

PHYS 275 - Experiment 2 Of Dice and Distributions

Experiment Summary

- Today we will study the distribution of dice rolling results
- Two types of measurement, not to be confused: frequency with which we obtain a certain roll, and frequency with which we obtain a certain score
- They answer to the following type of questions: how often do I get my die to show the face "2"? If I roll two dice, how often do I get a result of 10 or larger?
- We will study the probability distribution of dice rolls, and compare them with the expected theory
- We can (and will!) calculate analytically the theoretical probability distribution
- The comparison between theory and experimental results will tell us clues about our dice (are they fair?)

What should we learn today?

- Learn concepts of probability
- What is probability?
- How can I quantify random phenomena?
- Power of probability: give indications on the outcome of a specific event
- Practice uncertainty analysis
- Average of measurement, standard deviation, uncertainty on averages (see that repeating measurements you can make a better determination of a quantity)
- Error propagation
- Test of χ^{2}
- Learn how to present your data
- Organize your spreadsheet in a way that it is easier for the TA to understand your analysis and results

Theory of Dice Rolling

- Let us start with 1 die
- If the die is fair, each side has equal probability of appearing, at each roll
- Let us indicate with $P(n)$ the probability that the die will show the face with n dots
- We find that $P(n)=1 / 6$ exploiting two trivial properties:
- $P(1)=P(2)=\ldots=P(6)$: probability of falling on each side is the same, whichever the side
- $\sum_{n=1}^{6} P(n)=1$: the probability that the die falls on any side is 1 ; i.e., the die rolls, with probability 1, a number between 1 and 6
- The (discrete) function $P(n)$ is the parent distribution
- It is the theoretical probability distribution for one die

Using the parent distribution

- The parent distribution is useful to define many properties of our system (one die)
- Here are some of them, which you will encounter in this experiment
- Frequency distribution $f(n)$: number of times we see the n face
- What is $\bar{f}(n)$, the expected number of times we see the n face if we throw the die N times?
- $\bar{f}(n)=N * P(n)$

More on using $P(n)$

- Expected statistical fluctuation on $\bar{f}(n): \sigma_{\bar{f}}(n)$
- This has to depend on N : the more times you through the die, the closer your $f(n)$ should approach $\bar{f}(n)$
- Formula: $\sigma_{\bar{f}}(n)=\sqrt{N * P(n) *(1-P(n))}$
- E.g.: if I throw my die 180 times, I expect to obtain $n=6$ for $\bar{f}(n) \pm$ $\sigma_{\bar{f}}(n)=30 \pm 5$ times (try the math!)
- Also note that since $P(n)=\frac{1}{6}$ (i.e., it is a constant), neither $\bar{f}(n)$ nor $\sigma_{\bar{f}}(n)$ actually depend on n : they are both constant
- Where is that formula coming out from?
- Let us imagine that we threw a die N times, and want to study the probability of having it land on the n face for m times. What is the distribution of m ? It is a Binomial distribution $B(m, N)$:
- $B(m, N)=\binom{N}{m} P(n)^{m}(1-P(n))^{N-m}=\frac{N!P(n)^{m}(1-P(n))^{N-m}}{m!(N-m)!}$

Yet more on using $P(n)$

- Expected average face value and standard deviation
- This is the average score we expect to obtain if we throw our die. E.g., if I throw my die twice and obtain " 4 " and " 1 ", my average face value is 2.5
- Let us throw our die N times
- Since each side has equal probability of appearing, on average I will obtain "1" N/6 times, "2" N/6 times, and so on. Then, what is the expected average result?

$$
\begin{aligned}
& \text { - }\langle n\rangle=\sum_{n=1}^{6} n * P(n)=1 * \frac{1}{6}+2 * \frac{1}{6}+3 * \frac{1}{6}+4 * \frac{1}{6}+5 * \frac{1}{6}+6 * \\
& \frac{1}{6}=3.5
\end{aligned}
$$

And yet more on using $P(n)$

- What is the standard deviation?
- Let us use its definition:

$$
\text { - } \sigma^{2}=\langle n-\langle n\rangle\rangle^{2}=\sum_{n=1}^{6}(n-\langle n\rangle)^{2} * P(n)=2.917
$$

- Finally, if I throw a die once, what is the average score I expect to obtain?
$-\langle n\rangle \pm \sigma=3.5 \pm 1.7$
- What is the uncertainty on the average if I throw the die many times?

$$
-\sigma_{\langle n\rangle}=\sigma / \sqrt{N}=1.7 /_{\sqrt{N}}
$$

- Please read the manual carefully
- Do not confuse when you are asked to measure the frequency distribution and the average face value

Rolling two dice

- Now $P_{2 d i c e}(n)$ gets complicate: n varies between 2 and 12, and its probability distribution is not flat anymore
- It is more likely to obtain a score of $6(1+5,2+4,3+3$, $4+2,5+1$) than 2 ($1+1$ only)
- One can sit down and build a table $P_{2 \text { dice }}(n)$:
- $n=2: 1+1$; one combination out of 36 achieves this result
- $n=3: 1+2,2+1$; two combinations out of 36 work
$-n=4: 1+3,2+2,3+1$; three combinations out of 36 work

More on two dice

- It is easy to convince ourselves that we get:
- $P_{2 \text { dice }}(2)=P_{2 \text { dice }}(12)=\frac{1}{36}$
- $P_{2 \text { dice }}(3)=P_{2 \text { dice }}(11)=\frac{2}{36}$
- $P_{2 \text { dice }}(4)=P_{2 \text { dice }}(10)=\frac{3}{36}$
- $P_{2 \text { dice }}(5)=P_{2 \text { dice }}(9)=\frac{4}{36}$
$\mathrm{f}(\mathrm{n})$ vs $\mathrm{n}(\mathrm{N}=36)$
- $P_{2 \text { dice }}(6)=P_{2 \text { dice }}(8)=\frac{5}{36}$
- $P_{2 \text { dice }}(7)=\frac{6}{36}$

PHYS 275 - Experiment 2

Last slide on two dice

- What is the average face value of two dice?
$-\langle n\rangle_{2 d i c e}=\sum_{n=2}^{12} n * P(n)=7$
- $\sigma_{2 \text { dice }}=\sqrt{2} \sigma_{1 \text { die }}=2.415$
- What is the expected frequency distribution?
- I.e., if I throw the two dice N times, how many times do I expect to see the score n ?
- $\bar{f}_{2 \text { dice }}(n)=N * P_{2 \text { dice }}(n)$
$-\sigma_{\bar{f}_{\text {2dice }}}(n)=\sqrt{N * P_{2 \text { dice }}(n) *\left(1-P_{2 \text { dice }}(n)\right)}$
- Note that now $P_{2 d i c e}(n)$ does depend on n, hence $\bar{f}_{2 \text { dice }}(n)$ and $\sigma_{\bar{f}_{\text {ziice }}}(n)$ also depend on n
$f(n) \pm \sigma_{f(n)}$ vs $\langle n\rangle \pm \sigma$

- Frequency

$$
\begin{aligned}
& -f(n)=N * P(n) \\
& -\sigma_{f(n)}=\sqrt{N * P(n) *(1-P(n))}
\end{aligned}
$$

- Score

$$
\begin{aligned}
& -\langle n\rangle=\sum_{n} n * P(n) \\
& -\sigma=\sqrt{\sum_{n}(n-\langle n\rangle)^{2} * P(n)}
\end{aligned}
$$

What will we be doing today?

- We reviewed what we expect to obtain when we throw a die or two dice
- Let us do the experiment, and compare the theory with our experimental results
- How do we compare our results?
- We perform a χ^{2} test: $\chi^{2}=\sum_{n}\left[\frac{f_{\text {data }}(n)-\bar{f}(n)}{\sigma_{\bar{f}}(n)}\right]^{2}$
- Careful with n : from 1 to 6 in the 1 -die case, from 2 to 12 in the 2 -dice case
- Please read discussion on degrees of freedom in the manual
- What if we obtain a result that has a very low probability of happening?
- We are authorized to be suspicious. Today you will receive a die that may be loaded; find a way to decide if it is fair or not

Suggestions

- Plot B1
- Make sure to put the theoretical distribution on the same graph as your measured distribution
- The manual suggest to use "Data Analysis" to build the distribution of die rolls; I prefer to use the formula COUNTIF(<range>,<value>)
- Use a Line/Scatter plot (please no Bar plots!)
- Questions B1-B3
- Make sure it is clear what a χ^{2} represents, and how to interpret $P\left(\chi^{2}, v\right)$
- Part D
- Decide how to choose N, the number of times you need to throw a die to decide whether it is fair or not

More suggestions

- Questions B2, C3, C4, D1 (the χ^{2} test)
- Prepare a table similar to the following to calculate χ^{2} :

Experimental Die		Theory		χ^{2}	
Bin	Measured $f(n)$	$\bar{f}(n)$	$\sigma_{\bar{f}}(n)$	$(f(n)-\bar{f}(n))^{2}$	$\frac{(f(n)-\bar{f}(n))^{2}}{\sigma_{\bar{f}}(n)^{2}}$

- Running average in Excel:
- AVERAGE(\$B\$1:B1): keep first cell of range fixed, and increase the other range delimiter

Today's experiments

- Probability distribution of one fair die
- Probability distribution of two fair dice
- Roll and collect data of two dice together, then analyze the behavior of the first die, and the behavior of the two dice
- Probability distribution of a probably loaded die
- Discuss with us before moving on to this part
- Important reminders
- Submit your Excel spreadsheet on ELMS and turn in your check sheet before leaving the lab
- Complete the final version of your report by 1 pm next week
- Finish the homework set in Expert-TA by 2pm next week
- Save your data on the local disk frequently!

Critical Points

- Make sure you do roll your dice before leaving the laboratory
- In particular, you need to roll a weird dice in part D: make sure to roll that dice before leaving the laboratory
- If you have not reached part D by 5:30pm, skip questions B and C, jump to D and roll the dice, submit your draft report, then complete B and C in your final report
- Pay attention to what the manual asks you to do
- Main source of confusion: sometimes you are counting how many times the die shows a certain face, and sometimes you are counting the score
- Make a clear distinction between averages, standard deviations, uncertainty on averages

