 for the meter that you actually use, then all of your voltage measurements would 



be too high by the same factor.  Your fitted value of  would also be too large by the same factor.  We need a systematic 
procedure to analyze the effects of both scale and offset errors in both current and voltage upon derived quantities.

Consider the two data sets compared below with the corresponding linear fits.  Both fits describe their data well, 
but the two sets of voltage data differ by a common scale factor lV .  For the purposes of this illustration, we assumed that 
all other calibration parameters have their ideal values and we chose lV = 1.1, which would be a rather severe calibration 
error but it makes the effect easily visible.  The scale error in the voltage calibration obviously affects both the vertical 
intercept  and the slope -r fit to these data.  The sensitivity of the physical parameters to the calibration parameters is 
gauged by the partial derivatives

∑
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ lV

=
D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
DlV

,
∑r

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ lV

=
Dr

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
DlV

where the right-hand sides are ratios between the change in the fitted quantity and the difference of the calibration parame-
ter from its ideal value; in this DlV = 0.1.  For this data set we observe
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This procedure can now be applied to each of the calibration parameters.  We apply either a common scale factor or 
a common offset to the current or the voltage measurements, perform a least-squares fit, and determine how much the fitted 
parameters change from those obtained with nominal calibration parameters.  This procedure is repeated for each known 
calibration parameter, one at a time.  We assume that systematic errors in the calibration parameters are independent of 
each other and use standard propagation of uncorrelated errors to evaluate the net systematic uncertainties in fitted parame-
ters according to
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where dlV ,I  and dbV ,I  are estimated systematic uncertainties in the calibration constants for our instruments.  We would 
then report our measurements in the form ≤ s ≤ d sys and r ≤ sr ≤ drsys where the first uncertainty is random and the 
second systematic.  Sometimes the two uncertainties are combined in quadrature, such that Hd L2 = s 2 + Hd sysL2 and 
HdrL2 = sr

2 + HdrsysL2, but one should always remain aware of the relative sizes of the random and systematic contributions.  
Your lab reports should always compare random and systematic uncertainties.
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In general we must evaluate the partial derivatives numerically — adjust each parameter one at a time, repeat the 
analysis, and determine the changes in the fitted parameters — but for the special case of a linear model and linear calibra-
tion parameters, we can evaluate and understand the partial derivatives algebraically instead.  The substitutions

V Ø lV  V + bV , I Ø lI  I + bI ï lV  Vi + bV = - r HlI  Ii + bI L

transform our model to

lV  Vi + bV = - r HlI  Ii + bI L

and after some rearrangement we find that

Vi = lV
-1H - bV - r bI L - r lI  lV

-1 Ii

takes the form

Vi = eff - reff  Ii

where 

eff = lV
-1H - bV - r bI L

reff = r lI  lV
-1

are effective or modified parameters.  If we assume that the changes in these parameters are small, the derivatives become
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The intercept  scales with the voltage calibration factor or shifts with its offset, but the vertical intercept insensitve to 
scaling the horizontal variable.  The effect of a current offset upon the voltage intercept is proportional to the slope r — 
there is little effect if the slope is flat or a large effect if it is steep.  Similarly, the slope r is insensitive to offsets but is 
multiplied by a small change of scale, such that Dr º ≤r Dl.  These algebraic relationships conform perfectly with one's 
expectations based upon plotting rescaled or shifted data.  Thus, we obtain

Hd sysL2 = H dlV L2 + HdbV L2 + Hr dbI L2

HdrsysL2 = Hr dlV L2 + Hr dlI L2

where  and r are the fitted parameters using ideal calibration parameters (lV ,I Ø 1, bV ,I Ø 0).  
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Suppose the fitted values are = 5.91 ≤ 0.03 Volt and r = 0.282 ≤ 0.007 W.  Also suppose that the specification 
sheet provided by the multimeter manufacturer claims that dl = 0.02 and db = 0.01 for both voltage or current measure-
ments, where b is in the appropriate units.  The algebraic method then gives d sys = 0.12 Volt and drsys = 0.008 W.  Under 
these conditions the systematic uncertainty dominates for the voltage measurement while for the internal resistance system-
atic and random uncertainties are similar.  Obviously, one cannot neglect the systematic errors and must consider both in 
drawing conclusions from an experiment. 

Notice that systematic uncertainties are not reduced by taking more measurements.  When systematic uncertainties 
are negligible, we can improve the accuracy of fitted quantities by taking more data to reduce the effect of random uncer-
tainties.  Once the random contributions to uncertainties in fitted parameters are reduced to the level of the systematic 
uncertainties, taking additional data provides little further improvement in the quality of the final results.  Therefore, one 
must carefully consider systematic uncertainties when designing the experiment, for they ultimately determine its accuracy.

What if your data were collected using more than one scale setting of a particular meter?  You would then assume 
that there are independent sets of calibration parameters for each scale and would have to apply scale factors or offsets to 
subsets of your data and evaluate their effects upon fitted parameters numerically — the algebraic method would no longer 
work.  This is more work, but the computer won't complain.  However, this shows that it is important to record in your lab 
notebook the scales that were used to acquire your data and to make note of all changes of scale.  Try to minimize the 
number of scale changes, if that can be done without too large a fraction of your data near either end of the scale.

practice problem

Copy the data tabulated below into an Excel spreadsheet and use the LinFit macro to deduce  and r assuming ideal 
calibration parameters.  Then evaluate the probability, P@cred

2 D, for your fit.  Is it acceptable?  Next,  assume that dl = 0.03 
and db = 0.02 for both current and voltage and estimate the systematic errors in  and r algebraically.  Then evaluate the 
contributions of each calibration to the systematic uncertainties numerically by using LinFit on suitably modified data.  
These two methods should give similar results, but conducting this exercise manually is instructive.  The numerical method 
is often easier than the algebraic method, especially for nonlinear models.  
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I V σV

0.00 6.0 0.1
0.50 5.9 0.1
1.00 5.7 0.1
1.50 5.5 0.1
2.00 5.4 0.1
2.50 5.4 0.1
3.00 5.0 0.1
3.50 4.9 0.1
4.00 4.9 0.1
4.50 4.6 0.1
5.00 4.5 0.1
5.50 4.4 0.1
6.00 4.1 0.1
6.50 4.2 0.1
7.00 3.8 0.1
7.50 3.8 0.1
8.00 3.7 0.1
8.50 3.6 0.1
9.00 3.2 0.1
9.50 3.0 0.1

10.00 3.0 0.1
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